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Abstract With the increasing amount of high-resolution remote sensing images, it becomes
more and more urgent to retrieve remote sensing images from large archives efficiently.
The existing methods are mainly based on shallow features to retrieve images, while shal-
low features are easily affected by artificial intervention. Recently, convolutional neural
networks (CNNs) are capable of learning feature representations automatically, and CNNs
pre-trained on large-scale datasets are generic. This paper exploits representations from pre-
trained CNNs for high-resolution remote sensing image retrieval. CNN representations from
AlexNet, VGGM, VGG16, and GoogLeNet are first transferred for high-resolution remote
sensing images, and then CNN features are extracted via two approaches. One is extracting
the outputs of high-level layers directly and the other is aggregating the outputs of mid-level
layers by means of average pooling with different pooling regions. Given the generalization
and high dimensionality of the CNN features, feature combination and feature compression
are also adopted to improve the feature representation. Experimental results demonstrate
that aggregated features with pooling region smaller than the feature map size perform
excellently, especially for VGG16 and GoogLeNet. Shallow feature makes a great contribu-
tion to enhance the retrieval precision when combined with CNN features, and compressed
features reduce redundancy effectively. Compared with the state-of-the-art methods, the
proposed feature extraction methods are very simple, and the features are able to improve
retrieval performance significantly.
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1 Introduction

As the development of remote sensing technology, a large quantity of high-resolution remote
sensing images taken from satellites and aircrafts are readily available. How to analyze and
make full use of the abundant spatial and contextual information provided by the remote
sensing images has attracted more and more attentions in geoscience fields. In this case,
to develop effective and efficient methods for retrieving remote sensing images from large
archives becomes one of the challenging and emerging research topics.

Conventional remote sensing image retrieval systems retrieve images according to textual
annotations and metadata stored in the archives [9]. The retrieval results rely on the avail-
ability and the quality of manual tags which are expensive to obtain and often ambiguous
[10]. Then recent studies are shift to content-based remote sensing image retrieval (CBR-
SIR) systems, which retrieve images that are similar to a given query based on the visual
content of images.

Feature extraction and similarity measure are two important components in CBRSIR
systems. As a powerful feature representation can measure the image similarity more accu-
racy [42], thus most studies [1, 5, 8, 10, 12, 13, 15, 16, 21, 32, 37, 40, 42] focus on feature
extraction to generate a numerical effective representation out of every image. Low-level
features are extracted in the early stage of CBRSIR, such as color [5], texture [16], and shape
[32]. However, it is very difficult for low-level features to represent the high-level semantic
content of images [1, 10]. Then large “semantic gap”, i.e., the gap between low-level fea-
tures and high-level semantics of an image, occurs when using low-level features to retrieve
images. Various methods have been proposed to bridge the semantic gap which is the cru-
cial challenge in CBRSIR. A direct approach is to employ relevance feedback schemes [10,
13] that take account of feedback to refine the search strategy and provide increasingly rele-
vant images to a query. Another approach is to extract semantic features for image retrieval,
such as region-level semantic mining [21] and scene semantic matching [37]. Compact fea-
tures, which are aggregted based on local features [22], have also recently been adopted;
such as bag of visual words (BoVW) [42], vector locally aggregated descriptors (VLAD)
[28] , and local structure learning (LSL) [12]. These previous methods have improved the
retrieval performance to some extent, but the employed features are shallow features. Shal-
low features are largely hand-crafted, for example, color feature is extracted to represent an
image artificially though such image has rich texture feature. Then the retrieval performance
is affected by artificial intervention.

Convolutional neural networks (CNNs) capable of learning features automatically have
recently become widely used in various image recognition tasks, including image classifi-
cation, domain adaptation, scene recognition, image retrieval, and so on [2–4, 6, 7, 11, 14,
18, 20, 23, 25–27, 29, 31, 33–35, 43, 44]. CNN features are abstracted from low-level fea-
tures, thus confining the semantic gap effectively. However, directly learning parameters of
CNNs from only a few thousand training images is problematic [27]. Many works [2, 3,
11, 18, 25, 27] have demonstrated that representations learned with CNNs pre-trained on
large-scale datasets (such as ImageNet) can be efficiently transferred to other visual recog-
nition tasks with a limited amount of training data, even when the target dataset has different
characteristics from the source dataset.

Fully-connected layers and convolutional layers of CNNs pre-trained on large-scale
datasets are usually considered when repurposing to novel tasks on other datasets. The out-
puts of the fully-connected layers, which capture more high-level semantic features, can be
used directly [11, 31] or by fine-tuning way [3, 27] to represent target images. The outputs
of the convolutional layers, which can be interpreted as local features, are aggregated to
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global features to represent target images [2, 23, 25, 35, 44]. The aggregation approaches
mainly include encoding methods [25, 35] and pooling schemes [2, 23, 44]. Especially,
Babenko and Lempitsky [2] have evaluated many aggregation approaches, and found that
simple pooling schemes (such as sum-pooling) are better than encoding methods (such as
fisher vector) for CNN features.

Representations of pre-trained CNNs are promising for high-resolution remote sensing
images [6, 18, 29], given that they mostly describe landforms, which have strong low-
level similarities with general-purpose optical images. In the high-resolution remote sensing
image retrieval, the retrieved images often look alike but may be irrelevant to the query
[38] because remote sensing images often represent large natural geographical scenes that
contain abundant and complex visual contents [37]. Therefore, it is necessary to exploit
representations from pre-trained CNNs for high-resolution remote sensing image retrieval.
Many CNN features [17, 24, 45, 46] have been proposed to retrieve high-resolution remote
sensing images very recently. The fully-connected features from a variety of CNNs are
employed and the performance is superior to that of shallow features [24]. Fully-connected
features and aggregated convolutional features are extracted from both the off-the-shelf
CNNs and fine-tuned CNNs [17, 45, 46]. The aggregation methods used to compress last
convolutional features in [17, 45, 46] are mainly BoVW, improved fisher kernel (IFK) [30],
and VLAD [19], which belong to feature coding. Although max pooling, average pooling
and IFK are compared in [45], IFK presents the best performance. However, such result is
obtained based on the last convolutional layers from CNNs containing 8 weight layers. As
regard to other deeper CNNs (such as VGG16 and GoogLeNet), the pooling scheme maybe
a good choice according to [2]. Furthermore, various methods are utilized to improve the
performance. Manual relevance feedback is used to improve the results [24], but the amount
of manual work is also increased. A novel CNN architecture based on conventional convo-
lution layers and a three-layer perceptron is proposed to learn low dimensional features in
[46]. However, the performance of the novel CNN is very related to the training set for the
limited number of the training images. Hu et al. [17] introduces multi-scale concatenation
for last convolutional features and multi-patch pooling for fully-connected layers to improve
the results. But multiple inputs are needed to re-feed to the CNNs, resulting in a relatively
complex feature extraction process.

