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Abstract This article proposes an improved learning based super resolution scheme using
manifold learning for texture images. Pseudo Zernike moment (PZM) has been employed to
extract features from the texture images. In order to efficiently retrieve similar patches from
the training patches, feature similarity index matrix (FSIM) has been used. Subsequently,
for reconstruction of the high resolution (HR) patch, a collaborative optimal weight is gener-
ated from the least square (LS) and non-negative matrix factorization (NMF) methods. The
proposed method is tested on some color texture, gray texture, and some standard images.
Results of the proposed method on texture images advocate its superior performance over
established state-of-the-art methods.
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1 Introduction

Image analysis is a universal need in image processing and computer vision. However, lack
of high-frequency details in an image leads to incorrect image analysis. To overcome such
issues, super resolution (SR) technique has been used to generate a high resolution (HR)
image from the given low resolution (LR) image(s) observations [23]. Prior to SR algorithm,
another possible approach was adopted to increase the number of pixels per unit area to
combat the loss of high-frequency details. Such process considers the decrease in pixel size
and increases the number of sensors [36–38]. However, due to diffraction effect decreasing
the pixel size prompts to high capacitance which in turn slows down the system performance
and results in increase of noise. SR algorithm is devoid of such limitations and found to be
suitable in applications like satellite and areal imaging, medical image processing, textured
recognition, face recognition, video surveillance, etc.

Various research articles have been reported on SR techniques over the past two decades.
Generally, the SR can be achieved on both frequency as well as spatial domain [2, 18, 30,
35, 45]. Furthermore, the SR methods can be broadly categorized into two types such as
(i) Multi frame SR and (ii) Single frame SR based on the number of LR reference images
considered. Various multi image based SR approaches [21, 28, 38, 41] require accurate
registration among images which lead to ringing effects and artifacts in the reconstructed
image. In addition, they do not work well for unprocessed data. On the other hand, single
image LR image based SR methods do not suffer from these problems. Further, existing sin-
gle image based SR approaches can be classified into three general classes, i.e., interpolation
based, reconstruction based and learning based. In the interpolation based methods [29, 51],
it is hard to restore the high-frequency details. Therefore, blurred edge and complex texture
are found in interpolation method. In reconstruction based method [30, 54], prior knowledge
like edge, gradient, etc. are required to reconstruct the HR image. This method can suppress
the aliasing artifacts and preserve sharper edges. However, it cannot generate fine details in
larger magnification. To tackle this problem, learning based SR methods [5, 7, 9, 20, 52]
have been introduced by inferring the mapping relationship between LR-HR image pairs.

Learning based SR approach can be further categorized into three categories such as
belief network [3, 19, 20], manifold learning [6, 7, 9, 13] and compressive sensing [46, 47,
50]. Freeman et al. [19] are the forerunners who introduced learning based single image
super resolution scheme in 1999. Later on, they have used Markov random field (MRF)
model and loopy belief propagation to find the relationship between LR-HR image patch
pairs. However, boundary effect and incompatibility between reconstructed HR patches
and its surrounding patches have been seen in texture images [19, 20]. Based on these
works, Sun et al. [40] proposed primal sketch apriori to overcome the blur present in edges,
ridges and corners. To overcome the incompatibility between HR patches and its neighbor-
ing patches, manifold learning based super resolution techniques have been introduced in
[4, 5, 7, 9]. Chang et al. [9] introduced single image SR using manifold learning where
local geometry based features are extended from LR-HR patch pairs inferred to recon-
struct the expected HR patches using optimal reconstruction weight. Thereafter, a novel
feature selection scheme for neighbor embedding SR has been proposed by Chan et al. [7].
Guo et al. [24] have used maximum a posteriori (MAP) estimation to combine the global
parametric constraint with a patch-based local non-parametric constraint. In another work,
Gao et al. [22] have proposed a method to project the original HR and LR patch onto the
jointly learning unified feature subspace. Later on, compressive sensing techniques have
drawn attention from many researchers for single image super resolution [16, 26]. Mishra
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et al. [33] have introduced a robust scheme to generate a HR image from the registered
LR image. In this work,they remove the outlier generated during registration using robust
locally linear embedding (RLLE). Further, they used Zernike moment as feature selection
for neighborhood preservation during HR image reconstruction [34].

