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Abstract In recent years, we have witnessed the great success of deep learning on various
problems both in low and high-level computer visions. The low-level vision problems,
including inpainting, deblurring, denoising, super-resolution, and so on, are highly anticipated
to occur in machine vision and image processing. Many deep learning based methods have
been proposed to solve low-level vision problems. Most researches treat these problems
independently; however, most of the time they appear concurrently. Motivated by the success
of generative model in the field of image generation, we develop a deep cascade of neural
networks to solve the inpainting, deblurring, denoising problems at the same time. Our model
contains two networks: inpainting GAN and deblurring-denoising network. Inpainting GAN
generates the coarse patches to fill the lost part in damaged image, and the deblurring-
denoising network, stacked by a convolutional auto-encoder, will further refine them. Unlike
other methods that handle each problem separately, our method jointly optimizes the two sub-
networks. Because GAN training is not only unstable but also difficult, we adopt the
Wasserstein distance as the loss function of the inpainting GAN and propose a gradual training
strategy. Learning from the idea of residual learning, we utilize skip connections to pass image
details from input to reconstruction layer. Experimental results have demonstrated that the
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proposed model can achieve state-of-the-art performance. Through the experiments, we also
demonstrated the effectiveness of the cascade architecture.

Keywords Inpainting . Deblurring . Denoising .Wasserstein GAN . Auto-encoder

1 Introduction

Image inpainting [5, 6, 10, 24, 25, 29], deblurring [3, 8, 9, 13, 21, 31] and denoising [3, 4, 7,
12, 14, 38, 43] are the widely-concerned ill-posed problems in machine vision and image
processing. These problems have not been remarkably dealt with because the missing part of
the image is indeed difficult to estimate. Inpainting is the process of reconstructing lost or
deteriorated parts of images, in order to make the images look more natural and visually
plausible. The inpainting technology is widely used to rebuild damaged photographs, remove
unwanted objects or texts and replace objects. Motion blur is the result of the relative motion
between the camera and the scene during image exposure time. Blur may come from the
shaking of the camera at the time of imaging and also may come from the noise generated
when saving images. Deblurring attempts to recover the origin sharp content, remove the noise
and enhance the quality of images. Deblurring methods are trending topic due to its involve-
ment of many challenges in regularization and optimization. Denoising algorithms seek to
remove noise, errors, or perturbations from an image, while preserving as many image details
as possible. Previous researches commonly assume that image noise is additive white Gaussian
noise [38]. Yet in many cases, the noise is not stationary, and the variance of the noise is
difficult to estimate. Figure 1 Shows the typical examples of these problems.

In practice, those three problems often arise concurrently, rather than exist solely. Such as, if
the noise on the image is serious, it will cause the image to be blurred. If the blurred area on the
image is concentrated somewhere, it becomes a inpainting problem. So it is necessary to
consider these problems as a whole, and deal with them jointly. But most current research
methods treat these problems separately, and mostly focused on solving one of the problems.
In general, part of the content in the image after inpainting is certainly not clear, such as the lost

Fig. 1 Example of the mentioned three problems above. The upper-left is a picture losing the central part. The
upper-middle is a blurred image, its visual effect is unclear. And the upper-right is a noising image. The lower
images are the desired corresponded image after inpainting, deblurring and denoising
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part and the twisty position where the obstructions removed. In order to get a visually plausible
image, deblurring and denoising processes are necessary.

In this paper, we propose a deep cascade of neural networks to handle these multiple ill-
posed image problems through an unique step. The model will learn how to fill the holes,
deblurring and denoising the image at the same time. The obvious technical challenge is how
to infer the details of an image that actually does not exist in the input data. Our approach is
inspired by generative adversarial networks (GANs) [17], which is a powerful generative
approach for probabilistic modeling. Although natural images are diversiform, in most cases,
they are extremely structured and coherent. These properties make it possible that the GANs
can capture the structure and pattern of the image through a well-trained model with bad image
as the input. The method proposed in this paper establishes a specially designed cascade
networks structure and set up a progressive training strategy, we can achieve the purpose that
integrating the origin three processes into a holistic procedure.