This paper focuses on simple but effective methods to extract the CNN features for
remote sensing image retrieval. The parameters from four representative CNNs (AlexNet
[20], VGGM [7], VGG16 [33], and GoogLeNet [34]), which are pre-trained on ImageNet,
are firstly transferred to represent high-resolution remote sensing images. Then high-level
(last pooling layer for GoogLeNet, fully-connected layers for other CNNs) features and
mid-level (penultimate pooling layer and last two inception layers for GoogLeNet, last con-
volutional layers and last pooling layers for other CNNs) features are compared to retrieve
high-resolution remote sensing images. Especially, the average pooling scheme with dif-
ferent pooling regions is proposed to aggregate mid-level features. The experiments show
that the high-level features of VGGM, and the aggregated mid-level features of VGG16 and
GoogLeNet present excellent results.

This paper also employs feature combination and feature compression to improve the
retrieval performance, given the shortcomings of the CNN features. CNN features are too
generalized and lack some characteristics of objects that are important for image retrieval;
therefore, combinations of different CNN features and combinations of CNN features
with a shallow feature are studied to improve feature representation. CNN features are
high-dimensional, so principal component analysis (PCA) is chosen to compress them.
The simulations show that the shallow feature makes a great contribution to improve the
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performance when combined with CNN features, and most compressed high-level features
improve the results.

The remainder of this paper is organized as follows. Section 2 introduces four represen-
tative CNNs and illustrates the proposed retrieval method. Feature combination and feature
compression are also described in Section 2. Experiments are evaluated in Section 3, and
the conclusions are presented in Section 4.

2 Methodology

This section analyzes various CNNs pre-trained on ImageNet. Representations from these
CNNs are then transferred for high-resolution remote sensing image retrieval. Feature
combination and feature compression are adopted to improve retrieval performance.

2.1 Four CNN architectures

Various CNNs have been proposed for computer vision tasks. Here we pay attention to
four representative CNNs: AlexNet [20], VGGM [7], VGG16 [33], and GoogLeNet [34].
AlexNet is the base CNN, VGGM shows good generic ability, and VGG16 and GoogLeNet
achieve high classification accuracy by adopting depth increasing and inception modules,
respectively. The four pre-trained CNNs have their own characteristics and employ different
mechanisms; we thus exploit all their representations for remote sensing image retrieval.

AlexNet consists of convolutional layers, pooling layers, and fully-connected layers.
Rectification linear unit (relu) is used as an activation function to accelerate the ability to fit
the training set. To reduce complex co-adaptations of neurons, dropout is adopted in the first
two fully-connected layers. The output of the last fully-connected layer is fed to a 1000-
way softmax, which produces a distribution over the 1000 class labels. AlexNet achieved a
performance leap for image classification on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC 2012), then a variety of improvements have been proposed based on
AlexNet [7, 33, 34].

Simonyan and Zisserman [33] found that significant improvement can be attained by
pushing the convolutional network depth to 16-19 weight layers. The width of convolutional
layers (the number of channels) is small, starting from 64 in the first layer and then doubled
after each max-pooling layer, until it reaches 512. VGG16 containing 16 weight layers is
chosen here, as it gives similar performance to 19 layers but is less computationally com-
plex. Another architecture, VGGM, has presented excellent generic performance. Similar to
the CNN architecture of Zeiler [43], VGGM decreases stride and uses the smaller receptive
field of the first convolutional layer. The main difference between VGGM and the CNN of
Zeiler is that the former uses fewer filters in the fourth convolutional layer to achieve higher
classification accuracy.

GoogLeNet, which ranked first in ILSVRC 2014, is a 22-layer deep convolutional net-
work that contains nine “inception modules” stacked on top of each other. Each inception
module is restricted to filter sizes of 1×1, 3×3, and 5×5 to avoid patch-alignment issues. To
reduce computational complexity, 1×1 convolutions are used first for dimensionality reduc-
tion before the expensive 3×3 and 5×5 convolutions. GoogLeNet removes fully-connected
layers and uses the linear layer to adapt to other label sets.

Table 1 lists details of the four CNN architectures. For simplicity, relu and softmax layers
are not shown in the table. AlexNet takes RGB images of 227×227 pixels as input, and the
other CNNs require 224×224 RGB images. The output sizes of the convolutional layers
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Table 1 Architectures of different CNNs

AlexNet VGGM VGG16 GoogLeNet

input 227×227×3 input 224×224×3 input 224×224×3 input 224×224×3

conv1 55×55×96 conv1 109×109×96 conv1-1 224×224×64 conv1 112×112×64

conv1-2 224×224×64

pool1 27×27×96 pool1 54×54×96 pool1 112×112×64 pool1 56×56×64

conv2 27×27×256 conv2 26×26×256 conv2-1 112×112×128 conv2 56×56×192

conv2-2 112×112×128

pool2 13×13×256 pool2 13×13×256 pool2 56×56×128 pool2 28×28×192

conv3 13×13×384 conv3 13×13×512 conv3-1 56×56×256 incep3a 28×28×256

conv3-2 56×56×256 incep3b 28×28×480

conv3-3 56×56×256

pool3 28×28×256 pool3 14×14×480

conv4 13×13×384 conv4 13×13×512 conv4-1 28×28×512 incep4a 14×14×512

conv4-2 28×28×512 incep4b 14×14×512

conv4-3 28×28×512 incep4c 14×14×512

incep4d 14×14×528

incep4e 14×14×832

pool4 14×14×512 pool4 7×7×832

conv5 13×13×256 conv5 13×13×512 conv5-1 14×14×512 incep5a 7×7×832

conv5-2 14×14×512 incep5b 7×7×1024

conv5-3 14×14×512

pool5 6×6×256 pool5 6×6×512 pool5 7×7×512 pool5 1×1×1024

fc6 1×1×4096 fc6 1×1×4096 fc6 1×1×4096 dropout 1×1×1024

fc7 1×1×4096 fc7 1×1×4096 fc7 1×1×4096 linear 1×1×1000

fc8 1×1×1000 fc8 1×1×1000 fc8 1×1×1000

(conv for short), pooling layers (pool for short), fully-connected layer (fc for short), and
inception layer (incep for short) are given in the table.

2.2 Transferring CNN representations for high-resolution remote sensing image
retrieval

For pre-trained CNNs to be generally applicable, the parameters of their internal layers are
transferred for high-resolution remote sensing images. The outputs of different layers influence
the retrieval performance, making suitable layer selection a crucial problem during retrieval.