In addition to these, few other studies have also proposed for the enhancement of texture
image. Wei et al. [44] have discussed the extensions and applications of texture synthe-
sis. HaCohen et al. [25] introduced consistent fine-scale detail to textured regions and
produced edges with proper sharpness. To enhance the quality of complicated texture struc-
ture in the image, an example based SR using clustering and partially supervised neighbor
embedding has been proposed by Zhang et al. [52]. Due to overlapping in the frequency
range with that of the noise in the texture images, de-noising or in-painting is used for
single image super resolution [49]. Yoo et al. [48] proposed a novel texture enhancement
strategy to improve the single image super resolution performance. In recent years, many
neural network (NN) based approaches has addressed for single image super resolution
with excellent performance. Ahn et al. [1] proposed a texture enhancement framework by
the combining interpolation technique and customized style transfer technique. Here they
used repetitive tiling concept for the style transfer technique. Sajjadi et al. [39] introduced
an automated texture synthesis technique by using feed forward fully convolutional neural
networks. This method gives an efficient result due to the feed-forward architecture which
inference time since the LR image only needs to be passed through the network once to get
the result. Liu et al. [31] used total variation (TV) regularization approach for SR image
reconstruction for synthetic aperture radar (SAR) image. In this work, they used gradient
profile prior or other texture image prior in the maximum a posteriori framework. Cruz
et al. [15] used Wiener filter in similarity domain to generate a super resolution image
from a single reference image. Here they introduced filtering of the patches in 1D simi-
larity domain and coupled it with the iterative back propagation (IBP) frame work. Chang
et al. [11] presented a bi-level semantic representation analysing framework for image/
video which is work for weight learning approach for multimedia representation. Later,
they introduced a semi supervised feature selection technique. For maintain the correla-
tion between various feature in the training data they adopted manifold learning to labeled
and unlabelled training data [8]. In addition, to maintain the correlation between the linear
effect and the nonlinear effect for embedding feature interaction, an optimization algorithm
has been proposed by them [10]. An isotonic regularizer that is able to exploit the con-
structed semantic ordering information has introduced by Chang et al. [12] for the video
shots.

The literature review reveals that most of the existing schemes fail to reproduce the fine
details during image reconstruction. Different applications on SR need suitable algorithms
in order to achieve an optimal reconstruction image. Enhancement in texture images still
points as an outstanding problem. In this work, we propose an improved learning based SR
algorithm for texture image to generate a HR image from a single LR image. The scheme
utilizes neighbor embedding technique (manifold learning) and is suitably named as single
image super resolution using manifold learning (SSRM). In this approach, HR patches are
reconstructed from the input test LR patches by the prior information that fetched from the
training LR-HR pairs. The major contribution of this paper includes

1. Feature representation using pseudo Zernike moments (PZM) to classify the patches
2. Finding the k most similar patches from the test patch using similarity measure, i.e.

Feature similarity index (FSIM)
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3. Computation of optimal reconstruction weight using least square (LS) and non-negative
matrix factorization (NMF) for HR patch reconstruction

Experimental results and comparisons on textural images show that proposed method offers
better performance than other existing methods. Additionally, the proposed scheme works
well on standard images.

The rest of the paper is organized as follows. Section 2 discusses the proposed algorithm.
The experimental results and discussion are presented in Section 3. Finally, Section 4 deals
with the concluding remarks and the scope for future work.

2 Proposed SSRM algorithm

In this work, an improved single image SR using manifold learning is proposed. The scheme
follows three main steps

(i) feature extraction using pseudo Zernike moments (PZM)
(ii) finding k-nearest neighbor using similarity measure FSIM
(iii) optimal reconstruction weight computation using collaborative method

Features are extracted from each LR-HR patch separately by considering the phase and
magnitude values of PZM. In addition, FSIM has been used as a similarity measure for
searching the nearest neighbor patches for HR patch reconstruction. Thereafter, a collabo-
rative technique is used to find out the optimal reconstruction weight to generate the HR
patch from a given LR input patch. Figure 1 shows the overall frame work of the proposed
scheme.

Fig. 1 Overall block diagram of proposed scheme
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The overall steps to generate the reconstructed HR image is listed in Algorithm 1.

2.1 Patch generation

In this approach, each image is first converted from RGB to YCbCr color model and only
the luminance component of the image is considered. Each LR image is decomposed into a
set of t × t patches with two overlapping pixels. The corresponding HR image patch size is
γ t ×γ t with 2γ overlapping pixels, where γ is the magnification factor. Let the training LR
image, HR image and testing LR image are denoted by Lr = {

l
p
r

}a

p=1, Hr = {
h

p
r

}a

p=1, and

Lt = {
l
q
t

}b

q=1, respectively. The number of patches for the LR image of size t × t is t × t ×
[(row−stepsize)×(col−stepsize)], where stepsize = patchsize−overlappingpixels.
The number of patches for the HR image of size γ t × γ t is γ t × γ t ×[(row − stepsize)×
(col − stepsize)], where stepsize = γ × patchsize − γ × overlappingpixels.

