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Abstract Feature self-representation has become the backbone of unsupervised fea-
ture selection, since it is almost insensitive to noise data. However, feature selection
methods based on feature self-representation have the following drawbacks: 1) The self-
representation coefficient matrix is fixed and can not be fine-tuned according to the structure
of data. 2) they do not consider the manifold structure of data, thus unable to further increase
the performance of feature selection. To solve the above problems, this paper proposes an
unsupervised feature selection algorithm that combines feature self-representation and man-
ifold learning. Specifically, we first utilize feature self-representation to construct the model.
After that, the self-representation coefficient matrix is dynamically adjusted to the opti-
mal state based on the similarity matrix. Then, we use low-rank representation to explore
the global manifold structure of the data. Finally, we combine sparse learning with fea-
ture selection. The experimental results on twelve datasets show that the proposed method
outperforms all the competing methods.

Keywords Feature selection · Subspace learning · Sparse feature selection · Hypergraph
representation

1 Introduction

With the rapid development of information technology and database technology, people can
easily access and store huge amount of data. Traditional data analysis tools can not satisfy
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people’s increasing needs any more [10, 42, 66]. In order to efficiently extract useful
information from massive data, many data mining technologies have been around. In real
applications, however, data usually is high-dimensional and may contain lots of redundant
and useless information, which seriously undermines effectiveness of the data mining meth-
ods [13, 17, 19]. Therefore, it is crucial to conduct dimensionality reduction on the data
before applying any data mining algorithm [15, 16].

Dimensionality reduction is one of the most important research areas of machine learn-
ing [9, 21, 41]. In real applications, data is often high-dimensional, and it is difficult to be
understood, represented and processed [20, 37, 39]. By employing dimensionality reduc-
tion methods to break the curse of dimensionality, people can easily process and thus fully
understand the data [11, 29, 49]. There are a number of ways to reduce dimensions of
the data, which can be divided into two categories. The first one contains linear methods,
such as Principal Component Analysis (PCA) [50] and Classical Multidimensional Scaling
(CMDS) [52]. Low-dimensional data obtained by these linear methods can usually main-
tain the linear relationship between high-dimensional data points, but this kind of methods
can not reveal complex nonlinear manifold structure of the data. The second one, based
on manifold learning theory, consists of non-linear methods, such as Isometric Mapping
(Isomap) [64], Local Linear Embedding (LLE) [63]. This type of algorithms can learn
inherent geometry structure of the data, facilitating data processing and analysis [16, 24].

Dimensionality reduction methods based on manifold learning can usually be divided
into two categories. One is based on local manifold structure of data. The most classical
method is Locality Preserving Projections (LPP) [62], which can preserve neighborhood
relations between data after dimensionality reduction. Another consists of methods that
consider global structure of the data. Linear Discriminant Analysis (LDA) [7] is the most
commonly used in many areas and it can produce the best projection result, meaning that
after projection samples with the same class label have the largest distance while those with
different class labels have the smallest distance [18, 40, 61, 63]. That is, LDA produces the
best capability of separability for data samples. However, most feature selection algorithms
only take into account one of the two manifold structures of the data, i.e., either global or
local, so the performance is not satisfactory [12, 28, 30].

Because of some good properties, such as insensitive to noise data, feature self-
representation has been widely used in machine learning and computer vision [60, 65].
However, since the self-representation coefficient matrix obtained by these methods is fixed,
feature self-representation based methods do not adapt well to data with complex struc-
ture. To this end, this paper presents a feature selection algorithm that combines structure
learning with sparse learning (LSS FS). The main contributions of this paper include

– Due to the fact that our method uses feature self-representation to build the model, this
method is not very sensitive to noise and outliers, exhibiting good robustness.

– This model utilizes a low-rank constraint on self-representation coefficient matrix to
explore global manifold structure of the data, which had been proven that it has the
ability to take advantage of the correlation among features effectively.

– The model proposed in this paper can dynamically adjust the structure of data according
to the similarity matrix of the data, and can make it more accurate, so as to improve the
classification accuracy.