Low-level features from early layers do not describe an image well, mid-level layer fea-
tures describe the local characteristics of an image, and high-level layer features represent
the global semantic information of an image [43]. Therefore, the high-level features and
mid-level features are extracted in this paper, and feature extraction methods of different
layers are described as follows:

(1) Features extracted from high-level layers

High-level layers refer to fc6 and fc7 for AlexNet, VGGM, and VGG16; and high-level
layer means pool5 for GoogLeNet. The outputs of high-level layers tend to represent the
semantic information of an image, thus the features extracted from high-level layers are
performed following the standard pipeline of previous works [3, 11], which is denoted as direct
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extraction method. A resized high-resolution image is input to pre-trained CNNs, and then
the outputs of high-level layers are of dimension 1×1×4096 for AlexNet, VGGM, and VGG16
(1×1×1024 for GoogLeNet), which are computed as 4096-dimensional vectors (1024-
dimensional vector for GoogLeNet). The 4096-dimensional vectors (1024-dimensional
vector for GoogLeNet) are extracted as CNN features from high-level layers directly.

(2) Features extracted from mid-level layers

Mid-level layers refer to conv5 (conv5-3 for VGG16) and pool5 for AlexNet, VGGM,
and VGG16, and mid-level layers are pool4, incep5a, incep5b for GoogLeNet. For conve-
nience, conv5 means conv5-3 for VGG16 in the following sections. The outputs of mid-level
layers describe local characteristics very well, so aggregation methods are adopted to aggre-
gate mid-level outputs to global features. The simple pooling schemes perform better than
coding methods when aggregating CNN features to compact features for image retrieval in
[2]. Here, we propose to use average pooling to aggregate the outputs of mid-level layers to
compact features, and different pooling regions are also studied in this paper.

Given a resized image I , the output of a mid-level layer l is sl × sl × cl , sl × sl is the size
of each feature map and cl denotes the number of channels. The pooling region is ml × ml ,
which is denoted as f l . The pooling stride is t . Then the number of pooling regions is
(sl − ml + t) × (sl − ml + t), which is denoted as r . The average pooling can be defined as

pl(i) = 1

ml × ml

∑
f l(i), i = 1, 2, ..., rl, (1)

In many papers, the pooling region is equal to the feature map [23, 44]. In order to obtain
more information of the complex remote sensing images, the pooling region ml × ml is
not greater than the feature map in this paper. Our simulations also show that the average
pooling achieves good performance when the ml × ml is slightly smaller than the feature
map size for most mid-level features.

The retrieval flow chart in Fig. 1 describes the retrieval procedure of AlexNet, VGGM,
and VGG16. That of GoogLeNet is similar but uses the different outputs given above. A
remote sensing (RS) image dataset is denoted as M, and a query image is denoted as q.
Each resized image (227×227 pixels for AlexNet or 224×224 pixels for others) of M is
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Fig. 1 Retrieval flow chart
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input to the pre-trained CNN, and then a CNN feature library for M is established by the
sets of features extracted from a selected layer. A resized q is input to the pre-trained CNN,
and q-CNN feature for q is the feature extracted from a selected layer. After normalizing
the extracted CNN-features, the similarities between q and each image in M are computed,
and then the top n similar images are returned according to the sort of similarities.

2.3 Feature combination and feature compression

After the four representative pre-trained CNNs have been transferred for remote sens-
ing image retrieval, feature combination and feature compression are studied to improve
retrieval performance.

The retrieval performance of the proposed method is determined by the generality of the
CNN features. The more general the features, the better the performance. Given that CNN
features are abstracted from low-level features, they are often too generalized to include
some important characteristics of objects. To improve feature representation, feature combi-
nation is studied from two aspects. On the one hand, to combine different CNN features by
investigating three types of combinations. The first type is combining CNN features from
the same CNN, but from different layers; the second type is combining CNN features from
different CNNs, but from the same layer; the third type is combining CNN features not
only from different CNNs, but also from different layers. On the other hand, CNN features
(learned from the pre-trained CNNs) and shallow features (extracted based on hand-crafted
features) are combined to achieve complementary effects.

The paper concentrates on the feature selection in the feature combination, then the sim-
ple combination strategy with weight allocation is adopted to combine different features.
Given k normalized features {F1, F2, ..., Fk} which are to be combined, query q, and a
datasetM. The similarity between q andM is denoted as di that calculated according to Fi ,
i = 1, ..., k. Then the k features are combined by weighting the similarity as

d =
k∑

i=1

wi × di, where
k∑

i=1

wi = 1 , (2)

wi denotes the weight of di . In other words, wi reflects the weight of Fi because di is com-
puted based on Fi . The calculated total similarity is denoted as d. Finally, d is needed to be
normalized to make different features have the same range value in the similarity measure.

Feature compression is adopted to improve retrieval performance for the following two
reasons. First, CNN feature dimensionality is often higher than that of shallow features,
which leads to low retrieval efficiency. Second, redundancy is common when transferring
CNN representations pre-trained on ImageNet for image retrieval on a small dataset. There-
fore, this paper uses simple but efficient PCA methods to compress the CNN features to a
number of different dimensions. These compressed features are then very helpful to improve
the retrieval performance.

3 Experimental evaluation

The four pre-trained CNNs adopted here are developed usingMatConvNet [36]. The follow-
ing three high-resolution remote sensing image datasets are employed to do the experiments.

(1) UC Merced Land Use dataset [41] (UC-Merced), which consists of 21 land-use cate-
gories selected from the United States Geological Survey (USGS) National Map. Each
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(l) (m) (n) (o) (p) (q) (r) (s) (t) (u)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 2 Examples of the UC-Merced dataset: a agricultural; b airplane; c baseball diamond; d beach; e build-
ings; f chaparral; g dense residential; h forest; i freeway; j golf course; k harbor; l intersection; m medium
density residential; n mobile home park; o overpass; p parking lot; q river; r runway; s sparse residential; t
storage tanks; u tennis courts

class consists of 100 images cropped to 256×256 pixels, with a spatial resolution of
one foot. Figure 2 shows one example of each category.

(2) WHU-RS dataset [39], which contains 19 classes of satellite scene collected from
Google Earth (Google Inc.). Each class has 50 images of 600×600 pixels. An example
of each class is shown in Fig. 3.

(3) PatternNet dataset [47], which contains 38 classes collected from Google Earth
imagery or via GoogLeNet Map API for US cities very recently. There are a total of
800 images of size 256×256 pixels in each class. Figure 4 presents some samples of
PatternNet.

Similarity is obtained using L2-distance on L2-normalized CNN features. To evaluate
comprehensively the retrieval performance, we compare the mean average precision (mAP)
and average normalize modified retrieval rank (ANMRR) [42]. ANMRR was used exten-
sively in the MPEG-7 standardization process; it considers both the number and order of the
ground truth items that appear in the top retrievals. Good retrieval performance is indicated
by a high mAP and a low ANMRR. Precision-recall curves for different features are also
compared in the simulations.