2.2 Feature selection by PZM

In this work, we use pseudo Zernike moment (PZM) for feature selection. It has higher
description ability for same order as compared to Zernike moment. Moreover, it provides
meaningful information for image reconstruction. It is a widely used orthogonal moment.
It has several applications in various areas of image processing and pattern recognition.
Because of its orthogonality and invariance properties, it is robust to noise and have better
ability for image representation [14]. Figure 2 shows the linear transformation on a single
patch through normalization.

The PZM of a continous image intensity f (x, y) is defined as

PZMn,m (f (x, y)) = n + 1

π

∫ ∫

x2+y2≤1
f (x, y) V ∗

n,m (x, y) dxdy, (1)
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Fig. 2 Normalization of the patch in unit circle

where n, m is the order and repetition respectively. Here, n = 0, 1, 2, ..., ∞ and |m| ≤ n

such that n − |m| = even. The discrete form of PZM for digital image intensity f (xq, yp)

is represented as

PZMn,m

(
f

(
xq, yp

)) = n + 1

πλ(N)

∑

x

∑

y

V ∗
n,m (x, y)

(
f

(
xq, yp

))
, (2)

where xq = −
√
2
2 +

√
2

N−1q, q = 0, 1, .., (N−1) and yp =
√
2
2 −

√
2

N−1p, p = 0, 1, .., (N−1).

Here n+1
π

is a normalization factor, λ(N) = N2

2 . Vn,m is the complex polynomial and V ∗
n,m

is the complex conjugate of Vn,m.
The pseudo Zernike polynomials is represented as

Vn,m (x, y) = Rn,m (r) ejmθ , (3)

where radial polynomials Rn,m (r) is defined as

Rn,m (r) =
n−|m|∑

s=0

(−1)s
(2n + 1 − s)!

s!(n − |m| − s)!(n + |m| + 1 − s)! r
(n−s), (4)

here the PZM are defined in terms of polar coordinates (r, θ) with 0 ≤ |m| ≤ n and |r| ≤ 1.
It is reported that PZM is unsuitable to extract the global information from the whole

image. Hence, in this scheme, we compute the feature vector for each patch with respect to
magnitude and phase of PZM [27].

2.2.1 Generation of feature vector considering the magnitude of the PZM

Generally, the 2-D PZM feature is represented by a complex value, which is the combination
of magnitude and phase coefficients. The magnitude based PZM feature vector of order n =
0 to nmax , with m ≥ 0 is represented in Table 1. For nmax = 5, the total number of feature
vector is 21. Since, PZM with higher order moment is sensitive to noise and distortion, we
consider 5 as the maximum order. So the feature vector for each patch f (xq, yp) is defined as

nmax

PZM
[
f (xq, yp)

] = {|PZMu,v(f (xq, yq))||, u = 0, 1, ..., nmax, v = o, i, ..., u
}
, (5)

where |PZMu,v(f (xq, yq))| is the magnitude of PZMn,m(f (xq, yp)).
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Table 1 PZM with n=0 to 5

n PZM No. of PZM

0 PZM0,0 1

1 PZM1,0, PZM1,1 2

2 PZM2,0, PZM2,1, PZM2,2 3

3 PZM3,0, PZM3,1, PZM3,2, PZM3,3 4

4 PZM4,0, PZM4,1, PZM4,2, PZM4,3, PZM4,4 5

5 PZM5,0, PZM5,1, PZM5,2, PZM5,3, PZM5,4, PZM5,5 6

2.2.2 Generation of feature vector considering the phase of the PZM

The wide range of edges are represented by high phase values. The gradient based edge
detection technique are sensitive to blurring and magnification. Hence, in this work, PZM is
used to preserve the high-frequency details during image reconstruction. By using various
heuristic criteria, the patch with edge and without edge can be calculated from the training
patches. Hence, for a input test patches, it will be easy to classify the nearest neighbor
patches from the whole training patch. Then each patch having edge is counted according
to Table 2. It will speed-up the searching process. In order to compute the phase feature,
rotation invariant PZM is defined as∣∣∣PZMR

n,m(f (xq, yp))

∣∣∣ = ∣∣PZMn,m(f (xq, yp))
∣∣ exp−jmθ , (6)

where PZMR
n,m(f (xq, yp)) is the rotated version of PZM with the rotation angle θ . To

remove the rotational effect on phase, a complex valued rotation invariant is created by
combining phase coefficients of different orders with repetitions. This is represented as

where ϕR
n,m = ϕn,m − mθ . Here, ϕn,m the phase coefficient and ϕR

n,m is the phase value of
rotated image. When we set n0 = 1 the modified phase angle of PZM is

where ϕ1,1 = 0. Therefore, the phase feature vector of each patch f (xq, yp) is represented as

After the phase feature vector generation, several heuristic criteria have been used for
identify the patches with edge and without edge. If φ < θ , then its corresponding patch

Table 2 Patch labeling by edge detection

φ φrow, φcol Type Category

ϕ < θ – Non-edge –

ϕ = θ φrow = θ Edge Horizontal

ϕ = θ φcol = θ Edge Vertical

ϕ = θ φrow = θ and φcol = θ Edge Slope

ϕ > θ – Edge Complex
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is labelled as non edge else labelled the patch as edged. This makes the searching of the
patches having more information faster.

