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Abstract Pathological brain detection systems (PBDSs) have drawn much attention from
researchers over the past two decades because of their significance in taking correct clin-
ical decisions. In this paper, an efficient PBDS based on MR images is introduced that
markedly improves the recent results. The proposed system makes use of contrast lim-
ited adaptive histogram equalization (CLAHE) and orthogonal discrete ripplet-II transform
(O-DR2T) with degree 2 to enhance the quality of the input MR images and extract the fea-
tures respectively. Subsequently, relevant features are obtained using PCA+LDA approach.
Finally, a novel learning algorithm called IJaya-ELM is proposed that combines improved
Jaya algorithm (IJaya) and extreme learning machine (ELM) for segregation of MR images
as pathological or healthy. The improved Jaya algorithm is utilized to optimize the input
weights and hidden biases of single-hidden-layer feedforward neural networks (SLFN),
whereas one analytical method is used for determining the output weights. The proposed
algorithm performs optimization according to both the root mean squared error (RMSE)
and the norm of the output weights of SLFNs. Extensive experiments are carried out using
three benchmark datasets and the results are compared against other competent schemes.
The experimental results demonstrate that the proposed scheme brings potential improve-
ments in terms of classification accuracy and number of features. Moreover, the proposed
IJaya-ELM classifier achieves higher accuracy and obtains compact network architecture
compared to conventional ELM and BPNN classifier.
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1 Introduction

Brain disease is one of the prime factors for causing death in people with different age
groups. Different types of brain diseases exist such as neoplastic diseases (brain tumor),
cerebrovascular diseases (stroke), degenerative diseases, and infectious diseases; some of
these diseases may cause severe problems in the human brain and may prompt to death. This
necessitates the development of automated computer-based decision systems which help
the physicians to take correct and fast clinical decisions at early stages. Magnetic resonance
imaging (MRI) is a common medical imaging modality used in PBDS because of its advan-
tage of providing huge information about the soft tissues [5, 44, 53]. In addition, MRI is
a non-invasive imaging modality compared other modalities including X-ray and CT scan.
However, manual interpretation is difficult due to large data storage in MRI. Further, man-
ual interpretation is costly, tedious and time-consuming process [8, 27, 31]. To overcome
such issues, automated pathological brain detection systems (PBDSs) need to be developed
to assist radiologists in taking accurate and quick decisions. PBDS utilizes various image
processing and machine algorithms at different stages.

A significant amount of work has been done in developing various PBDSs in the past
decades [10, 54, 65]. However, the development of an ideal PBDS is still challenging
because of the difficulty in selecting proper algorithms for feature extraction, feature reduc-
tion, and classification. Further, these three phases should combinedly work in all cases
regardless of the type of image modalities and the dataset size. Hence, PBDS remains an
open problem for researchers. Our objective here is to enhance the performance of the PBDS
with respect to existing systems for abnormality detection in the human brain.

It has been observed that discrete wavelet transform (DWT) is the mostly used feature
extractor in PBDS since it analyzes images at several scales and handles one-dimensional
(1D) singularities effectively. However, DWT can not handle two-dimensional (2D) sin-
gularities (edges of an image). That is, DWT is not able to capture curve like features
effectively from the images. Therefore, finding a transform in order to capture 2D singu-
larities is highly in demand. Further, classifiers like feed forward neural network (FNN)
and support vector machine (SVM) are often used in earlier PBDSs because of their
capability in separating nonlinear input patterns and predicting continuous functions.
But, conventional gradient-based learning algorithms such as back-propagation (BP) and
Levenberg-Marquardt (LM) used for the training of FNN causes many problems such as
local minima, slower learning speed, and learning epochs. Few hybrid models have been
designed with the help of population-based optimization strategies to overcome the limita-
tions of traditional learning algorithms. Further, the traditional SVM classifier encounters
higher computational complexity and performs poorly on large datasets [26]. Moreover, it
has been found that few PBDSs need a large number of features and hence, there exists a
scope to limit the feature requirement without compromising the accuracy.

Considering these concerns, we propose a novel PBDS with the following characteristics.

(a) Orthogonal discrete ripplet-II transform (O-DR2T) is used for feature extraction to
capture 2D singularities along with a group of curves from MR images.

(b) To address the problems of traditional learning algorithms, a recently proposed learn-
ing algorithm known as extreme learning machine (ELM) is employed which provides
faster learning speed and better generalization performance compared to conven-
tional learning algorithms. However, ELM suffers from various limitations such as
slower response speed on testing data, high requirement of hidden neurons, and
ill-conditioned problem.
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(c) To further enhance the performance of standard ELM, a hybrid learning algorithm
based on improve Jaya optimization algorithm and ELM (IJaya-ELM) is proposed.