3.1 mAP

Tables 2 and 3 list mAP values for different features from high-level layers on the UC-
Merced and the WHU-RS datasets, respectively. The results of fc6, relu6, fc7, and relu7
are compared for AlexNet, VGGM, and VGG16, and the results of pool5 are compared
for GoogLeNet. The results of BoVW [42], which perform well in shallow features, are
compared in both tables.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r) (s)

Fig. 3 Examples of the WHU-RS dataset: a airport; b beach; c bridge; d commercial area; e desert; f farm-
land; g football field; h forest; i industrial area; j meadow; k mountain; l park;m parking lot; n pond; o port;
p railway station; q residential area; r river; s viaduct
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

(u) (v) (w) (x) (y) (z)

Fig. 4 Examples of the WHU-RS dataset: a airplane; b baseball field; c basketball court; d beach; e bridge; f
cemetery; g chaparral; h christmas tree farm; i closed road; j coastal mansion; k crosswalk; l dense residential;
m ferry terminal; n football field; o forest; p freeway; q golf course; r harbor; s intersection; t mobile home
park; u nursing home; v oil gas field; w oil well; x overpass; y parking lot; z parking space

For AlexNet, VGGM, and VGG16, mAP values from fc6 are better than that from relu6;
and mAP values from relu7 are better than that from fc7. Generally speaking, the mAP
values from fc6 are superior to that from fc7 except the value of AlexNet on the WHU-RS
dataset. The results indicate that the features from fc7 and relu7 become too generalized for
image retrieval. The features from fc6 are more discriminative than that from relu6 in the
high-resolution remote sensing image retrieval.

Tables 2 and 3 show that all of the CNN features are much better than BoVW. GoogLeNet
performs best on the UC-Merced dataset, while VGGM performs best on the WHU-RS
dataset. AlexNet performs poor relatively on both datasets.

Tables 4 and 5 list mAP values for different features from mid-level layers on the UC-
Merced and the WHU-RS datasets. The pooling stride is set to 1 to obtain more information
of the remote sensing images. To overall compare the features, four mAP values for each
kind of CNN features are shown in the tables. The first values are computed from the directly
extracted features without pooling, the extraction approach of which is the same as that of
high-level features. That is the outputs of mid-level layers are converted to feature vectors
directly. Other three values are computed from the aggregated features using average pool-
ing. We compute the values for the aggregated features with pooling region from 2×2 to the
feature map size. Top two best values for each feature, and the values computed using the
common average pooling method which has the pooling region equalling the feature map
size, are selected to be displayed in the two tables. The four mAP values for VGGM from

Table 2 mAP values for features
from high-level layers on the
UC-Merced dataset

Features fc6 relu6 fc7 relu7 pool5

AlexNet 51.76 48.20 48.83 51.56

VGGM 55.67 52.85 54.13 54.95

VGG16 55.23 53.21 53.14 53.20

GoogLeNet 56.60

BoVW 30.36
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Table 3 mAP values for features
from high-level layers on the
WHU-RS dataset

Features fc6 relu6 fc7 relu7 pool5

AlexNet 62.55 60.92 61.07 63.48

VGGM 65.12 63.71 62.43 64.04

VGG16 63.47 63.25 61.38 62.18

GoogLeNet 62.31

BoVW 38.94

pool5 in Table 4 are taken as an example to illustrate the results clearly. The first value is
50.12, which is computed from the directly extracted features; the last value is 51.56, which
is computed from the aggregated feature with 6×6 pooling region, and the pooling region is
equal to the feature map size; the second and the third values are computed from the aggre-
gated features with 4×4 pooling region and 5×5 pooling region respectively, which are the
top two best values and smaller than the feature map size.

Many interesting results can be obtained from Tables 4 and 5. Firstly, the first values are
the worst results for each kind of CNN features, which indicate that the aggregated features
perform better than the directly extracted features. Secondly, most of the best aggregated
features have pooling regions that are smaller than the feature map sizes. On the UC-Merced
dataset, the pooling regions for most of the best aggregate features are slightly larger than
or equal to half the size the feature maps. Such as the best aggregated feature for AlexNet
from pool5 has 3×3 pooling region, which is equal to half the size of the feature map, and
the best aggregated feature for VGGM from pool5 has 4×4 pooling region, which is slightly
larger than half the size of the feature map. On the WHU-RS dataset, the best aggregated
features have pooling regions which are equal to or slightly smaller than the feature map
sizes. For example, the best aggregated feature for VGG16 from conv5 has 12×12 pooling

Table 4 mAP values for features from mid-level layers on the UC-Merced dataset

Features conv5 relu5 pool5 pool4 incep5a incep5b

AlexNet 29.17 38.05 45.24

44.16 7×7 42.87 7×7 47.50 3×3

43.97 8×8 42.85 11×11 47.33 4×4

41.77 13×13 42.73 13×13 46.44 6×6

VGGM 29.14 42.83 50.12

49.22 8×8 50.35 6×6 53.58 4×4

49.25 9×9 50.29 7×7 53.16 5×5

46.91 13×13 49.68 13×13 51.56 6×6

VGG16 33.30 50.68 53.36

55.56 10×10 57.06 8×8 59.18 4×4

55.55 11×11 57.07 9×9 59.00 5×5

53.41 14×14 53.93 14×14 55.32 7×7

GoogLeNet 56.52 55.30 53.28

59.36 4×4 57.29 5×5 56.48 5×5

59.54 5×5 57.20 6×6 56.55 6×6

58.63 7×7 56.92 7×7 56.32 7×7
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Table 5 mAP values for features from mid-level layers on the WHU-RS dataset

Features conv5 relu5 pool5 pool4 incep5a incep5b

AlexNet 38.91 49.99 55.77

60.70 9×9 56.31 11×11 58.81 4×4

60.82 10×10 56.57 12×12 59.48 5×5

59.75 13×13 56.60 13×13 59.79 6×6

VGGM 40.96 53.76 59.71

66.07 10×10 62.21 9×9 65.09 4×4

66.20 11×11 62.33 10×10 65.50 5×5

65.56 13×13 61.17 13×13 65.06 6×6

VGG16 39.15 56.19 58.99

67.50 12×12 63.65 12×12 66.20 5×5

67.42 13×13 63.62 13×13 65.53 6×6

67.06 14×14 63.63 14×14 65.53 7×7

GoogLeNet 63.26 61.79 58.84

67.48 5×5 64.46 5×5 62.67 5×5

67.54 6×6 64.69 6×6 63.19 6×6

67.10 7×7 64.77 7×7 63.52 7×7

region, which is slightly smaller than the feature map size; and the best aggregated feature
for GoogLeNet from incep5a has 7×7 pooling region, which is equal to the feature map size.
Thirdly, on the two datasets, the best layers from which the aggregated features extracted are
different for the same CNN, except GoogLeNet. For AlexNet, VGGM, and VGG16, the best
layers are pool5 on the UC-Merced dataset, while the best layers are conv5 on the WHU-RS
dataset. The reason may related to the different sizes of the images on the two datasets. The
input images are resized from 256×256 on the UC-Merced dataset, and from 600×600 on
the WHU-RS dataset. Then the resized images on the WHU-RS dataset loss more informa-
tion than that on the UC-Merced dataset, so the best layers for WHU-RS dataset are lower
than that for UC-Merced dataset to obtain more object characteristics. For GoogLeNet, the
best layers are pool4 on both datasets, given that the architecture of GoogLeNet is different
with that of other three networks, and the mid-level layers of GoogLeNet perform well.