2.3 Patch classification

The similar patches of an input patch are directly searched from the training database. How-
ever, this scheme is inefficient and similar optimal patches may not be obtained. Hence, to
find out the similar optimal patches, we use feature similarity index (FSIM) [53] instead of
the Euclidean distance, since it fails to search the appropriate nearest neighbor patches in
the manifold. FSIM is computed by phase congruency (SPC(x)) and gradient (SG(x)) based
similarity.

Feature similarity index is computed by combining SPC(x) and SG(x) as

SL(x) = [SPC(x)]α.[SG(x)]β, (10)

where α and β are parameters for adjusting relative importance of both the features. Range
of the FSIM is 0 to 1. The FSIM of two similar patches is nearer to 1. The value of FSIM
between two patches lies between 0 to 1 and higher the value of FSIM, the similar the
patches are. Thus, optimal patches are computed by top k-nearest neighbor patches with
respect to FSIM.

2.4 Collaborative optimal weight reconstruction

In this section, a collaborative weight reconstruction is used during the HR patch generation.
Firstly, the weight is computed using least squarer technique. Further, another weight vector
is generated using non-negative matrix factorization method. Thereafter, final weight vector
is collaboratively constructed using LS and NMF technique.

2.4.1 Weight vector generated by LS method

After generating the patches from images, each testing patch is taken into account to gen-
erate an expected HR patch. For each input patch l

q
t of Lt = {

l
q
t , q = 1, 2, 3, ...m

}
,

k-nearest neighbor training patches are searched. Through least square (LS) method the
weights related to k-nearest neighbor training patches are found by minimizing the local
reconstruction error as

εq = min

∥∥∥∥∥∥∥
l
q
t −

∑

l
p
r ∈ℵq

wqpl
p
r

∥∥∥∥∥∥∥

2

, (11)

where ℵq is the neighbor of l
q
t in training set Lr and element wqp of Wq is the weight for

l
p
r , subject to two constraints

∑
l
p
r ∈ℵq

wqp = 1 and wqp = 0 for any l
p
r /∈ ℵq .

Let us define a local Gram matrix Gq for l
q
t as

Gq =
(
l
q
t 1

T − L
)T (

l
q
t 1

T − L
)

, (12)

where 1 is a column vector of ones and L is a D × K matrix with its columns being the
neighbors of x

q
t . To form a K-dimensional weight vector Wq , each weight wqp is reordered

by the subscript p.
To solve an eigenvalue problem using the Lagrange theorem, the formulation is given by

ε = wT Gw , (13)
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where

w =
(
1

2

)
λG−11 , (14)

and

λ = 2

1T G−11
. (15)

When G is singular, the result of the least squares problem for finding wq does not have
the unique solution. The constrained least squares problem has the following closed-form
solution as:

wq = G−1
q 1

1T G−1
q 1

. (16)

Hence, the least square optimal weight vector is represented by wl where wq is the element.

2.4.2 Weight vector generated by NMF method

Apart from that another weight vector is generated by non-negative matrix factorization
(NMF). According to non-negative matrix factorization the weight is generated by

X ≈ FGT (17)

xi
t ≈ xi

dw (18)

The iterative solution for (17) is proved to converge to a local minimum of the Euclidean
distance ‖X − FwnT ‖2. The iterative solution consists of two multiplicative update rules,
both for F and wij . In this case matrix F , formed by the actual LR patches in the dictionary,
is fixed and no update rule is needed for it. But the weight of each patch can be updated by

wij ← wij

√√√√√√√√

(xi
d

T
xi
d )+j +

[
wiT (xi

d

T
xi
d)

−]

j

(xi
d

T
xi
d )−j +

[
wiT (xi

d

T
xi
d)

+]

j

. (19)

The final weight vector is represented as wn, where wij is the element.
Thus, a collaborative algorithm is developed by combine weight generated by LS and

the NMF to compute the optimal weight vector. The collaborative optimal reconstruction
weight for the HR patch reconstruction is defined as

∣∣∣∣w = 1

2
wq · wn + 1

4
(wq + wn)

∣∣∣∣ , (20)

where wql is the element of final optimal weight vector W .