– In this paper, we propose a novel method to solve the objective function. We perform
low-rank feature selection and dynamically adjust the graph matrix to optimize the
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objective function according to the similarity matrix iteratively. The optimal results are
achieved in each iteration, and finally the global optimal solution is thus obtained.

2 Related work

The original purpose of sparse learning is to compress and express a signal, because it has a
lower sampling rate than Shannon theorem. And it gradually becomes popular, and success-
fully used to solve many practical problems. For example, in signal and image processing,
signal encoding, representation and compression, image denoising, image super-resolution,
etc [34, 48, 57].

With the continuous innovation and practice of many scientists and researchers around
the world, sparse learning theory has been successfully applied in signal processing, data
mining, machine learning, information retrieval, pattern recognition, biological computing
and other fields. And it has become the research hotspot of these areas. So far, a large num-
ber of experts and scholars are still carrying out an in-depth study of sparse learning’s theory
and application. For sparse learning itself, because it has a more natural discriminant nature,
it is more suitable for face recognition [27, 36]. Specifically, based on the theory of Com-
pressive Sensing, by using the sparse learning to reconstruct an approximate signal for the
original one to find the dimensionality reduce matrix, so that the original high-dimensional
signal projection to low-dimensional space can also maintain its original features as much
as possible [32, 35]. Sparse learning methods have achieved very high recognition accuracy
in face recognition. Although this method has achieved good performance, it needs to store
all training images for recognition, significantly increasing the storage overhead [43, 46].
Moreover, when the sparse learning deals with independent signals, it only considers the
inherent relevance of the signal, ignoring the correlation between the same type of signals.

Sparse learning evaluates the importance of an element in terms of the weight of its
coefficient, that is, the weight of an unimportant element is zero and the important one is
nonzero [31]. The more important an element, the greater the corresponding weight. There-
fore, sparse learning can be used as a natural identification information into the model [55]
by using the coefficient weights between the data samples or features. This enables sparse
learning to reduce the impact of noise on the model and improve the efficiency of the learn-
ing model. Therefore, sparse learning has been widely used in the field of data mining
and machine learning. For example, Zhu et al. proposed a joint sparse learning method to
achieve block sparse of data by considering the correlation between data and global infor-
mation of the data, and it has been used to deal with multi-label data for classification. Gao
et al. used the histogram intersection kernel (HIk) to implement kernel sparse learning,
and it utilizes the HIk basis to consider a feature quantization of soft-allocated extended
to conduct sparse coding [8]. Xia et al. proposed a sparse projection algorithm to conduct
binary coding for high-dimensional data [27]. Sparse Subspace Learning (SSL) can also be
seen as a special dimensionality reduction method [2]. Some researchers proposed a series
of sparse subspace learning algorithms based on sparse learning theory, including Non-
negative Sparse Principal Component Analysis (NSPCA) [45], Sparse Nomegative Matrix
Factorization (SNMF) [23], and so on.

The essence of sparse learning is to introduce the coefficient weight between samples or
features as the authentication information into the model. By using the sparse constraint to
punish the model, the coefficient weight of some irrelevant data approaches zero, and useful
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information is preserved, so the sparse learning is robust [52]. However, sparse learning
does not take into account the internal structure of the data.

To overcome the shortcomings of sparse learning, manifold learning has been proposed.
Linear discriminant analysis is the most common technique used in manifold learning.
Zhong et al. proposed a method to utilize �1-norm to maximize the objective function (LDA-
�1) [47], where LDA-�1 captures the global manifold structure via discriminant analysis,
and then selects the most critical features. Unsupervised Feature Selection via Unified Trace
Ratio Formulation and K-means Clustering (TRACK) was proposed as a unified framework
for feature selection and selected discriminative features according to trace ratio formu-
lation and K-means clustering [25]. Cai et al. proposed Multi-Cluster Feature Selection
(MCFS), which explores local manifold structure of the data via spectral analysis and then
searches the features that can better preserve the clustering structure [3]. However, these
algorithms are sensitive to outliers, and if the data contains too much noise, performance of
the algorithm will degenerate significantly.