The features from high-level layers are compared with the features from mid-level layers
from Tables 2 and 4, and 3 and 5. The features extracted directly from mid-level layers per-
form worse than the features from high-level features, except from pool4 for GoogLeNet on
the WHU-RS dataset. But the performances of the aggregated features from mid-level lay-
ers are improved at a higher degree. For VGG16 and GoogLeNet, most aggregated features
perform better than the features from high-level layers, especially the worst aggregated fea-
tures are superior to the best high-level features for GoogLeNet on both datasets, and for
VGG16 on the WHU-RS dataset. For AlexNet and VGGM, most aggregated features are
inferior to the high-level features, especially on the UC-Merced dataset. Therefore, aggre-
gation method is very useful for VGG16 and GoogLeNet, because the two CNNs are very
deep and the features from mid-level layers describe discriminative local information.

In the following simulations, we consider only two kinds of features for each CNN
to evaluate the experiments. One is the feature with the best mAP value from high-level
layer, which uses the acronym h as the suffix. On the UC-Merced dataset, AlexNet-h,
VGGM-h, and VGG16-h denote the features from fc6; GoogLeNet-h denotes the feature
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from pool5. On the WHU-RS dataset, AlexNet-h denotes the feature from relu7; VGGM-h
and VGG16-h denote the features from fc6; GoogLeNet-h denotes the feature from pool5.
BoVW are also compared with the features from high-level layers. The other is the feature
with the best mAP value from mid-level layer, which adopts the acronym m as the suf-
fix. On the UC-Merced dataset, AlexNet-m denotes the aggregated feature from pool5 with
3×3 pooling region; VGGM-m denotes the aggregated feature from pool5 with 4×4 pool-
ing region; VGG16-m denotes the aggregated feature from pool5 with 4×4 pooling region;
GoogLeNet-m denotes the aggregated feature from pool4 with 5×5 pooling region. On
the WHU-RS dataset, AlexNet-m denotes the aggregated feature from conv5 with 10×10
pooling region; VGGM-m denotes the aggregated feature from conv5 with 11×11 pooling
region; VGG16-m denotes the aggregated feature from conv5 with 12×12 pooling region;
GoogLeNet-m denotes the aggregated feature from pool4 with 6×6 pooling region.

3.2 Per class mAP

Figure 5 compares mAP values from high-level layers for each class on the UC-Merced
dataset. The CNN features are generally better than BoVW, though AlexNet-h performs a
little worse than BoVW for harbor. GoogLeNet-h performs best for many classes, particu-
larly airplane and tennis courts. VGG16-h achieves noticeably better results than the other
features for beach, harbor, and overpass, but its poor performance for baseball diamond
greatly reduces its average value. VGGM-h gives a stable performance for all classes, while
AlexNet-h performs worse than the other three CNN features for most classes.

Figure 6 shows mAP values from mid-level layers for each class on the UC-Merced
dataset. VGG16-m and GoogLeNet-m outperform AlexNet-m and VGGM-m, except for
buildings and golf course. Thus the aggregated features of VGG16 and GoogLeNet, which
are very deep CNNs, achieve good performance for most kinds of classes.

Figure 7 compares mAP values from high-level layers for each class on the WHU-RS
dataset. BoVW performs well for airport and beach, especially for meadow. But for other
classes, BoVW performs worse than other CNN features. Of the CNN features, VGGM-h
is the best and GoogLeNet-h is the worst. The performances of AlexNet-h and VGG16-h
appear to depend on the type of image.
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Fig. 5 Per class mAP values for high-level features on the UC-Merced dataset



Multimed Tools Appl (2018) 77:17489–17515 17501

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
G

R
I

A
IR

B
A

SE

B
EA

C
H

B
U

IL
D

C
H

A
P

D
R
ES

FO
R

FR
EE

G
O

LF

H
A

R
B

IN
TER

M
R
ES

M
H

P

O
V

ER

PA
R
K

R
IV

R
U

N

SR
ES

STO
R

TEN
N

A
V

G

m
A

P

AlexNet−m VGGM−m VGG16−m GoogLeNet−m

Fig. 6 Per class mAP values for mid-level features on the UC-Merced dataset
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Fig. 7 Per class mAP values for high-level features on the WHU-RS dataset
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Figure 8 shows mAP values frommid-level layers for each class on theWHU-RS dataset.
Similar to the results of Fig. 6, the aggregated features of VGG16 and GoogLeNet perform
better for most kinds of classes than that of AlexNet and VGGM.

Overall, GoogLeNet-h presents the best results on the UC-Merced dataset, but per-
forms worse on the WHU-RS dataset. VGGM-h performs stably on both datasets, and
the average result of which is very close to that of GoogLeNet-h on the UC-Merced
dataset. GoogLeNet-m and VGG16-m perform better than AlexNet-m and VGGM-m on
both datasets. Therefore, we conclude that VGGM-h, GoogLeNet-m, and VGG16-m are
more suitable for high-resolution remote sensing images.

3.3 Precision-recall curves

Figures 9 and 10 show precision-recall curves for the different features. Precision and
recall are calculated for increasing numbers of retrieved images: from 2 to 2100 on the
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Fig. 9 Precision-recall curves for different features on the UC-Merced dataset
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Fig. 10 Precision-recall curves for different features on the WHU-RS dataset

UC-Merced dataset, and from 2 to 950 on the WHU-RS dataset. On the UC-Merced dataset,
BoVW shows a marked decline, especially once the number of returned images reaches
20, while the CNN features generally give more stable results. VGGM-h presents the best
retrieval performance when the number of returned images is less than 20, but is surpassed
by GoogLeNet-h as the number of returned images increases. GoogLeNet-m and VGG16-
m show better results of these CNN features from mid-level layers, and when the number of
returned images achieves 150, the result of VGG16-m is very close to that of GoogLeNet-m.