2.5 HR image reconstruction

As the manifold between LR-HR space is similar, the high-resolution output image patch
h

q
t is computed as follows

h
q
t =

∑

l
p
r ∈ℵq

wqlh
p
r + h

p
r , (21)

where h
p
r is the mean of the luminance and wql is the final reconstruction weight. The

HR patch generation is shown in Fig. 3. To generate the output image, the overlapping
patches Ht = {

h
q
t

}n

q=1 is merged. The major factor that improves the performance of the
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Fig. 3 HR patch generation

Fig. 4 Testing color texture images
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(a) g1 (b) g2 (c) g3 (d) g4

(e) g5 (f) g6 (g) g7 (h) g8

(i) g9 (j) g10

Fig. 5 Testing gray texture images

(a) baby (b) statue (c) bird (d) butterfly

(e) koala

Fig. 6 Testing standard images
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Fig. 7 PSNR evaluation with
respect to various magnification
factor (γ )
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(b) Gray image (g5).
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(c) Standard image (butterfly).
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Fig. 8 SSIM evaluation with
respect to various magnification
factor (γ )
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(b) Gray image (g5).
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(c) Standard image (butterfly).
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Table 3 PSNR of color texture image

Image Patch size Bicubic EBSR [20] SRNE [9] NeedFS [7] SCSR [46] Proposed

1 5 23.542 24.689 25.981 26.879 28.199 29.673
7 23.921 24.902 26.210 27.135 28.557 30.020
9 24.322 25.162 26.765 27.687 28.873 30.432

2 5 26.571 27.021 28.399 29.128 30.199 31.318
7 26.998 27.583 28.825 29.651 30.527 31.764
9 27.216 28.017 29.210 29.983 30.938 31.989

3 5 24.412 25.513 26.882 27.436 28.529 30.658
7 24.784 26.183 27.753 28.738 29.785 30.993
9 25.338 26.953 28.081 29.098 30.128 31.376

4 5 23.114 24.537 25.521 26.467 27.783 28.794
7 23.447 24.875 25.989 26.768 27.946 29.065
9 23.978 25.369 26.377 27.407 28.517 29.652

5 5 25.561 26.714 27.684 28.317 29.843 30.736
7 25.853 26.926 27.939 28.593 30.085 31.161
9 26.329 27.418 28.112 28.846 30.511 31.418

6 5 27.452 28.581 29.739 30.283 31.629 32.739
7 27.705 28.843 29.947 30.639 31.996 33.105
9 28.111 29.167 30.257 30.973 32.261 33.308

7 5 25.765 26.841 27.929 28.585 29.374 30.442
7 25.915 27.048 28.371 28.821 29.699 30.585
9 26.421 27.322 28.626 29.018 29.951 30.937

8 5 24.643 25.629 26.751 27.579 28.777 29.862
7 24.891 25.898 26.947 27.992 29.006 30.235
9 25.235 26.366 27.551 28.311 29.628 30.666

9 5 27.121 28.440 29.612 30.745 31.593 32.540
7 27.564 28.761 29.989 30.999 31.898 32.798
9 27.860 28.999 30.115 31.333 32.047 33.009

10 5 25.519 26.111 27.413 28.176 28.577 29.487
7 25.881 26.581 27.712 28.454 28.811 29.888
9 26.110 26.889 28.001 28.891 29.218 30.319

The results of our proposed method are highlighted in bold

reconstruction image are neighborhood preservation between patches and optimal recon-
struction weight. Hence, this paper mainly focuses on the feature selection, neighborhood
patch search by similarity measures and the collaborative reconstruction weight. Finally, the
reconstructed image in luminance channel has been combined with the interpolated chro-
matic channel. Thereafter, the YCbCr image is converted to RGB channel for final HR
image reconstruction.

3 Experimental results

3.1 Experimental set up

In this paper, we validate our algorithmwith various texture images collected from https://www.
robots.ox.ac.uk/ vgg/data/dtd/ and http://sipi.usc.edu/database/database.php?volume=textures
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Table 4 PSNR of gray texture image