Our contributions can be summarized as follows:

1. We propose a cascade of deep neural networks that deal with the inpainting, deblurring,
and denoising through a unified process. In the training step, we can train the whole
networks by pipelining the procedures, instead of training two separate models to
accomplish these tasks. The model learns multiple tasks after training. Besides, in the
inferring step, we can get not only the ultimate output image after inpainting, deblurring
and denoising, but also the intermediate results after inpainting step.

2. We propose a gradual training strategy. At the first step, we only train the inpainting part
networks, which is a GANs-like architecture. After the inpainting part being well trained,
we commence to train the deblurring and denoising part of the networks. What has to be
aware of is that at this step the parameters in the inpainting part are not frozen and jointly
optimized with the latter part.

3. We evaluate the proposed model on several datasets and demonstrate that its performance
is advanced. The ultimate output looks more natural, and the inpainting part looks
smoother with its surrounding. This shows that the cascade of deep neural networks can
learn the ability to handle these reverse vision tasks.

The rest of this paper is organized as following. Section 2 briefly reviews related work of
the current methods that handle these problems. Section 3 presents the proposed method in
detail, and Section 4 gives the experimental results to verify the effectiveness of the proposed
method. Finally, we conclude the paper in Section 5.

2 Related work

Avariety of techniques have been proposed to handle those tasks mentioned above. Such as in
the inpainting and denoising fields, the traditional structural based and textural based methods
have been studied for a long time. For the deblurring problem, the main methods are based on
kernel estimation. In the recent years, Convolutional Neural Networks (CNNs) has shown
outstanding performance in many tasks, including classification [23, 26, 32], object detection
[16], segmentation [27], NLP [33], behavior analysis [34, 44] and so on. The deep learning
basic approaches are also introduced to process the generative vision problems [17], such as
image generation [30], image to image translation [20], and video prediction [39].
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Existing methods address the inpainting problem can be divided into several categories
such as structural inpainting [6, 25], textures synthesis [5, 6], and example-based methods [10,
11]. Structural inpainting uses geometric approaches to fill in the missing information in the
region. Liu et al. [25] proposes a compression-oriented edge-based algorithm for inpainting,
which focus on visual quality rather than pixel-wise fidelity. These algorithms focus on the
consistency of the geometric structure. Textures synthesis inpainting algorithms uses similar
textures approaches, under the constraint that image texture should be consistent. Bertalmio
et al. [6] simultaneously utilizes structure and texture to fill-in the regions of missing image
information. These classes of techniques are less effective in the case of large lost region due to
missing global information. Example-based image inpainting attempts to infer the missing
region through retrieving similar patches or learning-based model. Hays and Efros [18]
retrieve semantically similar patches from a large photographs dataset and then use these
patches to fill in the missing pixels. Pathak et al. [29] proposes an unsupervised learning
algorithm named Context Encoders. That is a convolutional neural network trained to generate
the contents of an arbitrary image region which is conditioned on its surroundings. Yang et al.
[42] propose a multi-scale neural patch synthesis approach based on joint optimization of
image content and texture constraints.

The task of image deblurring is to recover a clean image given only the blurry image. In
order to generate clear image via image processing, a number of approaches have been
proposed. Shan et al. [31] uses a unified probabilistic model of both blur kernel estimation
and unblurred image restoration to deblur image. Cho and Lee [9] introduce a novel prediction
step to accelerate both latent image estimation and kernel estimation in an iterative deblurring
process. Cai et al. [8] removes motion blurring from a single image by formulating the blind
blurring as a new joint optimization problem, which simultaneously maximizes the sparsity of
the blur kernel and the sparsity of the clear image under certain suitable redundant tight frame
systems, Sun et al. [37] utilizes deep learning approach to predict the probabilistic distribution
of motion blur. Xu et al. [41] establishes a framework for robust deconvolution against artifacts
through combining traditional optimization-based schemes and neural network.