On the WHU-RS dataset, Fig. 10a shows that VGGM-h performs best, while BoVW is
the worst. When the number of returned images is more than 40, the result of AlexNet-
h becomes better and better. GoogLeNet-h presents worse result at the beginning, but
GoogLeNet-h surpasses VGG16-h when the returned image number is more than 50.
Figure 10b shows that AlexNet-m performs worst, and the result of VGGM-m is close to
that of GoogLeNet-m and VGG16-m. When the returned image number is more than 40,
the result of GoogLeNet-m becomes better than that of VGG16. Thus GoogleNet perform
well when returned a large number of images.
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3.4 ANMRR and dimensionality

Table 6 lists the results of ANMRR and dimensionality for the different features. As for
shallow features, Aptoula improved remote sensing image retrieval performance with global
morphological texture descriptors [1]. BoVW [42], VLAD [28], and LSL [12] are the
aggregated features based on the 128-dimensional scale invariant feature transform (SIFT)
descriptors. From Table 6, the ANMRR values of shallow features are worse than that of

Table 6 ANMRR and dimensionality for different features

Features Dimension ANMRR

UC-Merced WHU-RS UC-Merced WHU-RS

BoVW [42] 150 150 0.6010 0.5250

BoVW [42] 15000 15000 0.5910 0.4920

Global morphological texture [1] 62 – 0.5750 –

VLAD [28] 16384 – 0.4604 –

LSL [12] 2048 – 0.5556 –

VGGM-fc [24] 4096 4096 0.3780 0.4190

VGGM-fc+RF [24] 4096 4096 0.3160 0.3400

VGGM-fc [45] 4096 – 0.4580 –

VGGM-conv5+IFK [45] 102400 – 0.4473 –

VGGM(FT)-fc [45] 4096 – 0.2166 –

VGGM(FT)-conv5+IFK [45] 102400 – 0.3892 –

AlexNet-conv5+VLAD [46] 25600 25600 0.5510 0.4190

AlexNet-conv5+IFK [46] 51200 51200 0.5000 0.4170

VGGM-fc [46] 4096 4096 0.3780 0.3000

VGGM(FT)-fc [46] 4096 4096 0.3290 0.0220

VGGM-conv5+VLAD [46] 51200 51200 0.5310 0.3520

VGGM-conv5+IFK [46] 102400 102400 0.4580 0.3820

VGG16-fc [46] 4096 4096 0.3940 0.3240

VGG16-conv5+VLAD [46] 51200 51200 0.5330 0.3420

VGG16-conv5+IFK [46] 102400 102400 0.4070 0.3680

LDCNN[46] 30 30 0.4390 0.0190

GoogLeNet(FT)+BoVW [17] 1000 – 0.4230 –

GoogLeNet(FT)+MultiPatch [17] 1024 – 0.3140 –

GoogLeNet(FT)+BoVW+PCA [17] 32 – 0.3350 –

GoogLeNet(FT)+MultiPatch+PCA [17] 32 – 0.2850 –

AlexNet-h 4096 4096 0.4053 0.2937

AlexNet-m 4096 4096 0.4435 0.3181

VGGM-h 4096 4096 0.3699 0.2816

VGGM-m 4608 4608 0.3877 0.2735

VGG16-h 4096 4096 0.3748 0.3000

VGG16-m 8192 4608 0.3354 0.2660

GoogLeNet-h 1024 1024 0.3509 0.2999

GoogLeNet-m 7488 3328 0.3306 0.2568
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CNN features, except VLAD [28]. Thus CNN features improve the retrieval performance
significantly.

With respect to CNN features, the results of state-of-the-art methods and our methods are
listed. We firstly compare the features from high-level layers. VGGM-fc [24], VGGM-fc
[45], VGGM-fc [46], and VGGM-h are the outputs from fully-connected layers. However,
the ANMRR values of these features are different. VGGM-fc [24] and VGGM-fc [46] select
normalized feature from the fc7. VGGM-fc [45] chooses fc7 feature without normalized.
While VGGM-h is the L2-normalized features from fc6. Thus these specific details, such as
the choice of layer and whether to use the normalization, affect the retrieval results.

Secondly, the features from mid-level layers are compared. Other papers adopt cod-
ing methods to aggregate convolutional features. Such as IFK and VLAD are applied
on the convolutional features of AlexNet, VGGM, and VGG16 (AlexNet-conv5+VLAD
[46], AlexNet-conv5+IFK [46], VGGM-conv5+VLAD [46], VGGM-conv5+IFK [45,
46], VGG16-conv5+VLAD [46] and VGG16-conv5+IFK [46]), BoVW is utilized
to aggregate the convolutional features from fine-tuned (FT for short) GoogLeNet
(GoogLeNet(FT)+BoVW[17]). However, these aggregated convolutional features per-
form worse than fully-connected features, except for VGGM-conv5+IFK [45]. Our paper
employs the average pooling to aggregate the mid-level features. The pooling method is
not only simpler than the coding approaches, but also achieves better results. For example,
VGG16-m and GoogLeNet-m are superior to VGG16-h and GoogLeNet-h.

Finally, some approaches utilized to improve the performance are analyzed. The most
important method is the fine-tuning process, and the training set has a significant impact
on the results. For example, VGGM(FT)-fc [45, 46] is the fully-connected features from
fine-tuned VGGM, and the improvement of VGGM(FT)-fc [45] is greater than that of
VGGM(FT)-fc [46]. Because VGGM is fine-tuned by using the random training images
from UC-Merced datasets in [45], while another training set independent of UC-Merced
is employed to fine-tune VGGM in [46]. In the paper [46], even the same training set is
utilized to fine-tune VGGM, the result of VGGM(FT)-fc [46] on the WHU-RS dataset is
obvious better than that on the UC-Merced dataset. Particulally, due to the limited training
set, the proposed low dimensional CNN (LDCNN) [46] perform worse than that extracted
from pre-trained CNN directly (VGGM-fc [46]). In addition to fine-tuning, there exist
other improved methods containing manual relevance feedback (VGGM-fc+RF) [24] and
multi-patch mean pooling (GoogLeNet(FT)+MultiPatch) [17]. Manual relevance feedback
increases the amount of manual work. Multi-patch mean pooling needs multiple inputs to
re-feed to the CNN, resulting in a relatively complex feature extraction process.

Therefore, our proposed CNN features are simple and effective, especially the sim-
ple average pooling method achieves better results than the coding methods used in other
papers. When other CNN features employ fine-tuning process, manual relevance feedback,
or multi-patch mean pooling, most of the results are improved to a large degree. Even so,
vgg16-m, GoogLeNet-m, and GoogLeNet-h perform better than some of the fine-tuned fea-
tures, which are VGGM-conv5+IFK [45] and GoogLeNet(FT)+BoVW [17]. This paper also
adopts feature combination and feature compression to improve the retrieval performance,
the simulation results of which can be seen in the next two subsections.