There are many robust feature selection methods. For example, Unsupervised feature
selection by regularized self-representation (RSR), which uses all the features to linearly
represent each feature, thus weakening the impact of outliers [56]. Sun et al. put forward
an Unsupervised Robust Bayesian Feature Selection method, where the feature selection
capability is realized by estimating the feature saliencies associated with the features [22].
But these methods do not consider the manifold structure of data, so their performance are
not satisfactory. To obtain better stability and performance, this paper combines manifold
learning with feature self-representation, and then introduces the sparse regularization factor
to conduct feature selection.

3 Our method

In this section, we first introduce some notations that are used in this paper, and then
explain the detail of the proposed LSS FS method, in Sections 3.1 and 3.2, respectively, and
then elaborate the proposed optimization method in Section 3.3. Finally, we analysis the
convergence of the objective function in Section 3.4.

3.1 Notations

For a matrix X ∈ R
n×d , its i-th row and j-th column are denoted as Xi and Xj , respectively.

The trace of a matrix X is denoted as tr(X). XT means the transpose of X and X−1 means the
inverse of X, respectively. Also we denote the �F -norm and �2,1-norm of X respectively as

||X||F =
√∑n

i ||xi ||22 =
√∑d

j ||xj ||22, ||X||2,1 = ∑n
i

√∑d
j x2

i,j .

3.2 Structure learning for feature selection

Many previous literatures have indicated that the local structures of the samples may provide
complementary information to boost the ability of dimensionality reduction [44, 54]. So,
this paper proposes to utilize the local structures of the samples by learning a graph matrix
S ∈ R

n×n on a low-dimensional space of the original data. Given the feature matrix X, we
can get the following formula according to [51, 59]

min
Z

∑n
i,j ||xiZ − xjZ||22si,j (1)
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where || · ||2 is the �2-norm of a vector, Z ∈ R
d×d is a transformation matrix of the high-

dimensional data X in its low-dimensional space, and the element si,j of the graph matrix
S represents the similarity between sample Xi and sample Xj . If sample Xi is one of the
k-nearest neighbors of sample Xj , then the value of the heat kernel, i.e., f (xi, xj ) =
exp(−||xi−xj ||22

2σ 2 ) where σ is a tuning parameter, is regarded as the value of si,j ; otherwise
si,j = 0.

Actually, the character of S has been demonstrated very sensitive to σ [49, 53]. This
inspires us to learn the relatively correct graph matrix from the ’clean’ data and to decrease
number of parameters that need to adjust. By clean, we mean that a low-dimensional space
with as less noise and redundancy as possible [33]. However, in real applications, we cannot
know the graph matrix and low-dimensional space in advance [38]. In order to deal with
these problems, we combine graph matrix learning with low-dimensional space learning
to iteratively optimize them so as to achieve the optimal results. Therefore, we may learn
the graph matrix by following the distribution of the samples. Then we have the following
objective function:

min
S,Z

∑n

i,j
(||xiZ − xjZ||22si,j+λ1||si ||22),

s.t., ∀i, sT
i 1 = 1, si,i = 0, si,j ≥ 0, ifj ∈ N (i), otherwise 0 (2)

where λ1 is a control parameter and si is the i-th column of S, ||si ||22 is used to avoid the
trivial solution, 1 and N (i) represent an all-one-element vector and the set of the nearest
neighbors of the i-th sample, respectively, and the constraint sT

i 1 = 1 is applied to gain the
shift invariant similarity. Clearly, (2) assigns small value (i.e., similarity) to si,j if sample i
and j are far apart, and large value to si,j otherwise.

Previous methods learn the graph matrix via (1) to generate an optimal similarity mea-
surement. Different from that, (2) aims to achieve both optimal similarity measurement
(i.e., S) and feature selection results (i.e., Z). It becomes obvious that (2) may receive better
feature selection results (i.e., Z) than (1).