Image Patch size Bicubic EBSR [20] SRNE [9] NeedFS [7] SCSR [46] Proposed

1 5 25.908 26.839 27.692 28.759 30.199 31.549

7 26.452 27.109 27.937 29.185 30.512 31.792

9 26.891 27.688 28.318 29.512 30.877 31.999

2 5 22.999 24.176 25.521 26.479 27.698 28.798

7 23.189 24.438 25.839 26.938 27.963 29.067

9 23.569 24.850 26.089 27.279 28.352 29.839

3 5 24.068 25.371 26.247 27.614 28.895 30.261

7 24.741 25.682 26.637 27.915 29.140 30.592

9 25.122 25.931 26.951 28.311 29.583 30.817

4 5 22.890 23.902 25.021 26.316 27.555 28.823

7 23.249 24.539 25.381 26.693 27.831 29.261

9 23.795 24.906 25.794 26.967 28.205 29.638

5 5 27.496 28.628 29.713 30.649 31.782 32.825

7 27.825 28.943 29.986 30.827 31.906 33.184

9 28.219 29.28 30.362 31.271 32.299 33.469

6 5 24.067 25.103 26.409 27.498 28.749 29.836

7 24.563 25.528 26.889 27.736 29.004 30.261

9 24.998 25.937 27.141 28.103 29.486 30.519

7 5 26.892 27.818 28.925 30.026 31.281 32.323

7 27.111 28.306 29.397 30.417 31.677 32.745

9 27.789 28.777 29.829 30.748 31.901 32.969

8 5 25.335 26.499 27.671 28.557 29.757 30.941

7 25.874 26.705 27.899 28.812 30.101 31.289

9 26.543 26.909 28.381 29.285 30.421 31.523

9 5 23.447 24.613 25.641 26.712 27.903 29.111

7 23.854 24.882 25.944 26.959 28.214 29.731

9 24.111 25.260 26.279 27.428 28.653 30.374

10 5 25.241 26.417 27.578 28.539 29.721 30.893

7 25.679 26.692 27.811 28.740 29.917 31.254

9 25.888 26.916 28.179 28.957 30.318 31.493

The results of our proposed method are highlighted in bold

[43]. In addition, some standard images used in Matlab tool have been considered for the
experiment. To conduct the experiment, LR image is produced from the original HR image
by 5 × 5 Gaussian blur with a down-sampling factor 3. Both color and gray texture images
are taken into account as shown in Figs. 4 and 5, respectively. Further, the scheme is val-
idated on standard images as shown in Fig. 6. As human eyes has different sensitivity to
change in illumination rather than chromatic component, the color image for the experi-
ment is transformed from RGB to YCbCr channel. Moreover, RGB component is not
very compatible for image representation. Hence, the proposed algorithm executed on the
Y component of the YCbCr channel. The performance of the proposed scheme has been
evaluated and a comparison has been made with different existing schemes. The existing
competent schemes are Bicubic, EBSR [20], SRNE [9], NEVPM [17], NeedFS [7] and
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Table 5 SSIM of color texture image

Image Patch size Bicubic EBSR [20] SRNE [9] NeedFS [7] SCSR [46] Proposed

1 5 0.805 0.826 0.842 0.869 0.887 0.904

7 0.813 0.839 0.855 0.878 0.895 0.917

9 0.825 0.847 0.869 0.885 0.906 0.929

2 5 0.851 0.866 0.887 0.899 0.910 0.924

7 0.863 0.873 0.896 0.909 0.922 0.933

9 0.877 0.881 0.904 0.917 0.935 0.941

3 5 0.813 0.830 0.857 0.879 0.891 0.907

7 0.822 0.839 0.869 0.888 0.903 0.913

9 0.834 0.847 0.876 0.896 0.911 0.926

4 5 0.789 0.811 0.826 0.840 0.856 0.871

7 0.799 0.824 0.834 0.849 0.867 0.882

9 0.813 0.835 0.847 0.862 0.874 0.991

5 5 0.835 0.852 0.879 0.898 0.910 0.921

7 0.842 0.861 0.888 0.909 0.921 0.935

9 0.855 0.874 0.894 0.916 0.933 0.941

6 5 0.861 0.877 0.889 0.900 0.917 0.939

7 0.873 0.883 0.896 0.909 0.925 0.944

9 0.881 0.890 0.904 0.918 0.932 0.951

7 5 0.886 0.899 0.905 0.917 0.925 0.932

7 0.893 0.906 0.911 0.923 0.932 0.941

9 0.901 0.914 0.919 0.930 0.941 0.950

8 5 0.858 0.872 0.888 0.897 0.918 0.929

7 0.863 0.878 0.894 0.904 0.926 0.934

9 0.870 0.886 0.901 0.913 0.935 0.942

9 5 0.884 0.896 0.913 0.931 0.947 0.959

7 0.890 0.904 0.921 0.939 0.952 0.965

9 0.899 0.911 0.930 0.945 0.960 0.971

10 5 0.845 0.860 0.875 0.888 0.900 0.927

7 0.853 0.868 0.882 0.896 0.909 0.936

9 0.862 0.875 0.890 0.905 0.917 0.944

The results of our proposed method are highlighted in bold

SCSR [46]. To access the quality of the image, two commonly used performance mea-
sures are employed i.e., Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) [42] to evaluate the sensitivity of the noise and structural similarity between the
reconstructed image and ground truth image respectively.