(d) To validate the proposed scheme, extensive experiments are carried out on three
well-known datasets. In this context, the proposed PBDS is compared against other
competent methods with respect to classification accuracy and number of features.

The remaining part of the article is organized as follows. Section 2 presents a review
of the current PBDSs. Section 3 provides the materials used in the experiments. The pro-
posed methodology adopted in the article is discussed in detail in Section 4. The statistical
setting and pseudocode of the proposed scheme are presented in Section 5. In Section 6, a
detail experimental evaluation and comparative analysis have been presented. Finally, the
concluding remarks are presented in Section 7.

2 Related work

In the past years, a number of PBDSs have been reported in the literature for detection of
brain diseases. MRI has been used as the imaging modality in almost all PBDSs. PBDSs
can be broadly divided into two classes: direct-feature-based PBDS and indirect-feature-
based PBDS depending on the type of features used. The former class uses coefficients of
image transform as the key features. Indirect-feature-based PBDS, however, extracts fea-
tures using statistical descriptors such as energy, entropy, mean and standard deviation from
the coefficients. The PBDSs of the first category require feature transformation or selection
techniques to get relevant feature sets. However, it is optional in case of the second category.

Chaplot et al. [5] were the forebears who proposed a PBDS with the help of 2D DWT
features and two separate classifiers, namely, self-organizing map (SOM) and SVM. The
authors in [23] have proposed a PBDS where Slantlet transform (ST) is employed for
feature extraction and back-propagation neural network (BPNN) is used for classifica-
tion. Later, El-Dahshan et al. [11] have suggested a hybrid approach with the assistance
of 2D DWT and two separate classifiers such as k-nearest neighbor (k-NN) and feed
forward back-propagation artificial neural network (FP-ANN). In order to reduce the fea-
ture dimensionality, they have applied principal component analysis (PCA). Further, with
same features the authors in [53, 57, 59, 61], have proposed a variety of PBDSs. In these
works, gradient-based and population-based optimization algorithms such as scaled conju-
gate gradient (SCG), particle swarm optimization (PSO), adaptive chaotic PSO (ACPSO),
and scaled chaotic artificial bee colony (SCABC) are used to optimize the parameters of
FNN, BPNN and kernel SVM (KSVM) classifier. Zhang et al. [60] have suggested a PBDS
where DWT plus PCA based features are given to a KSVM classifier. The authors in [8]
have derived features from Ripplet transform (RT) and reduced the feature dimensionality
using PCA. Subsequently, they have applied least squares SVM (LS-SVM) for classifica-
tion. In [10], the authors have utilized DWT and PCA for feature extraction and reduction
prior to the employment of feedback pulse coupled neural network (FPCNN). Finally, they
have applied FP-ANN for classification. Afterward, Wang et al. [42] offered a PBDS based
on stationary wavelet transform (SWT), PCA and FNN. In this, the parameters of FNN
classifier are optimized using artificial bee colony (ABC) and PSO and hence the schemes
are coined as IABAP-FNN, ABC-SPSO-FNN, and HPA-FNN. In another work, Zhang et
al. [62] have deployed weighted-type fractional Fourier transform (WFRFT) and PCA for
feature extraction and reduction, respectively. For classification, they have applied gen-
eralized eigenvalue proximal SVM (GEPSVM) and twin SVM (TSVM). Later, Nayak et
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al. [27] have proposed a PBDS with the support of 2D DWT and probabilistic PCA (PPCA).
In this, AdaBoost with random forests (ADBRF) method is employed for classification.
While in [51], authors have used SWT, PCA, and GEPSVM for feature extraction, reduc-
tion, and classification respectively. The authors in [25] have utilized HL3 coefficients of
2D DWT as features and harnessed PCA+LDA strategy for dimensionality reduction. Later,
Dash et al. [28] have utilized curvelet transform for feature extraction, however, PCA and
LS-SVM is employed for feature reduction and classification. Chen et al. [63] have used
Minkowski-Bouligand dimension (MBD) features for MR image classification. Edge detec-
tion is performed using Canny edge detector prior to feature extraction. Subsequently, an
improved PSO based on three-segment particle representation, time-varying acceleration
coefficient, and chaos theory (PSO-TTC) is proposed to train the single-hidden layer feed-
forward neural network. In [31], authors have used fast discrete curvelet transform for
feature extraction after segmentation using simple pulse coupled neural network (SPCNN).
Eventually, PNN is applied for classification.