In order to reduce the adverse impacts of outliers and noise samples on the model, we
propose to use the self-representation method to build an unsupervised model, then we can
get the following functions:

min
S,Z

∑n

i,j
||xiZ − xjZ||22si,j+λ1||si ||22+λ2||X − XZ||2F

s.t., ∀i, sT
i 1 = 1, si,i = 0, si,j ≥ 0, ifj ∈ N (i), otherwise 0 (3)

In order to improve effectiveness of the algorithm and to consider relationship among
features, we may impose a constrain on the rank of Z [58]. Through this process, a low
rank constraint on Z can naturally be represented as the product of two r-rank matrices as
follows:

Z = AB (4)

where A ∈ R
d×r , B ∈ R

r×d , r ≤ min(n, d), and our function becomes

min
S,A,B

∑n

i,j
||xiAB − xjAB||22si,j+λ1||si ||22+λ2||X − XAB||2F

s.t., ∀i, sT
i 1 = 1, si,i = 0, si,j ≥ 0, if j ∈ N (i), otherwise 0 (5)

According to [56], the feature selection issue can be converted to the following form:

min
W

l(X − XW) + λR(W) (6)
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whereW is the feature weight matrix, l(X − XW) is the loss function, R(W) is the regular-
ization onW and λ is a positive constant. In the item ||X − XAB||2F , by treating XA as X of
(6), then B can be naturally regarded asW of (6). Inspired by (6), we naturally make the reg-
ularization on matrix of B to further improve the performance of the algorithm. Therefore,
our ultimate objective function is:

min
S,A,B

∑n

i,j
||xiAB − xjAB||22si,j+λ1||si ||22+λ2||X − XAB||2F + λ3||B||2,1

s.t., ∀i, sT
i 1 = 1, si,i = 0, si,j ≥ 0, ifj ∈ N (i), otherwise0,AT A = I (7)

The constraint AT A = I (where A ∈ R
d×r and I ∈ R

r×r ) is introduced for
identifiability purpose, where λ1, λ2 and λ3 are tuning parameters.

3.3 Optimization

Equation (7) is not jointly convex with respect to all the variables (i.e., A, B, and S), but
it is convex for each variable while fixing the rest. In this paper, we utilize the alternative
optimization method to optimize (7), i.e., iteratively optimizing each variable respectively.

Update A by fixing B and S
When B and S are fixed, the second and fourth terms of (7) can be viewed as constants,

thus we can get:

min
A

∑n
i,j ||xiAB − xjAB||22si,j + λ2||X − XAB||2F , s.t., AT A = I (8)

By following the IRLS framework, we rewrite (8) as:

min
A

tr(BT AT XT LXAB) + λ2tr(X
T X − XT XAB

− BT AT XT X + BT AT XT XAB), s.t., AT A = I (9)

where tr(·) is a trace operator, L = Q−S ∈ R
n×n is a Laplacian matrix and Q is a diagonal

matrix with its i-th element qi,i = ∑n
j=1 si,j . By fixing B, we get the derivative of (9) as

follows:

2XT LXABBT − 2λ2XT XBT + 2λ2XT XABBT (10)

Since A is orthogonal, we can employ an existing method in [26] to optimize it.
Update B by fixing A and S
When A and S are fixed, the second term of (7) can be viewed as constants, we can get:

min
B

∑n
i,j ||xiAB − xjAB||22si,j + λ2||X − XAB||2F + λ3||B||2,1 (11)

Which is equivalent to

min
B

tr(BT AT XT LXAB) + λ2tr(X
T X − XT XAB

− BT AT XT X + BT AT XT XAB) + λ3tr(B
T PB) (12)

Where P ∈ R
r×r is diagonal matrix with pi,i = 1

2||Bi ||2 , (i = 1, . . . , r). Then setting the
derivative of B in (12) to zero, we obtain:

B = λ2(A
T XT LXA + λ2A

T XT XA + λ3P)−1AT XT X (13)
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Update S by fixing A and B
Given that A and B are fixed, (7) is changed to:

min
S

∑n

i,j
||xiAB − xjAB||22si,j+λ1||si ||22

s.t., ∀i, sT
i 1 = 1, si,i = 0, si,j ≥ 0, ifj ∈ N (i), otherwise 0 (14)

We first calculate the Euclidean distance between each sample to produce k nearest
neighbors of all samples, and then set the value of si,j to 0 if the j-th sample does not belong
to one of the k nearest neighbors of the i-th sample, otherwise, we utilize (17) to determine
the values of si,j .