Denoising is the process of reconstructing the original image by removing unwanted noise
from a corrupted image. Image denoising approaches can be categorized as spatial domain,
transform domain, and learning based methods [35]. Elad and Aharon [14] uses K-SVD to
obtain an over-complete dictionary and describe the image content effectively. Most existing
state-of-the-art image denoising algorithms are based on retrieving the similarities between a
number of patches. The eminence method is block-matches with 3D filtering(BM3D) [12].
BM3D is based on effective filtering in 3D transform domain by combining sliding window
transform processing with block-matching. Burger et al. [7] apply multi-layer perceptron
(MLP) to image patches, directly learning the mapping from noising image to noise-free
image. Stacked denoising auto-encoder [38], which is trained locally to denoise corrupted
versions of their inputs, is one of the well-known deep neural network model used for
denoising. The auto-encoder tries to restore the raw input without noise. Zhang et al. [43]
utilizes the residual learning to train a denoising convolutional neural networks to handle
Gaussian denoising with unknown noise level.

There are some researches which attempt to resolve more than one aspect of the reverse
vision problems. Dong et al. [13] adds autoregressive models and nonlocal self-similarity
regularization term to sparse-coding algorithm, achieving excellent results on both image
deblurring and super-resolution. Meur et al. [24] introduces a framework involving a combi-
nation of multiple inpainting versions of the input picture followed by a single-image super-
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resolution method. Gharbi et al. [15] trains a deep neural network on a large corpus of image to
jointly solve denoising and demosaicking. Unlike these methods treating each task separately,
our approach is much general, learning multi-task through a whole neural network.

3 Method

In this section, we first introduce the overall architecture of the deep cascade neural networks.
Then we present the details of inpainting GAN and deblurring-denoising network. Finally, the
gradually training strategy is introduced.

3.1 Framework overview

To deal with the above mentioned multiple ill-posed vision tasks, our deep cascade of neural
networks is illustrated in Fig. 2. This framework mainly contains two parts: inpainting GAN
and deblurring-denoising network. The corrupted image serves as the input to our method and
the output of deblurring-denoising network is the final resulting image.

The first part named inpainting network is based on generative adversarial networks. The
GAN generates meaningful visual blocks to fill in the vacancy or replace deteriorated parts
through the competition between the generator and discriminator. The output of inpainting
GAN is an image with complete content, but the filled area is blurred. The reason is that
although the generator can produce images that look natural, the noise is inevitably mixed. The
generated image is directly entered into the deblurring-denoising network. The intention of the
deblurring-denoising network is to make the filled area clear. Inspired by deep residual
networks [19] and Stacked denoising auto-encoders [38], the structure of the deblurring-
denoising network is deep convolutional Auto-Encoder with skip connections.

We call our model deep cascade of neural networks because the two parts in the model are
directly connected, and errors can be back propagated from deblurring-denoising network to

Fig. 2 Architecture of the cascade neural networks. It consists of two parts, the Inpainting GAN and deblurring-
denoising network. The Inpainting GAN simultaneously train two networks: a generator and a discriminator. The
resulting image of the generator is further processed by deblurring-denoising network in order to remove the blur
and noise
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the generator of inpainting GAN. The two sub-networks are joint as an integration. We firstly
train the inpainting GAN network, and make the generator obtain the ability to generate coarse
blocks to fill in the missing parts. The inpainting GAN enforces the generated image to be
coherent and to look natural. Then we pre-train the deblurring-denoising network. After this
step, we jointly optimize the deblurring-denoising network and inpainting GAN. The loss of
the deblurring-denoising network will affect the parameters of the inpainting GAN. The
stepwise training process is specially designed in order to optimize the complex model. A
detailed description of training steps will be introduced in 3.4 section.

3.2 Inpainting GAN

Deep generative models attempt to capture the probability distributions of the given data.
Generative adversarial networks, which have been proposed by Goodfellow et al. [17], aim to
estimate the generative models via an adversarial process. The GANs simultaneously train two
networks: a generative network G which wants to captures the input data distribution, and a
discriminative network D which wants to correctly distinguish the sample came from the
training data or model G. Unlike [30] generating image from noise prior, in our model the
generative network generates the image G(x) given the input image x. The x is the corrupted
input image, and its corresponding ground-truth image is denoted by y. In the discriminator,
G(x) and y are presented as inputs. With the adversarial process, the generator can learn to
create similar patches to fill in the missing parts, meanwhile it’s hard for the discriminator to
distinguish. In order to improve the stability of learning and get rid of mode collapse, we adopt
the Wasserstein GAN [1] instead of traditional GAN. The structure of Inpainting GAN is
shown in Fig. 3.