Recent articles on PBDS have used feature descriptors like energy, entropy [13], mean
and standard deviation etc., in the feature extraction stage. For example, in [36], the entropy
values of the wavelet coefficients are used as features. A spider web plot and t-test strat-
egy is used to select the significant features. Subsequently, probabilistic neural network
(PNN) is employed for classification. Later, Yang et al. [48] have computed energy values
from a level-3 DWT coefficients to serve as features. For classification, biogeography-based
optimization (BBO) technique is integrated into SVM. In [52], a discrete wavelet packet
transform (DWPT) based PBDS is proposed. Two different types of entropies namely, Shan-
non entropy (SE) [30] and Tsallis entropy (TE) are evaluated from the sub-bands and finally,
GEPSVM is utilized to classify MR images as healthy or pathological. Furthermore, in [56],
a hybrid BBO and PSO based method known as HBP for training of FNN is suggested. In
this, wavelet entropy values are used as features. In [67], wavelet entropy (WE) and a Naive
Bayes classifier (NBC) based PBDS is proposed. While in [50], wavelet energy and SVM
are used. Thereafter, Zhang et al. [64] have used Tsallis entropy of DWPT for feature extrac-
tion and fuzzy support vector machine (FSVM) for classification. On the other hand, in
[58], WE and Hu moment invariants (HMI) features are used followed by a GEPSVM+RBF
classifier. Wang et al. [43] have proposed a PBDS based on a novel feature called fractional
Fourier entropy (FRFE) which is the combination of FRFT and Shannon entropy. Two sepa-
rate test such as Welch’s t-test (WTT) and Mahalanobis distance (MD) is performed to select
the relevant features. Subsequently, TSVM is employed for classification. Later, in [55], a
PBDS based on FRFE features and multilayer perceptron (MLP) is proposed. In this, three
pruning methods, namely, Bayesian detection boundaries (BDB), dynamic pruning (DP),
and Kappa coefficient (KC) are utilized to get the optimal hidden neurons in MLP. Subse-
quently, an adaptive real coded BBO (ARCBBO) approach has been employed to update the
weights of MLP. In [40], the authors have employed three varieties of binary PSO (BPSO)
to select significant features from the entropy values of an 8-level DWT. PNN is deployed
for classification. While in [39], the variance and entropy (VE) values of a dual-tree com-
plex wavelet transform (DTCWT) are used as features. Both GEPSVM and TSVM are used
as the classifier. Later, Nayak et al. [29] have used energy and entropy values of 2D-SWT as
features. They have employed symmetric uncertainty ranking (SUR) filter for feature selec-
tion and AdaBoost with support vector machine (ADBSVM) for classification. The authors
in [38] have employed wavelet packet Tsallis entropy (WPTE) for feature extraction and
FNN with real-coded biogeography-based optimization (RCBBO) for classification.

The literature study reveals that in most PBDSs wavelet and its variants (like SWT,
DWPT, DTCWT, etc.) have been frequently used for feature extraction. However, traditional
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DWT suffers from many drawbacks such as limited directional selectivity and translation
variance. SWT can resolve the translation variance issue; however, it leads to redundancy
and is not able to capture higher dimensional singularities. DTCWT is efficient and less
redundant, which offers more directional selectivities (i.e., six) compared to SWT and DWT.
It can be concluded here that all these transforms are less capable of handling 2D singulari-
ties. Hence, further improvements in directional selectivity need to be done. Additionally, it
has been observed that FNN and SVM are commonly used in many PBDSs which require
more parameters to tune and are time-consuming. Further, most of the schemes have been
validated on small datasets and shown higher accuracies; however, they perform poorly
when evaluated on large datasets. Thus, there exists a scope to eradicate the shortcomings
of the existing schemes.

To combat these issues, we have proposed an efficient PBDS to classify the MR images
as healthy or pathological. The proposed PBDS uses O-DR2T for feature extraction due to
its ability in capturing directional features (edges and curves). Subsequently, a PCA+LDA
based approach is employed in order to determine the most significant feature set. Even-
tually, a hybrid learning algorithm IJaya-ELM for SLFN is introduced which offers many
advantages such as avoiding local minima issue, better generalization capability, faster
learning rate, and well-conditioned in contrast to classifiers like FNN, SVM, LS-SVM,
ELM, etc. These improvements lead the proposed PBDS to a more robust and accurate
system over other current existing schemes.

3 Datasets used

The performance of the proposed PBDS are tested on three benchmark datasets, namely,
DS-66, DS-160, and DS-255 accommodating 66, 160 and 255 images, respectively. These
datasets hold T2-weighted brain MR images of size 256×256 in axial view plane which
is available in Medical School of Harvard University website [22]. Along with the healthy
brain samples, the datasets DS-66 and DS-160 have samples from seven classes of diseases,
namely, sarcoma, AD (Alzheimer’s disease), AD plus visual agnosia (VA), glioma, menin-
gioma, Huntington’s disease (HD), and Pick’s disease (PD). DS-255 contains four more
diseases, viz., cerebral toxoplasmosis (CTP), multiple sclerosis (MS), herpes encephalitis
(HE), and chronic subdural hematoma (CSH). Samples of all kind of MR images are shown
in Fig. 1.