Since optimizing S is equal to solely optimizing each vector si(i = 1, . . . , n), we fur-
ther change the optimization problem in (14) to individually optimize si(i = 1, . . . , n) as
follows:

min
sT
i 1=1,si,i=0,si,j ≥0

∑n
j (||xiAB − xjAB||22si,j+λ1s

2
i,j ) (15)

By denoting F ∈ R
n×n where fi,j = ||xiAB − xjAB||22, we rewrite (15) as follows:

min
sT
i 1=1,si,i=0,si,j ≥0

||si + 1
2λ1

fi ||22 (16)

On the basis of the Karush-Kuhn-Tucker (KKT) conditions [1], we are able to get the
closed-form solution of si,j (j = 1, . . . , n) as:

si,j = (− 1
2λ1

fi,j + τ)+ (17)

We suppose that there are k nearest neighbors for each sample. By denoting f̂i =
{f̂i,1, . . . , f̂i,n} as a descend order of fi, (i = 1, . . . n), (17) reveals that si,k+1 = 0 and
si,k > 0, where k is the number of nearest neighbors of the i-th samples and can be tuned
by cross-validation methods. That is,

− 1
2λ1

f̂i,k+1 + τ ≤ 0 (18)

Since sT
i 1 = 1, we can get

∑k
j=1 ( 1

2λ1
f̂i,k + τ) = 1 ⇒ τ = 1

k
+ 1

2kλ1

∑k
j=1 f̂i,k (19)

Based on the above discussion, we summarize the process for solving (7) in Algorithm 1.
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3.4 Convergence analysis

The framework IRLS has been proven to converge in [6], so we only need to prove the
convergence of Algorithm 1 via Theorem 1:

Theorem 1 The value of objective function in (7) monotonically decreases until Algorithm
1 converges.

Proof After the t-th iteration, we have obtained the optimal A(t), B(t) and S(t). In the (t+1)-
th iteration, we need to optimize S(t+1) by fixing A(t) and B(t).

According to (17), s(t+1)
i,j has a closed-form solution for all i, j = 1, . . . , n, thus we have:

∑n

i,j
||xiA(t)B(t) − xjA(t)B(t)||22s(t+1)

i,j + λ1||X − XA(t)B(t)||2F
+λ2

∑n

i
||s(t+1)

i ||22 + λ3||B(t)||2,1
≤

∑n

i,j
||xiA(t)B(t) − xjA(t)B(t)||22s(t)

i,j + λ1||X − XA(t)B(t)||2F
+λ2

∑n

i
||s(t)

i ||22 + λ3||B(t)||2,1 (20)

While fixing S(t+1) to update A(t+1) and B(t+1), we follow [6] to get
∑n

i,j
||xiA(t+1)B(t+1) − xjA(t+1)B(t+1)||22s(t+1)

i,j

+λ1||X − XA(t+1)B(t+1)||2F + λ2
∑n

i
||s(t+1)

i ||22 + λ3||B(t+1)||2,1
≤

∑n

i,j
||xiA(t)B(t) − xjA(t)B(t)||22s(t+1)

i,j

+λ1||X − XA(t)B(t)||2F + λ2
∑n

i
||s(t+1)

i ||22 + λ3||B(t)||2,1 (21)

By integrating (20) with (21), we obtain:
∑n

i,j
||xiA(t+1)B(t+1) − xjA(t+1)B(t+1)||22s(t+1)

i,j

+λ1||X − XA(t+1)B(t+1)||2F + λ2
∑n

i
||s(t+1)

i ||22 + λ3||B(t+1)||2,1
≤

∑n

i,j
||xiA(t)B(t) − xjA(t)B(t)||22s(t)

i,j

+λ1||X − XA(t)B(t)||2F + λ2
∑n

i
||s(t+1)

i ||22 + λ3||B(t)||2,1 (22)

From (22), we know that the objective function value of (7) decreases after each iteration
of Algorithm 1. Hence, Theorem 1 has been proven.