3.2 Experimental results and discussion

3.2.1 Performance evaluation with varying magnification factor (γ )

In this section, we validate the proposed approach with respect to various magnifica-
tion factor. In this approach, magnification factors are 2,3 and 4. Figures 7 and 8 show
PSNR evaluation and SSIM evaluation with various magnification factor. From the given
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Table 6 SSIM of gray texture image

Image Patch size Bicubic EBSR [20] SRNE [9] NeedFS [7] SCSR [46] Proposed

1 5 0.815 0.829 0.841 0.859 0.872 0.889

7 0.829 0.834 0.857 0.870 0.886 0.895

9 0.837 0.845 0.865 0.882 0.897 0.910

2 5 0.769 0.781 0.805 0.829 0.841 0.853

7 0.777 0.794 0.816 0.838 0.852 0.866

9 0.799 0.808 0.827 0.845 0.865 0.874

3 5 0.794 0.812 0.823 0.839 0.851 0.867

7 0.809 0.825 0.831 0.848 0.863 0.875

9 0.818 0.835 0.844 0.856 0.871 0.888

4 5 0.730 0.748 0.760 0.781 0.799 0.815

7 0.743 0.757 0.777 0.793 0.811 0.829

9 0.755 0.769 0.788 0.809 0.823 0.837

5 5 0.827 0.841 0.853 0.865 0.879 0.889

7 0.834 0.852 0.862 0.876 0.885 0.896

9 0.845 0.866 0.871 0.883 0.893 0.903

6 5 0.856 0.869 0.881 0.893 0.907 0.921

7 0.868 0.880 0.893 0.905 0.916 0.934

9 0.877 0.893 0.901 0.911 0.929 0.944

7 5 0.809 0.820 0.835 0.852 0.868 0.883

7 0.816 0.829 0.847 0.861 0.879 0.891

9 0.823 0.837 0.856 0.874 0.892 0.902

8 5 0.819 0.831 0.849 0.865 0.879 0.893

7 0.827 0.840 0.857 0.877 0.888 0.905

9 0.835 0.852 0.869 0.884 0.901 0.918

9 5 0.802 0.819 0.831 0.849 0.867 0.879

7 0.814 0.828 0.843 0.856 0.875 0.886

9 0.821 0.837 0.856 0.868 0.888 0.905

10 5 0.877 0.891 0.909 0.918 0.930 0.941

7 0.884 0.901 0.913 0.925 0.939 0.950

9 0.890 0.910 0.921 0.933 0.945 0.961

The results of our proposed method are highlighted in bold

graph, it is observed that the quality is gradually decreasing according to the increase in
magnification size. Hence, we consider 3 as the suitable factor for the experiment.

3.2.2 Performance evaluation with varying patch size (t)

The performance measures are computed with different patch sizes i.e., 5, 7, and 9. Tables 3
and 4 list the PSNR values of color and gray texture images respectively, whereas Tables 5
and 6 record the SSIM values for the color and gray respectively. Tables 7 and 8 show the
PSNR and SSIM results for few standard images. It observed that the proposed method per-
forms better than other existing methods on color texture, gray texture images and standard
images. Further, it may be noticed that the larger the patch size, the better is the PSNR and
SSIM values.
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Table 7 PSNR of standard image

Image Patch size Bicubic EBSR [20] SRNE [9] NeedFS [13] SCSR [46] Proposed

Statue 5 30.149 30.432 30.975 31.469 32.222 32.599
7 30.786 30.981 31.996 32.149 32.642 32.898
9 31.450 31.666 32.305 32.517 33.117 33.325

Koala 5 30.039 30.275 30.581 30.858 31.439 31.689
7 30.631 30.894 30.955 31.102 31.784 31.903
9 31.207 31.431 31.627 31.901 32.211 32.437

Butterfly 5 30.108 30.369 30.629 30.871 31.105 31.433
7 30.755 30.930 30.894 31.009 31.582 31.820
9 31.083 31.305 31.498 31.674 31.898 32.105

Head 5 31.777 32.263 32.402 33.361 33.611 33.817
7 31.913 33.556 32.811 33.689 33.902 34.026
9 32.218 33.989 33.405 34.210 34.205 34.298

Bird 5 32.157 32.672 33.912 34.133 34.394 34.540
7 32.731 32.947 34.211 34.572 34.814 34.968
9 33.018 33.316 34.426 34.748 35.008 35.126

The results of our proposed method are highlighted in bold

3.2.3 Performance evaluation by neighborhood preservation rate

In this section, neighborhood preservation rate is considered as another criterion to eval-
uate the efficacy of the proposed feature selection. Firstly, a group of LR patches have
been selected randomly from the testing patch set. Then for each LR patch, the k-nearest
neighbor patches have been considered from the test set. Prior to this, the corresponding
k-nearest neighbor HR patches are identified from the HR patches. Comparing the number

Table 8 SSIM of standard image

Image Patch size Bicubic EBSR [20] SRNE [9] NeedFS [7] SCSR [46] Proposed

Statue 5 0.799 0.823 0.882 0.891 0.907 0.914
7 0.821 0.837 0.889 0.905 0.916 0.920
9 0.842 0.845 0.896 0.917 0.925 0.929