Out of 11 types of diseases, glioma, meningioma, and sarcoma are of brain tumor type;
while CTP, MS, and HE are of infectious type. The diseases such as AD, AD plus VA, PD,
and HD are called the degenerative diseases; whereas CSH is a cerebrovascular disease. The
proposed work is a two-class classification problem (healthy or pathological) in which the
pathological class contains images from all kinds of diseases.

4 Proposed methodology

This section describes the methods involved in the proposed PBDS. The proposed PBDS
consists of four steps, namely, preprocessing, feature extraction, feature reduction, and clas-
sification. The input of the system is an MR image and the output is the class label (healthy
or pathological). In the preprocessing step, contrast limited adaptive histogram equaliza-
tion (CLAHE) is employed. In feature extraction step, we use orthogonal discrete ripplet-II
transform to extract features and in feature dimension reduction step, PCA+LDA approach
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Fig. 1 Samples of T2-weighted brain MR images [8]

is harnessed. Thereafter, for classification, a hybrid learning algorithm IJaya-ELM is uti-
lized, where improved Jaya (IJaya) algorithm is used to optimize the initial weights and
biases of the SLFN. The proposed PBDS works in two parts, namely, offline learning and
online prediction. The former part includes the training and evaluation process of the sys-
tem; whereas, the latter part predicts a class label for the query MR image. The detailed
block diagram of the proposed PBDS is depicted in Fig. 2. All the steps are delineated below.

4.1 Preprocessing based on CLAHE

It is observed that most of the images in the datasets considered in this work are of low-
contrast. Therefore, for contrast enhancement of the images, a standard technique named
contrast limited adaptive histogram equalization (CLAHE) is employed. CLAHE initially
evaluates a histogram of gray values in a contextual region centered around each pixel and
then, it allocates a value to each pixel intensity within the display range [32]. Additionally, it
uses a fixed value dubbed clip limit which helps in clipping the histogram prior to the com-
putation of cumulative distribution function (CDF). However, CLAHE redistributes those
parts of the histogram equally among all histogram bins that surpass the clip limit.
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Fig. 2 Detailed block diagram of the proposed PBD system

4.2 Feature extraction based on O-DR2T

Fourier transform has been found to be less suitable for feature extraction in images as it
loses the time information and can not handle 1D singularities. Hence, this transform fails
to provide efficient representation of images that contains edges, however, it works well
for only smooth images. In contrast, wavelet transform performs better in representing 1D
singularities (i.e., point singularities). But conventional wavelet transform is not capable of
representing 2D singularities along arbitrarily shaped curves. In order to resolve the prob-
lem that conventional wavelet suffers from, another transform called ridgelet transform was
introduced which is based on Radon transform [2, 9]. Ridgelet holds great potential in rep-
resenting line singularities (i.e., it is capable of extracting lines of arbitrary orientation),
but it is not able to handle 2D singularities. Thereafter, first generation curvelet transform
based on multiscale ridgelet was proposed by Candes and Dohono in [3] to resolve the 2D
singularities along smooth curves. Later on, they proposed the second generation curvelet
transform [1] which is simple, fast, and less redundant than the former one. Because of
the capabilities like multiresolution, more directional selectivity, anisotropy, and localiza-
tion, it has drawn attentions over last decades. The anisotropic property guarantees solving
2D singularities along C2 curves and to accomplish this, curvelet utilizes a parabolic scal-
ing law [4]. However, the reason behind the selection of parabolic scaling is not clear.
In order to resolve this issue, a new transform called as ripplet-I transform is proposed
which generalizes the scaling law [12, 46]. In general, ripplet-I transform generalizes the
curvelet transform by adding two parameters such as support c and degree d. When c = 1
and d = 2, ripplet-I transform becomes curvelet transform. These two parameters provide
ripplet-I transform with anisotropy capability of representing 2D singularities along arbitrar-
ily shaped curves. Then, they proposed ripplet-II transform [45] based on generalized Radon
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transform (GRT) [6, 7] to further improve the capability of representing 2D singularities.
It satisfies the properties like multiresolution, localization, good directionality, and flexibil-
ity. Moreover, compared to wavelet and ridgelet transform, ripplet-II has the fastest decay
in coefficients and for which the sparser representation of images having edges is possible.
Another variant of ripplet-II transform known as orthogonal ripplet-II transform generates
even more sparse feature vectors than ripplet-II transform which is crucial for classification
task. Therefore, it has been leveraged in applications like texture classification and image
retrieval [45]. As the orthogonal ripplet-II transform is efficient in representing edges and
textures than other conventional transforms and the affected regions in MR images contain
edges and textures of arbitrary shapes, it is used as a feature extraction tool in this work.