4 Experimental results

We use 5 binary-class and 7 multi-class benchmark datasets to verify the performance of our
method and the competing dimensionality reduction methods. The selected datasets include
glass, wine, Parkinsons, Ionosphere, LungCancer, Sonar, Movements, Arrhythmia, LVST,
ecoli and Yeast, all downloaded from the UCI Machine Learning Repository.1 The Isolet

1http://archive.ics.uci.edu/ml/.
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Table 1 Statistics of the datasets
used Datasets Samples Dimensions Classes

Glass 214 9 6

Wine 178 13 3

Parkinsons 195 22 2

Ionosphere 351 34 2

LungCancer 32 56 2

Sonar 208 60 2

Movements 360 90 15

Arrhythmia 452 279 13

LVST 126 310 2

ecoli 336 343 8

Isolet 1560 617 26

Yeast 1484 1470 10

from the website of Feature Selection Datasets.2 We summarize detailed information of the
datasets in Table 1.

To prove the performance of LSS FS, we compare it with six state-of-art feature selection
methods. We list details of the competitor methods as follows:

TRACK: It selects discriminative features via unified trace ratio formulation and k-means
clustering [25]. RSR: Regularized self-representation selects representative features via the
�2,1-norm to characterize the self-representation coefficient matrix and ensure the robust-
ness to outilers [56]. CSFS: Convex Semi-supervised multi-label Feature Selection can
conduct the feature selection via the �2,1-norm regularization [5]. FSR ALM : Exact Top-k
Feature Selection via �2,0-norm constraint and Augmented Lagrangian Multiplier (ALM)
to avoid the heavy burden of tuning regularization parameters and make it more practically
[4]. LDA: Liner Discriminant Analysis (LDA) aims at minimizing the within class distance
while maximizing the between class distance when conducting feature selection. Hence,
LDA is a global subspace learning method [7]. PCA: It maps high-dimensional data into
low-dimensional space by preserving the covariance of the data matrix [50].

We set {λ2, λ3} ∈ {10−2, . . . , 102}, while the value of λ1 is automatically adjusted
according to [14], and the rank of the self-representation coefficient matrix r ∈
{1, . . . ,min(n, d)}. Moreover, {c, g} ∈ {2−5, . . . , 25} in SVM a 5-fold inner cross-
validation is used to distinguish different types of samples. According to the cross-validation
method, we can choose the best parameters for the experiments. In order to reduce impact
of randomness, a 10-fold outer cross-validation has been used to get the average results. For
the sake of fairness, we use the same strategy for all the competing methods.

We use three kinds of evaluation metrics, such as classification accuracy, standard devi-
ation and coefficient of variation, to evaluate the classification performance of all methods.
We define classification accuracy (ACC) as follows:

ACC = Ncorrect /N (23)

whereN is the number of samples andNcorrect is the number of correctly classified samples.

2http://featureselection.asu.edu/datasets.php.
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We utilize Standard Deviation (STD) to reflect the classification accuracy results and
give the definition as follows:

ST D =
√

(1/nrun)
N∑

i=1
(ACCi − u) (24)

where nrun denotes the runs of experiments, i.e., nrun=10 in our experiments, and u stands
for the average value of ACC. A large ACC means good performance, and a small STD
shows excellent stability.

We also use Coefficient of Variation (CV) as the evaluation index, which is defined as

CV = ST D/ACC (25)

where STD is the square root of an unbiased estimate of each sample, i.e., standard
deviation. A small CV means better robustness.

4.1 Experiment results and analysis

In Table 2, we display the classification accuracy of all methods on twelve datasets in
Table 1. Besides, we report the results of classification accuracy for all datasets in Fig. 1.