Following the network architectures in [29], the generator is a simple encoder-decoder
pipeline, which consists of convolution layers and deconvolution layers. The generator extracts
feature through first five convolution layers, and recovers the details of image contents through
five deconvolution layers. Batch normalization layer is used after every convolution layer and
adopt leaky ReLU as the activation function. The decoder uses ReLU as activation function
which is different from encoder. In order to make the training more effective, we adopt the
mirrored skip connections between the first convolution layers and after their corresponding
deconvolution layers. The skip connection simply element-wise add the input image to the
generator’s output. The size of both ends of skip connections should keep the same.

The discriminator is similar to VGG-16 network, which is proposed by K. Simonyan and
A. Zisserman [36]. We use five groups of convolution blocks, and remove max-pooling layers
in VGG-16 network. In order to reduce the size of the feature maps, the stride of last
convolutional layer in each block is 2, and others are 1. And the number of 3*3 filter kernels
increase by a factor of 2 from 64 to 512 as in the VGG-16 network. The last convolution layer
is followed by two full connection layers. Since the original GAN training process is unstable
at the risk of model collapsing, we use the Wasserstein GAN instead of original GAN. It is
important to note that we followed the advice of [1], by removing the sigmoid layer in the
output layer of the discriminative network, and using the RMSProp as the optimizer.

The loss of the network consists of three parts: MSE loss, perceptual loss and generative
adversarial loss. The MSE loss is calculated through pixel wise mean squared error. In
many cases, peak signal-to-noise ratio (PSNR) is an approximation to the human perception
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of reconstruction quality, and the lower the MSE will result in the higher the PSNR.
Therefore, the MSE loss is the most widely used optimization target for image inpainting
task. Johnson et al. [22] proposed the perceptual loss functions based on high-level features
extracted from pertained networks. And their experiments also demonstrate that the per-
ceptual loss produces more realistic results in the style transfer and super-resolution tasks.
We adopt the Wasserstein GAN loss as the generative adversarial loss. Unlike traditional
GAN, Wasserstein loss is differentiable almost everywhere. This nature results in a better
discriminator. On the other hand, Wasserstein distance provides a metric that correlates well
with training progress.

Given a paired image (x, y) ∈ (Iinput, Igroundtruth) The MSE loss is defined as:

LMSE ¼ 1

WH
∑
W

i¼1
∑
H

j¼1
y i; jf g−G xð Þ i; jf g
h i2

ð1Þ

The W is the width of image, H is the height of image, G(x) is the image generated by the
generator.

We define the perceptual loss on the activation layers of VGG-16 [36]. Denoting ϕi, j(x) as
the feature map obtained after ReLU activation of the j-th convolutional layer and before the i-
th polling layer in VGG-16, if the shape of feature map is (Hi, j ×Wi, j × Ci, j), the mean
Euclidean distance between feature representations is denoted as Li, j, and the perceptual loss

Fig. 3 Detail of the inpainting GAN. The generator contains seven residual blocks. The residual network
building block is stacked by two convolutional layers followed by batch normalization layer. ReLU activation
layer following the first batch normalization layer. An identity mapping shortcut connects the input of the residual
block to the output of last layer in the residual block. Mirrored skip connections are adopted between
corresponding convolution layers. The structure of discriminator is similar to VGG networks. We replace the
max-pooling layers by adjust the stride of convolution layer to 2
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is the mean value of specified Li, j, in this case we use the feature maps: ϕ1, 2, ϕ2, 2, ϕ3, 3, ϕ4,
3(all are the feature maps before polling layer). The perceptual loss is finally given by:

Li; j ¼ 1

Hi; jWi; jCi; j
ϕi; j yð Þ−ϕi; j G xð Þð Þ�� ��2

2
ð2Þ

Lper ¼ 1

4
L1;2 þ L2;2 þ L3;3 þ L4;3
� � ð3Þ

Arjovsky and collaborators [1] theoretically analyzed the drawback of original GAN, and
advice on using Wasserstein distance W (f, g) to measure the difference between input data
distribution and generator’s distribution. The Wasserstein GAN is to solve the adversarial min-
max problem:

min
G

max
D

E
x∼ℙr

D xð Þ½ �− E
~x∼ℙg

D ~x
� �h i

ð4Þ

The discriminator loss is:

LD ¼ E
~x∼ℙg

D ~x
� �h i

−E
~x∼ℙd

D xð Þ½ � ð5Þ

The generator loss is:

LG ¼ −E
~x∼ℙg

D ~x
� �h i

ð6Þ

we define the overall loss function as:

L ¼ λMSELMSE þ λperLper þ λDLD ð7Þ

3.3 Deblurring-denoising network

The deblurring-denoising network is connected to the generator of inpainting GAN. It takes
the generator’s output image as input and estimates corresponding clean image. The structure
of the deblurring-denoising network is a deep convolutional Auto-Encoder with skip connec-
tions. The optimize objective is minimizing the mean squared error of estimating image and
the ground-truth image. Instead of learning a mapping y =ℱ(x) to directly get clean image
from noisy input image, we learn the residual between clean image and noisy observation
through the skip connection between input and output. The residual learning method solved
the vanishing gradients problem through learning a mapping between noisy input and noise or
blur. We get the clean image y = x – v, where v =ℛ(x).

The network structure is shown in Fig. 4. We use 4 convolutional layers encoding the input
image to features, and 4 convolutional layers decoding these features to restore a full-detail
image. Every convolutional layer is followed by a batch normalization layer except the first
and the last. LeakyReLU activation with negative slope parameter set to 0.001 is applied after
batch normalization. We set the size of all convolutional filter to be 3*3, and the number of
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channels is 96. To preserve the dimension of feature map, every convolutional layer is given
zero-padding.

3.4 Gradual training strategy

The model is composed by two parts: inpainting GAN and deblurring-denoising network. The
deblurring-denoising networks are directly connected to the generator of inpainting GAN.
Because the network structure is complex and handles multiple tasks at the same time, so end-
to-end training is difficult to make the network converge. Therefore, we designed a gradual
training strategy in order to acquire better results.

Firstly, we pre-train the generator of inpainting GAN by only using MSE-loss. The process
is similar to training an auto-encoder, enabling the generator has the basic ability to extract
useful features and reconstruction. Secondly, we add the discriminator and VGG-loss into the
training process. Next, pre-train the deblurring-denoising network independently. The image
pairs are used to pre-train the deblurring-denoising network which is generated by adding
noise and blur to a clean image. This step also can be parallelized with training inpainting
GAN, because we can regard them as separate networks at this point. After the two networks
being well trained, we combine the generator of inpainting GAN with deblurring-denoising
network, and jointly training them. The finally training step is conforms to an end-to-end
mode. The image firstly enters into the generator and the output comes from deblurring-
denoising network; and the gradient is calculated and update weight propagated backwards,
starting from the output until the generator’s input.

4 Experiments and results

In this section, for evaluation purpose, extensive experimental results are introduced to
evaluate the performance of the deep cascade of neural networks. We firstly present the details
of datasets and experiments settings. Next, we conduct a series of experiments to evaluate the
comprehensive effectiveness of the learned model. We also compare our model with the recent

Fig. 4 Detail of the deblurrring-denoising network. Four convolution layers are used to get the encoded
presentation, and 4 convolution layers are used to decode these features to reconstruct clean image. The size
of all convolutional filters is set to 3*3 and stride to 1. All feature maps keep the same size with input image
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state-of-art approaches systematically to show the difference and advantage of our model.
Finally, we analyze the architecture of our model.