4.2.1 Ripplet-II transform

Given a 2D function g(x, y), the continuous ripplet-II transform in polar coordinates (ρ, α)

is defined as

RT 2g(s, t, d, θ) =
∫ ∫

ψ̄s,t,d,θ (ρ, α)g(ρ, α)ρ dρ dα (1)

where, g(ρ, α) is the polar coordinate conversion of g(x, y), ψs,t,d,θ : R
2 → R

2 is
known as ripplet-II function and ψ̄ is the complex conjugate of ψ . The ripplet-II function
is stated as

ψs,t,d,θ (ρ, α) = s−1/2ϕ((ρ cosd((θ − α)/d) − t)/s) (2)

where ϕ : R → R is a smooth univariate wavelet function, and s > 0, t ∈ R, d ∈ N

and θ ∈ [0, 2π) indicates scale, translation, degree and orientation parameters, respectively.
By tuning these parameters, ripllet-II transform can capture structural information along
arbitrary curves. Using (1) and (2), we have

RT 2g(s, t, d, θ) = 〈
ϕs,t (r),GRd [g]〉 (3)

where GRd [g] is the GRT of function g and is defined as

GRd(r, θ) =
∫ ∫

g(ρ, α)δ(r − ρ cosd((α − θ)/d))ρ dρ dα (4)

The GRT can also be evaluated using Fourier transform [45]. Equation (3) indicates
that ripplet-II transform is the inner product between GRT and 1D wavelet. It can also be
represented as

g(ρ, α)
GRT==⇒ GRd [g](r, θ)

1D−WT=====⇒ RT 2g(s, t, d, θ) (5)

which defines that ripplet-II transform in two steps: first compute GRT of g and then
compute 1D WT of the GRT of g.

The discrete version of ripplet-II transform (DR2T) can be defined as

g(ρ, α)
DGRT====⇒ GRd [g](r, θ)

1D−DWT======⇒ RT 2g(s, t, d, θ) (6)

in which the discrete GRT (DGRT) of g is first computed and subsequently, the 1D discrete
WT (DWT) of the DGRT of g is computed. The computing procedure for discrete ripplet-II
transform becomes more simpler when d = 2. In this case, the GRT is dubbed as ‘parabolic
Radon transform’ and is defined as follows [45]

GR2(r, θ) = 2
√

rR[g(ρ
′2, 2α

′
)](√r, θ/2) (7)
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where, R[g(ρ, α)](r, θ) is the classical Radon transform (CRT) in polar coordinates. How-
ever, in general, the GRT of function g for d > 0 takes the form in Fourier domain
as

GRF
d (r, θ) = 2

+∞∑
n=−∞

[∫ ∞

r

∫
g(ρ, α)e−in αdα × (1 − (r/ρ)2/d )−1/2 × Tnd((r/ρ)1/d )dρ

]
ein θ

(8)

where Tn(.) denotes the Chebyshev polynomial of degree n.
In summary, the forward DR2T with d = 2 of an input image can be computed as follows:

(i) Convert the input function from Cartesian coordinates to polar coordinates i.e.,
g(x, y) to g(ρ, α). Replace (ρ, α) by (ρ′2, 2α′) in g(ρ, α). Subsequently, generate
a new image g′(x, y) by interpolation after converting polar coordinates (ρ′, α′) to
Cartesian coordinates (x, y). The variables x and y hold integer values.

(ii) Employ discrete CRT on g′(x, y) that produces R(r ′, θ ′) and then substitute (r ′, θ ′)
with (

√
r, θ/2) in R(r ′, θ ′) as in (7). And obtain the DGRT coefficients GR2(r, θ).

(iii) Apply 1D DWT to DGRT coefficients w.r.t. r and obtain the discrete ripplet-II
coefficients.

The above substitution from (r ′, θ ′) to (
√

r, θ/2) makes DR2T coefficients more sparser
than others.

4.2.2 Orthogonal ripplet-II transform

Orthogonal ripplet-II transform is an extension of ripplet-II transform which is achieved by
applying 2D WT to GRT coefficients in place of 1D WT along r and θ . The additional
WT along angle θ helps in improving the sparsity of transform coefficients. The continuous
orthogonal ripplet-II transform of the function g takes the form

RT 2orth
g (s, t1, t2, d) = 2

+∞∑
n=−∞

∫ ∫
1

s
ϕ̄(

r − t1

s
)ϕ̄(

r − t2

s
)

∫ ∞

r

∫
g(ρ, α)e−in αdα

×(1 − (r/ρ)2/d)−1/2 × Tnd((r/ρ)1/d) dρein θ dr dθ (9)