The proposed LSS FS method outperforms all competing methods in all classification
tasks. For instance, the ACC of our method increases on average by 10.97%, compared with
TRACK which does not learn the relatively correct graph matrix of the high-dimensional
data. ACC of out method raises on average by 9.45%, compared with the PCA method
which is not able to take into account enough information for feature selection. On the
other hand, ACC of our method climbs on average by 8.63%, compared with the LDA
method which only considers the global structure of the data. Meahwhile, ACC of our
method increases on average by 8.46%, compared with the FSR ALM method which fails
to take the relationship between features into account. Also, compared with CSFS which
does not construct graph matrix to consider the local correlations among the features, ACC

Table 2 Classification accuracy (ACC±STD (%))

Datasets TRACK RSR CSFS FSR ALM LDA PCA LSS FS

Glass 60.39±2.42 66.02±1.52 55.76±2.60 64.77±0.87 63.85±0.87 65.47±1.23 71.69±0.85

Wine 92.83±1.04 96.14±0.31 91.73±0.86 92.26±2.02 93.55±0.97 89.44±2.23 97.45±0.30

Parkinsons 86.13±0.75 88.49±0.46 86.89±0.50 86.34±0.61 86.18±1.25 79.96±0.64 92.35±1.33

Ionosphere 81.82±1.43 87.88±0.90 85.67±0.71 86.53±0.59 87.09±0.91 86.86±1.23 92.88±0.51

LungCancer 77.33±2.91 73.58±5.20 79.33±2.91 71.83±0.73 74.25±3.26 73.50±3.14 79.67±3.25

Sonar 76.17±1.32 74.44±1.42 78.10±0.70 78.25±0.85 78.24±0.86 76.54±1.74 87.00±1.01

Movements 79.47±1.29 80.42±0.95 77.44±1.56 77.81±1.76 79.86±0.73 80.08±1.17 88.50±0.77

Arrhythmia 66.95±0.88 67.27±1.36 67.07±0.96 67.47±0.96 67.01±1.47 63.34±1.22 70.97±0.57

LVST 61.60±2.70 83.42±0.80 60.53±4.01 60.31±5.22 84.14±1.68 63.09±3.83 84.38±1.45

ecoli 75.85±3.24 85.74±0.48 81.13±0.72 82.28±1.19 75.55±0.04 84.99±0.95 86.00±0.50

Isolet 81.46±0.44 80.53±2.32 96.08±0.26 96.39±0.13 83.60±2.02 95.94±0.21 96.87±0.22

Yeast 36.45±2.17 41.96±0.57 48.30±0.67 42.32±0.28 31.20±0.01 35.47±0.61 60.33±0.27

Average value 73.04±1.72 77.16±1.36 75.67±1.37 75.55±1.27 75.38±1.17 74.56±1.52 84.01±0.92

The bold number means the best result of each row
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Fig. 1 Average classification accuracy of all methods on all the tested datasets
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of our method increases on average by 8.34%. Compared with the RSR method that only
considers the relationship between the features, the improvement on ACC of our method
is 6.85% on average. The reason is that, LSS FS method considers the following con-
straint while conducting feature selection: 1) two kinds of correlations, i.e., sample-level
and feature-level, inherent in data; 2) iteratively adjusting the transformation matrix until
it is optimal. Furthermore, the proposed method obtains the minimum standard deviation
on average, compared with the other methods. Based on the above observations, our pro-
posed method has the best robustness compared with all the other methods for classification
tasks.

We show the results of coefficient of variation of all methods in Table 3. Specifically,
our algorithm obtains the minimum value on the five datasets, to be specific, 1.19 on glass,
0.31 on wine, 0.55 on Ionosphere, 0.87 on Movements and 0.80 on Arrhythmia, respec-
tively. Returning to the performance of CV in Table 3, though the proposed method does
not achieve the minimum variation on each of the datasets, it reaches the minimum average
variation on all the datasets. This verifies that our method achieves the best stability.