Koala 5 0.762 0.781 0.839 0.852 0.893 0.905
7 0.772 0.796 0.846 0.866 0.907 0.918
9 0.789 0.816 0.857 0.879 0.919 0.928

Butterfly 5 0.795 0.853 0.870 0.883 0.898 0.909
7 0.821 0.863 0.876 0.891 0.903 0.917
9 0.836 0.880 0.884 0.901 0.911 0.925

Head 5 0.742 0.802 0.805 0.811 0.821 0.844
7 0.759 0.817 0.814 0.820 0.829 0.867
9 0.766 0.822 0.826 0.829 0.835 0.882

Bird 5 0.804 0.827 0.835 0.856 0.874 0.895
7 0.810 0.831 0.844 0.865 0.872 0.911
9 0.823 0.845 0.859 0.877 0.881 0.925

The results of our proposed method are highlighted in bold
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Fig. 9 Neighborhood
preservation of test image
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Fig. 10 PSNR evaluation with
respect to various neighborhood
size (k)
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Fig. 11 SSIM evaluation with respect to various neighborhood size (k)
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(a) LR (b) EBSR [20] (c) SRNE [9]

(d) NeedFS [7] (e) SCSR [46] (f) Proposed

(g) Original

Fig. 12 Comparison of SR results with (3×) magnification for c1 image

(a) LR (b) EBSR [20] (c) SRNE [9] (d) NeedFs [7]

(e) SCSR [46] (f) Proposed (g) Original

Fig. 13 Comparison of SR results with (3×) magnification for c3 image
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(a) LR (b) EBSR [20] (c) SRNE [9] (d) NeedFs [7]

(e) SCSR [46] (f) Proposed (g) Original

Fig. 14 Comparison of SR results with (3×) magnification for g1 image

of corresponding HR patches of the k-nearest neighbor of LR patches, the neighborhood
preservation rate is obtained.

In this section, we have performed the comparison between LR and HR patch with dif-
ferent features used in the state-of-the-art schemes. In SRNE [9] method, first gradient
and second gradient are used as features, whereas in NeedFS [7] a combination of first-
order gradient and norm luminance are considered. NESRRL [32] considered first gradient

(a) LR (b) EBSR [20] (c) SRNE [9] (d) NeedFs [7]

(e) SCSR [46] (f) Proposed (g) Original

Fig. 15 Comparison of SR results with (3×) magnification for g2 image
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(a) LR (b) EBSR [20] (c) SRNE [9] (d) NeedFs [7]

(e) SCSR [46] (f) Proposed (g) Original

Fig. 16 Comparison of SR results with (3×) magnification for bird image

and residual luminance as the feature vector to generate the expected HR image. More-
over, to verify the advantage of PZM over ZM, we have validated with [34]. In this work,
we have used PZM for feature generation. Here, we randomly consider 1800 LR patches,
and out of which 300 patches are used as testing LR patches. Then, we have evaluated the
neighborhood preservation for 3 magnification with different neighborhood size.

The neighborhood preservation rate obtained by the existing schemes with respect to dif-
ferent neighborhood size are shown in Fig. 9. It can be observed that the proposed scheme
achieves better results as compared to the existing schemes by means of neighborhood
preservation rate due to better feature vector.

3.2.4 Performance evaluation varying with neighborhood size (k)

It has been observed that the neighborhood size has significant impact on the performance
of the model. Hence, in this experiment the neighborhood size is varied between 1 to 15
and the corresponding PSNR and SSIM results for color, gray texture images and standard

(a) LR (b) EBSR [20] (c) SRNE [9] (d) NeedFs [7]

(e) SCSR [46] (f) Proposed (g) Original

Fig. 17 Comparison of SR results with (3×) magnification for butterf ly image
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images are shown in Figs. 10 and 11 respectively. It may be seen that the proposed scheme
achieves better PSNR and SSIM results for neighborhood size between 5 to 8. Further, the
visual performance comparisons for three different category of images are shown in Figs.
12, 13, 14, 15, 16 and 17. From these figures, it may be observed that the propose scheme
yields better visualization results than other state-of-the-art schemes.

4 Conclusion

In this paper, a new framework for learning based super resolution has been proposed
for texture image. Pseudo Zernike moments are utilized for the feature selection. More-
over, FSIM is used for patch classification during neighbor embedding. Subsequently, a
collaborative optimal reconstruction weight is computed to HR patch generation. Optimal
reconstruction weight is defined by the combination of least square error and non-negative
factorization matrix. The experimental results on texture and standard images demonstrate
that the proposed scheme achieves better results than other competent schemes. In future,
we intent to explore our method on different images like areal image, medical image, video
surveillance, etc. In addition, other feature generation schemes could be investigated as the
potential alternatives to PZM.
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