Now, the discrete orthogonal ripplet-II transform (O-DR2T) can be stated as

g(ρ, α)
DGRT====⇒ GRd [g](r, θ)

2D−DWT======⇒ RT 2orth
g (s, t1, t2, d) (10)

where the DGRT of g is first evaluated and thereafter 2D DWT of the DGRT of g is
harnessed. It is worth mentioning that unlike DR2T, O-DR2T has no explicit direction
parameter and for which it may lose the explicit directional information. However, in [45],
it is shown that orthogonal ripplet-II transform supplies more sparser features of the images
than wavelet, ridgelet and standard ripplet-II transform because of the replacement of 2D
DWT with 1D DWT. Hence, in the proposed system, O-DR2T is used as feature extractor.

4.2.3 Feature generation

For each training input MR image, we apply O-DR2T and obtain the coefficients. Then, the
transform coefficients are arranged in a feature vector of dimension D, where D = m ∗ n,
and m and n are the number of rows and columns of the image. This vector is calculated for
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each training images and a feature matrix is formed finally. The implementation procedure
of the feature generation is outlined in Algorithm 1.

4.3 Feature reduction based on PCA+LDA

It is noticed that the features generated by O-DR2T are of high dimension which leads
high computational overhead and large storage space requirement. Therefore, application
of dimensionality reduction techniques is of great importance. PCA is a frequently used
feature dimension reduction technique which transforms high dimensional input data to a
lower dimensional space while keeping maximum variations of the data [35]. In contrast,
linear discriminant analysis (LDA) attempts to find a feature subspace that best discrimi-
nates between the classes. But, conventional LDA performs poorly while dealing with high
dimensional and small sample size problem as in this case the within-scatter matrix (Sw)
is always singular [49]. Further, to make sure that Sw does not become singular, at least
D + C (where, D=dimension of feature vector and C=number of classes) number of sam-
ples are required which in general is practically not possible [24]. To address this issue,
a well-known method dubbed as PCA+LDA has been applied in this study, where a D-
dimensional data is first reduced to an M-dimensional data using PCA and then reduced to
a l-dimensional data using LDA, l << M < D.

In order to get a relevant feature set, we fist sort the eigenvalues of different fea-
tures in decreasing order and then the normalized cumulative sum of variances (NCSV)
corresponding to each feature is calculated. The NCSV value for j th feature is defined as

NCSV (j) =

j∑
u=1

α(u)

D∑
u=1

α(u)

; 1 ≤ j ≤ D (11)
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where, α(u) represents the eigenvalue of the uth feature and D denotes the dimensionality
of the feature vector. Finally, a threshold value is set manually and the number of features
for which the NCSV value surpasses the threshold are selected. Relevant features selected
are determined experimentally to have a maximal accuracy. It may be noted that the coeffi-
cients of the l eigenvectors (suitably called as basis vectors (BV)) corresponding to l large
eigenvalues are retained if these l eigenvalues collectively satisfy the given threshold.

4.4 Classification based on IJaya-ELM

In this section, we first discuss the preliminaries of extreme learning machine (ELM)
and Jaya algorithm, and thereafter present the proposed IJaya-ELM learning algorithm for
single-hidden layer feedforward neural networks (SLFNs) in oder to classify the MR brain
as healthy or pathological.

4.4.1 Extreme Learning Machine (ELM)

Single-hidden layer feedforward neural networks (SLFNs) have been shown to be used
in many applications as they successfully approximate any continuous function and clas-
sify any disjoint region. To train the SLFNs, gradient-based learning algorithms such as
Levenberg-Marquardt (LM) and backpropagation (BP) algorithm have been widely used.
However, despite their popularity, these learning algorithms face various issues such as
poor learning speed due to improper learning steps, getting trapped at local minima, requir-
ing large number of iterations to obtain better learning performance, and overfitting [21].
A recently developed learning algorithm called extreme learning machine (ELM) avoids
the limitations of gradient based learning schemes. ELM has also the potential for solv-
ing multi-class classification and regression tasks [19, 20]. In contrast to other conventional
learning algorithms such as BP, SVM and LS-SVM, ELM learns faster with better gener-
alization performance. In ELM, the hidden node parameters (the input weights and hidden
biases) are randomly assigned, while the output weights of SLFNs are analytically deter-
mined by simple inverse operation of the hidden layer output matrix. ELM is discussed
below mathematically.