Figure 2 reveals the characteristic of the proposed objective values of Algorithm
1 on six datasets at each iteration, where we set the stop criteria of Algorithm 1 as
||obj (t+1)−obj (t)||22

obj (t)
≤ 10−5 where obj(t) represents the value of objective function in (7)

at the t-th iteration. From Fig. 2, we can know that: 1) the proposed Algorithm 1 to opti-
mize the objective function in (7) monotonically decreases the objective function value until
Algorithm 1 converges; 2) the proposed Algorithm 1 on all the datasets converges within
twenty iterations, revealing that the proposed algorithm has a fast convergence rate.

From Fig. 3, we can know that the classification accuracy with a low-rank constraint for
the most part is better than the classification accuracy with full-rank. For instance, the aver-
age classification accuracy of LSS FS method with low rank constraint increases by 0.74%,
0.22%, 0.21%, 0.45%, 0.41%, 0.54%, 0.56%, 0.39%, 0.28%, 0.91%, 0.14% and 0.15%,
respectively, compared with the results of full-rank constraint on dataset wine, Parkinsons,
Ionosphere, LungCancer, Sonar, Movements, Arrhythmia, LVST, ecoli, Isolet and Yeast.
Hence, it is obvious that analyzing high-dimensional data with a low rank constraint in

Table 3 Coefficient of variation (%)

Datasets TRACK RSR CSFS FSR ALM LDA PCA LSS FS

Glass 4.01 2.30 4.66 1.34 1.36 1.88 1.19

Wine 1.12 0.32 0.94 2.19 1.04 2.49 0.31

Parkinsons 0.87 0.52 0.58 0.71 1.45 0.80 1.44

Ionosphere 1.75 1.02 0.83 0.68 1.04 1.42 0.55

LungCancer 3.76 7.07 3.67 1.02 4.39 4.27 4.08

Sonar 1.73 1.91 0.90 1.09 1.10 2.27 1.16

Movements 1.62 1.18 2.01 2.26 0.91 1.46 0.87

Arrhythmia 1.31 2.02 1.43 1.42 2.19 1.93 0.80

LVST 4.38 0.96 6.62 8.66 2.00 6.07 1.72

ecoli 4.27 0.56 0.89 1.45 0.05 1.12 0.58

Isolet 0.54 2.88 0.27 0.13 2.42 0.22 0.23

Yeast 5.95 1.36 1.39 0.66 0.03 1.72 0.63

Average value 2.61 1.84 2.02 1.80 1.50 2.14 1.13

The bold number means the best result of each row
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Fig. 2 Convergence rate of Algorithm 1 on all tested datasets
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Fig. 3 Average classification accuracy of our method on all tested data sets for different number of ranks
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feature selection is meaningful. Due to the fact that the low rank constraint conducting
subspace learning helps search the low-dimensional space of high-dimensional data by
considering the global feature correlation.

We vary parameter λ2 and λ3 within the range of {10−2, . . . , 102} and list the results
in Fig. 4. Parameter λ2 is used to control the magnitude between the local representation
term

∑n
i,j ||xiAB − xjAB||22si,j and the global representation term ||X − XAB||2F , while

λ3 in (7) is used to adjust the sparsity of AB. In Fig. 4, our method achieves the best perfor-
mance on dataset Sonar and ecoli while setting λ2 = 10, and λ3 = 0.01. Clearly, our method
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Fig. 4 ACC results of our proposed method for different λ2 and λ3
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produces the best ACC, i.e., 84.38%with λ2 = 1, and λ3 = 1 for dataset LVST. This indicates
that tuning of parameter benefits our method.

5 Conclusion

In this work, we proposed a novel feature selection method, called Unsupervised Feature
Selection via Local Structure Learning and Sparse Learning (LSS FS). LSS FS method
utilizes the similarity matrix to fine tune the self-representation coefficient matrix to output
a high quality self-representation coefficient matrix. As a result, LSS FS can have better
discriminative power than traditional feature selection methods. Experimental results on
real datasets show that LSS FS method provides better feature selection performance than
the competitor methods.

In the future work, we will extend the proposed method for semi-surprised feature
selection tasks.
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