3.5 Feature combination

It is easy for CNN features to be too generalized, and so miss some characteristics of objects.
In such case, multiple features can be combined to improve the retrieval performance.
Given the poor performance of AlexNet, we consider combinations of VGGM, VGG16,
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Table 7 ANMRR for multiple feature combinations on the UC-Merced dataset

Features Weight ANMRR

(M-h, M-m) (0.6, 0.4) 0.3644

(0.7, 0.3) 0.3645

(0.8, 0.2) 0.3654

(M-h, BoVW) (0.9, 0.1) 0.3531

(0.8, 0.2) 0.3620

(1.0, 0.0) 0.3699

(M-m, BoVW) (0.9, 0.1) 0.3692

(0.8, 0.2) 0.3791

(1.0, 0.0) 0.3877

(16-h, 16-m) (0.2, 0.8) 0.3329

(0.1, 0.9) 0.3331

(0.3, 0.7) 0.3344

(16-h, BoVW) (0.9, 0.1) 0.3569

(0.8, 0.2) 0.3638

(1.0, 0.0) 0.3748

(16-m, BoVW) (0.9, 0.1) 0.3237

(1.0, 0.0) 0.3354

(0.8, 0.2) 0.3465

(G-h, G-m) (0.4, 0.6) 0.3222

(0.3, 0.7) 0.3226

(0.5, 0.5) 0.3231

(G-h, BoVW) (0.9, 0.1) 0.3282

(0.8, 0.2) 0.3497

(1.0, 0.0) 0.3509

(G-m, BoVW) (0.9, 0.1) 0.3162

(1.0, 0.0) 0.3306

(0.8, 0.2) 0.3362

(M-h, 16-h, g-h) (0.2, 0.2, 0.6) 0.3138

(0.3, 0.2, 0.5) 0.3142

(0.2, 0.3, 0.5) 0.3146

(M-h, 16-h, g-h, BoVW) (0.2, 0.2, 0.5, 0.1) 0.3042

(0.3, 0.1, 0.5, 0.1) 0.3055

(0.1, 0.3, 0.5, 0.1) 0.3059

(M-m, 16-m, g-m) (0.0, 0.5, 0.5) 0.3035

(0.1, 0.4, 0.5) 0.3037

(0.1, 0.5, 0.4) 0.3041

(M-m, 16-m, g-m, BoVW) (0.0, 0.4, 0.5, 0.1) 0.2964

(0.1, 0.4, 0.4, 0.1) 0.2971

(0.0, 0.5, 0.4, 0.1) 0.2972

(M-h, M-m, 16-h, 16-m, G-h, G-m) (0.1, 0.0, 0.0, 0.4, 0.3, 0.2) 0.2960

(0.1, 0.0, 0.0, 0.4, 0.4, 0.1) 0.2966

(0.1, 0.0, 0.0, 0.4, 0.2, 0.3) 0.2969

(M-h, M-m, 16-h, 16-m, G-h, G-m, BoVW) (0.1, 0.0, 0.0, 0.4, 0.3, 0.1, 0.1) 0.2915

(0.1, 0.0, 0.0, 0.3, 0.4, 0.1, 0.1) 0.2916

(0.1, 0.0, 0.0, 0.4, 0.4, 0.0, 0.1) 0.2926
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GoogLeNet, and BoVW. Tables 7 and 8 list the results on the UC-Merced and the WHU-
RS datasets respectively. In the two tables, M-h, M-m, 16-h, 16-m, G-h, and G-m are short
for VGGM-h, VGGM-m, VGG16-h, VGG16-m, GoogLeNet-h, and GoogLeNet-m respec-
tively. In order to obtain good combination performance, each weight is carried out from
{0.0, 0.1, 0.2, ..., 1.0}. The weights list in the tables are the top three best combination for
the groups of features.

Besides the combination of CNN features with BoVW, three types of CNN feature com-
binations are compared in Tables 7 and 8. The first type is combining CNN features from
the same CNN, but from different layers. The results are included in the first three lines.
For example, the second line shows the results of the groups of two features containing
16-h, 16-m, and BoVW. The combination of 16-m and 16-h are the CNN features from
VGG16, but from high-level layer and mid-level layer separately. The second type com-
bining CNN features from different CNNs, but from the same layer. Here, the same layer
mainly refers to the high-level layer or the mid-level layer. The results are included in the
fourth line. For instance, the combination of M-h, 16-h, and G-h are the high-level features
from VGGM, VGG16, and GoogLeNet respectively. The third type is combining CNN fea-
tures not only from different CNNs, but also from different layers, which is shown in the
fifth line.

From Tables 7 and 8, the third type of feature combination performs best, then is the
second type, and the first type performs worst. Accordingly, the third type combines the
maximum number of feaures, and the first type just combines two features.

Another interesting conclusion can be found out from the two tables, that is BoVW plays
an very important role in the feature combination with a small portion. As shown in the
above subsections, BoVW performs worse when comparing with single CNN feature. But
when the combined features containing BoVW, the results are improved at a higher degree,
especially on the WHU-RS dataset. However, compared with other combination groups,
the weight has a greater impact on the results of the combinations of a CNN feature and
BoVW. For example, on the WHU-RS dataset, when the weight of BoVW is less than or
equal to 0.2, the results of the combination of 16-h and BoVW are superior to that of the
combination of M-h, M-m, 16-h, 16-m, G-h, and G-m, which is the best combination among
the combinations of CNN features. But when the weight of BoVW is larger than 0.2, the
combination of 16-h and BoVW performs worse. On the UC-Merced dataset, the top three
best weight schemes are (0.9, 0.1), (0.8, 0.2), and (1.0, 0.0), which indicate that when the
weight of BoVW is larger than 0.2, the combination of a CNN feature and BoVW is inferior
to the single CNN feature.

Therefore, feature combination is able to improve the feature representation, and the
combination of hand-crafted features (such as BoVW) and CNN features should be a good
choice.

3.6 Feature compression

We randomly select 80% of the images from each category as the training set (1680 images
for UC-Merced and 760 images for WHU-RS), and the rest are treated as testing set (420
images for UC-Merced and 190 images for WHU-RS). The projection matrices of PCA
are learned on the training sets. Then the high dimensionality of the CNN features is com-
pressed using PCA to various amounts between 8 and 1024 dimensions, as shown in Fig. 11
(which also include mAP values of the uncompressed features). When the PCA is employed
on aggregated features from mid-level layers, which have been compressed using average
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Table 8 ANMRR for multiple feature combinations on the WHU-RS dataset