Given N distinct training samples (xi, ti ), where xi = [xi1, xi2, . . . , xil]T ∈ Rl and
ti = [ti1, ti2, . . . , tiC]T ∈ RC , the SLFNs having nh hidden nodes and activation function
φ(.) can be represented as

nh∑
i=1

wo
i φ(xj ) =

nh∑
i=1

wo
i φ(wh

i · xj + bi) = oj , j = 1, 2, . . . , N (12)

Here, wh
i = [

wh
i1, w

h
i2, . . . , w

h
il

]T
represents the weight vector that links between ith hidden

neuron and the input neurons, wo
i = [

wo
i1, w

o
i2, . . . , w

o
iC

]T indicates the weight vector that
connects the ith hidden neuron and the output neurons, and bi is the bias of the ith hidden
neuron. The SLFNs can approximate these N samples with zero error, i.e., ∃ wh

i , wo
i , and

bi such that
nh∑
i=1

wo
i φ(wh

i · xj + bi) = tj , j = 1, 2, . . . , N (13)
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Now, (13) can be represented in matrix form as

Hwo = T (14)

where,

H(wh
1 , wh

2 , . . . , wh
nh

, b1, b2, . . . , bnh
, x1, x2, . . . , xN)

=
⎡
⎢⎣

φ(wh
1 · x1 + b1) . . . φ(wh

nh
· x1 + bnh

)

... . . .
...

φ(wh
1 · xN + b1) . . . φ(wh

nh
· xN + bnh

)

⎤
⎥⎦

N×nh

,

wo =
⎡
⎢⎣

wo
1
T

...

wo
nh

T

⎤
⎥⎦

nh×C

and T =
⎡
⎢⎣

tT1
...

tTN

⎤
⎥⎦

N×C

Here, H denotes the hidden layer output matrix. Now, the output weights wo can be
analytically determined by finding the smallest norm least square (LS) solution of the above
linear system (12) as

ŵo = H†T (15)

where, H† indicates the Moore-Penrose (MP) generalized inverse of matrix H and with
this method ELM leads better generalization performance [68]. The smallest norm LS solu-
tion is unique and has the minimum norm among all the LS solutions. As the solution
of ELM is obtained using an analytical method without iteratively tuning parameters, it
converges faster than other traditional learning algorithms.

4.4.2 Jaya algorithm

Jaya algorithm is a recent optimization algorithm developed by Rao [33] and has been gain-
ing attractions of the researchers for its simplicity and robustness. Jaya algorithm is shown to
provide better results than other optimization algorithms [34, 41]. Unlike other population-
based optimization algorithms, it does not need any algorithm-specific parameters; however,
it needs the common control parameters like population size, generation number, etc. The
conceptual idea behind this scheme is that it always moves the obtained solution toward the
best solution and avoids the worst solution.

Suppose f (s) is the objective function to be minimized or maximized. At any iteration
k, let there are n number of candidate solutions (i.e., j = 1, 2, . . . , n) each having dimen-
sion (or number of variables) d (i.e., d = 1, 2, . . . , m). If sjd(k) denotes the value for j th

solution in dth dimension during iteration k, then its modified value can be obtained as

s′
jd (k) = sjd(k) + r1d(k)(sbestd (k) − |sjd(k)|) − r2d(k)(sworstd (k) − |sjd(k)|) (16)

where sbestd (k) represents the value for the best candidate solution in dth dimension
and sworstd (k) represents the value for the worst candidate solution in dth dimension dur-
ing iteration k. It is worth mentioning that the candidate best and worst are the best
and worst solution having best and worst fitness values in the entire population of an
iteration. r1d(k) and r2d(k) indicate two random numbers in dimension d during kth iter-
ation which lie in the interval [0, 1]. s′

jd (k) denotes the updated value of sjd(k). The term
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Fig. 3 Flow diagram of the Jaya algorithm

“r1d(k)(sbestd (k) − |sjd(k)|)” defines that the solution tries to move toward the best solu-
tion and the term “−r2d(k)(sworstd (k)−|sjd(k)|)” indicates that the solution tries avoid the
worst solution. The modified s′

jd (k) value is accepted if the functional value generated by
it is better. The overall steps involved in Jaya algorithm are shown in Fig. 3.

4.4.3 Proposed improved extreme learning machine

Since ELM randomly chooses the input weights and hidden biases, it leads to two crucial
problems [47, 66, 68]: (i) ELM needs more number of hidden neurons than conventional
gradient based methods which make ELM respond slowly to unknown testing data, and (ii)
ELM prompts to an ill-conditioned hidden layer output matrix H in presence of more hidden
neurons which induces poor generalization performance. Condition number was found to
be a good qualitative measure to find the conditioning of a matrix [66]. It indicates how
close a system is to be ill-conditioned. It may be noted that an ill-conditioned system holds
large condition number while a well-conditioned system holds small condition number. The
2-norm condition number of the matrix H can be calculated as,

K2(H) =
√

λmax(HT H)

λmin(HT H)
(17)
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where, λmax(HT H) and λmin(HT H) denotes the largest and smallest eigenvalues of matrix
HT H.