4.1 Data sets and evaluation metrics

We evaluate the proposed approach on ImageNet [23], BSD300 [28]. ImageNet, which
contains 1000 categories and 1.2 million images, is the authoritative dataset to evaluate the
classification task. The BSD300 is widely used for segmentation task. The BSD300 dataset
only contains 300 images, so BSD300 is only used for testing. Testing set is randomly picked
from validation set. Dataset for deblurring-denoising network pre-training is randomly selected
from training sets of ImageNet. The input images are blurred by the random blur kernels
followed by adding Gaussian white noise. Generating datasets for inpainting GAN pre-training
is simple which is just removing the center part of images.

Following previous works, we adopt the Peak Signal to Noise Ratio (PSNR), and the
Structural Similarity Index(SSIM) [40] as the evaluation metrics. The PSNR estimates the
absolute errors in pixel values between two images, while SSIM is a perception-based model
that estimates the structural similarity of two images.

4.2 Comparisons with state-of-the-art methods

From various classic and recent state-of-the art image inpainting approaches, five representa-
tive methods are selected as the comparison baselines, including k-Nearest Neighbor,
PatchMatch [2], Context Encoders [29], Neural Patch Synthesis(NPS) [42]. The resolution
of test images for comparison is 128 * 128. NN is implemented by ourselves. The algorithms
of PatchMatch have been provided by the author. The results of Context Encoders are provided
by the author. The results of Neural Patch Synthesis are generated through running the author’s
model. We use the same test dataset provided by the author of Context Encoder to compare the
effect of these methods.

By the image consequence generated by k-NN methods, there is no gainsaying that
k-NN methods have the inferior performance. As the input images contain high-
frequency scene, the output is entirely unpredictable even emerge radicalized filling
part centered by loss region. In low-frequency region, the PatchMatch has exceptional
performance. But in the images that contain relatively high-frequency scenes, the
PatchMatch failed to fill loss region. We can easily conduct that the generative model
based approach has better performance to fill damaged images and generate legible
output images. Compared with CE and NPS, the PSNR and SSIM scores of our model
is litter higher. We think this improvement benefits from our cascade structure and
gradual training strategy. The detail quantitative comparison on ImageNet is listed in
Table 1, and examples of visual comparison is presented in Fig. 5.

4.3 Architecture analysis

In order to evaluate the effectiveness of our method, we have done an additional set of
experiments. The first one doesn’t use the pre-training strategy, in order to verify the effect
of the gradual training strategy. In the second experiment the model with only the inpainting
GAN but no deblurring-denoising network to verify the ability of the deblurring-denoising
network.
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We present some of the results in Fig. 6, and detail quantitative comparison of these
experiments in Table 2. From the result, we found that the PSNR score will drop about
1.2 dB without the pre-training procedure on ImageNet and 1.4 dB on BSD300. Without the

Fig. 5 Visual comparisons of different methods on ImageNet. From left to right: ground truth, input image, K-
NN, PatchMatch, Context Encoder, Neural Patch Synthesis, and Ours

Table 1 Quantitative comparison on ImageNet and BSD300 between different methods

DataSet Metric PatchMatch CE NPS Ours

ImageNet PSNR 16.85 17.88 18.06 18.08
SSIM 0.821 0.845 0.848 0.851

BSD300 PSNR 17.12 18.09 18.33 18.41
SSIM 0.828 0.844 0.850 0.855

The Bold Fonts entries represent the results of our model. And the Header of table we uesed the blod fonts
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deblurring-denoising network, the PSNR score will drop about 0.8 dB on ImageNet and
1.1 dB on BSD300. It is obviously that the performance of our intact model surpasses all the
others. We demonstrate the role of the pre-training strategy and deblurring-denoising network
to enhance the image quality is very conspicuous.

Fig. 6 Visual comparisons of different setting result on ImageNet and BSD300.The image three lines above
come from ImageNet. The image three lines below come from BSD300. From left to right: ground truth, input
image, model without pre-training, model without deblurring-denoising network and intact model
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5 Conclusion

This paper presents a novel cascade of neural networks for multiple low-level vision problems.
The model contains two parts: inpainting GAN and deblurring-denoising network. The
inpainting GAN adopt three weighted loss functions as training loss. Using an effective joint
optimization, the two parts are well trained to generate clean version of the image. Future work
will focus on optimizing the structure of generative network, so as to improve the generator’s
ability to learn and represent.
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