Features Weight ANMRR

(M-h, M-m) (0.3, 0.7) 0.2427

(0.2, 0.8) 0.2442

(0.4, 0.6) 0.2451

(M-h, BoVW) (0.8, 0.2) 0.1875

(0.9, 0.1) 0.1914

(0.7, 0.3) 0.2271

(M-m, BoVW) (0.9, 0.1) 0.1878

(0.8, 0.2) 0.2558

(1.0, 0.0) 0.2735

(16-h, 16-m) (0.2, 0.8) 0.2507

(0.3, 0.7) 0.2532

(0.1, 0.9) 0.2537

(16-h, BoVW) (0.8, 0.2) 0.1967

(0.9, 0.1) 0.2040

(0.7, 0.3) 0.2345

(16-m, BoVW) (0.9, 0.1) 0.1782

(0.8, 0.2) 0.2514

(1.0, 0.0) 0.2660

(G-h, G-m) (0.2, 0.8) 0.2533

(0.3, 0.7) 0.2536

(0.1, 0.9) 0.2545

(G-h, BoVW) (0.9, 0.1) 0.1998

(0.8, 0.2) 0.2165

(0.7, 0.3) 0.2717

(G-m, BoVW) (0.9, 0.1) 0.1717

(0.8, 0.2) 0.1822

(0.7, 0.3) 0.2322

(M-h, 16-h, g-h) (0.3, 0.3, 0.4) 0.2374

(0.4, 0.2, 0.4) 0.2374

(0.3, 0.2, 0.5) 0.2375

(M-h, 16-h, g-h, BoVW) (0.3, 0.2, 0.4, 0.1) 0.1541

(0.2, 0.3, 0.4, 0.1) 0.1552

(0.4, 0.1, 0.4, 0.1) 0.1559

(M-m, 16-m, g-m) (0.4, 0.4, 0.2) 0.2131

(0.4, 0.3, 0.3) 0.2132

(0.3, 0.4, 0.3) 0.2136

(M-m, 16-m, g-m, BoVW) (0.2, 0.3, 0.4, 0.1) 0.1436

(0.3, 0.2, 0.4, 0.1) 0.1437

(0.1, 0.5, 0.3, 0.1) 0.1444

(M-h, M-m, 16-h, 16-m, G-h, G-m) (0.0, 0.4, 0.1, 0.3, 0.1, 0.1) 0.2090

(0.0, 0.5, 0.1, 0.2, 0.1, 0.1) 0.2091

(0.1, 0.3, 0.0, 0.4, 0.1, 0.1) 0.2096

(M-h, M-m, 16-h, 16-m, G-h, G-m, BoVW) (0.1, 0.2, 0.1, 0.3, 0.1, 0.1, 0.1) 0.1380

(0.1, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1) 0.1382

(0.1, 0.3, 0.1, 0.1, 0.2, 0.1, 0.1) 0.1386
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Fig. 11 mAP vs dimension for different features on two datasets

pooling, the retrieval performance has poor improvement. Thus, the features from high-level
layers are just considered in this experiment.

On the UC-Merced dataset, the best compressed dimensionality of AlexNet-h and
VGG16-h is 32. The result of 64-dimensional VGGM-h is very close to that of 128-
dimensional. GoogLeNet-h performs best when the dimensionality is reduced to 32. On the
WHU-RS dataset, AlexNet-h and VGGM-h achieve the best results when reduced to 16
dimensions; VGG16-h and GoogLeNet-h perform best when reduced to 32 dimensions.

Therefore, the compressed features generally outperform the uncompressed features,
especially when reduced to 32 and 64 dimensions for UC-Merced dataset; 16 and 32 dimen-
sions for WHU-RS dataset. This might owing to a lot of redundancies when transferring
CNNs pre-trained on ImageNet for these datasets.

The series of experimental results show that the CNN features give better results
than shallow features. VGGM-h performs stably for the two datasets, VGG16-m and
GoogLeNet-m increase the retrieval results greatly. Overall, feature combination and feature
compression are very effective approaches to improve the retrieval performance.
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Table 9 Perfomance for
different features on the
PatternNet dataset

Features Dimension ANMRR mAP

BoVW [47] 128 0.6393 27.29

VLAD [47] 8192 0.5686 33.67

IFK [47] 16384 0.6016 30.93

VGGM-h 4096 0.3118 62.40

VGGM-m 512 0.3205 61.50

VGG16-h 4096 0.3296 60.30

VGG16-m 2048 0.3044 62.92

GoogLeNet-h 1024 0.2978 63.21

GoogLeNet-m 832 0.2784 65.98

3.7 Large-scale dataset

In order to further study the scalability of the proposed method, a large-scale high-resolution
remote sensing image dataset, PatternNet, is adopted to do experiments. CNN features are
selected from VGGM, VGG16, and GoogLeNet.

The results of different features are presented in Table 9. BoVW, VLAD, and IFK
are three representative shallow features, which are constructed by aggregating the 128-
dimensional SIFT descriptors. For the CNN features, VGGM-h and VGG16-h are the
high-level features from fc6, GoogLeNet-h is the high-level feature from pool5; VGGM-
m and VGG16-m are the aggregated mid-level features from pool5, and GoogLeNet-m is
the aggregated mid-level features from poo4. The pooling regions of VGGM-m, VGG16-m
and GoogLeNet-m are 6×6, 6×6, and 7×7 respectively. Table 9 shows that CNN features
perform better than shallow features. For these CNN features, VGG16-m and GoogLeNet-
m are better than VGG16-h and GoogLeNet-h respectively, and VGGM-m is worse than
VGG-h. Thus, the aggregated mid-level features present good performance for VGG16 and
GoogLeNet.
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Fig. 12 mAP vs dimension for different features on the PatternNet dataset
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Figure 12 compares the results of compressed high-level features with various dimen-
sions. Like the above feature compression experiment, we randomly select 80% of the
images from each class of PatternNet as the training set and the rest are used for retrieval
performance evaluation. Most compressed features perform better than the uncompressed
features, especially the 32-dimensional and 64-dimensional features. Thus, feature com-
pression is very useful to improve the CNN feature representation, even in the large-scale
dataset.

4 Conclusions

We exploited representations of pre-trained CNNs (AlexNet, VGGM, VGG16, and
GoogLeNet) based on image classification for high-resolution remote sensing image
retrieval. Given the different characteristics between high-level layers and mid-level layers,
direct extraction method and aggregation approach are adopted to extract high-level features
and mid-level features respectively. Average pooling with different pooling regions is stud-
ied to aggregate the outputs of mid-level layers, and most aggregated features with pooling
region smaller than the feature map size achieve excellent results. The series of experi-
ments demonstrate that CNN features generally outperform shallow features except for a
few image classes. High-level features for VGGM are very stable, and the average pooling
is very useful to aggregate features, especially for VGG16 and GoogLeNet. Even on the
large-scale image dataset, the CNN features present good performance. Compared to exist-
ing CNN features, the proposed feature extraction methods are not only simple, but also
very effective. The presented average pooling method is suitable to aggregate CNN features.

We also demonstrated preliminary efforts to combine different features and to compress
features to improve image retrieval according to the specific shortcomings of the CNN fea-
tures; both greatly improved the retrieval performance. Many kinds of feature combinations
are investigated, and particularly BoVW is found to play a great contribution to improve
retrieval performance when combined with CNN features. Most compressed high-level fea-
tures perform well when compressed to 32 dimensions. Adaptive feature fusion and further
ways to aggregate features are planned in our future works.
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