In order to tackle these issues, few efforts have been made by researchers in the last
decade using evolutionary algorithms (EAs) and swarm intelligence based algorithms since
these algorithms have the benefits of global searching for optimization problems [18]. Zhu
et al. [68] suggested a hybrid algorithm called evolutionary ELM (E-ELM), where a mod-
ified differential evolution (DE) algorithm is utilized to optimize hidden node parameters
and MP generalized inverse is utilized to find the solution. They have shown that E-ELM
provides faster learning speed and better generalization performance than other traditional
algorithms, while it obtains much more compact network than ELM. However, E-ELM
demands two additional parameters to tune, namely, the mutation factor and the crossover
factor. Xu and Shu [47] introduced another evolutionary ELM based on PSO (PSO-ELM)
to select the hidden node parameters which requires only one parameter to tune. They have
added boundary conditions into conventional PSO to enhance the performance of ELM.
Later, in [14], an improved PSO based ELM (IPSO-ELM) is proposed to find optimal
SLFNs. In this, IPSO considers both the root mean squared error (RMSE) and the norm
of output weights of validation set to obtain better convergence performance. Suresh et
al. [37] have proposed a hybrid learning algorithm using real-coded genetic algorithm and
ELM (RCGA-ELM) for no-reference image quality assessment. But, RCGA requires two
genetic parameters such as crossover and mutation. While, Zhao et al. [66] have offered an
input weight selection technique for improving the conditioning of ELM with the help of
linear hidden neurons. With this technique, they have achieved numerical stability without
degrading accuracy.

From the above literature, it is observed that different researchers have utilized optimiza-
tion algorithms like GA and its variants, PSO and its variants, DE, etc., to find the optimal
hidden node parameters. These techniques have their own advantages. However, they need
proper tuning of their algorithm-specific parameters as it significantly influences the perfor-
mance of the algorithms. Therefore, in order to resolve the problem of improper tuning, in
this paper a parameter less based scheme known as Jaya algorithm is used. In addition, we
propose a new scheme IJaya-ELM by combining the improved Jaya (IJaya) algorithm with
the ELM. IJaya-ELM avoids the issues faced by existing methods in the recent literature. In
this scheme, IJaya is harnessed to optimize the hidden node parameters and MP generalized
inverse to analytically find the solution. It is worth mentioning here that the improved Jaya
algorithm searches global optima considering both RMSE and norm of the output weights
of SLFNs which on the other hand improve the generalization performance and condition-
ing of the SLFN. The main goal of IJaya is to minimize the norm of the output weights
and to bound the hidden node parameters within a specific range in order to enhance the
convergence performance of ELM. The steps of the proposed IJaya-ELM is delineated as
follows:

(a) At first, initialize randomly all the candidate solutions in the population such that each
candidate solution consists of a set of input weights and hidden biases as

sj =
[
wh

11, w
h
12, . . . , w

h
1l , w

h
21, w

h
22, . . . , w

h
2l , w

h
nh1, w

h
nh2, . . . , w

h
nhl, b1, b2, . . . , bnh

]
(18)

It may be noted that all the input weights and hidden biases are randomly initialized
within a range of [-1,1].
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(b) For each solution, evaluate the output weights and fitness. Here, we set the root-mean
squared error (RMSE) on the validation set as the fitness rather than the whole training
set in order to avoid the overfitting. The fitness can be defined as

f () =

√√√√√√
Nv∑
j=1

||
nh∑
i=1

wo
i φ(wh

i · xj + bi) − tj ||22
Nv

(19)

where, Nv indicates the number of validation samples.
(c) Find sbest and sworst of all the solutions in the population and modify the solutions

using (16).
(d) Update the solutions using the fitness value and the norm of the output weights and

generate new population as follows:

sj (k+1) =

⎧⎪⎪⎨
⎪⎪⎩

s′
j (k) if f (sj (k)) − f (s′

j (k)) > εf (sj (k))

or

(
|f (sj (k)) − f (s′

j (k))| < εf (sj (k)) and ||wo
s′
j

|| < ||wo
sj

||
)

sj (k) otherwise
(20)

where, f (sj (k)) and f (s′
j (k)) denotes the fitness value of the candidate solution

j and its corresponding modified solution during iteration k, respectively. wo
sj

and
wo

s′
j

represents the output weights generated by MP generalized inverse for candidate

solution j and its corresponding modified solution, respectively. ε > 0 is a user-
defined tolerance rate.

(e) As given in the literature, all the input weights and biases should lie in the range of [-
1, 1]. Therefore, the following equation is followed in the IJaya-ELM in order to deal
with the solution out-of-bound issue

sjd(k + 1) =
{ −1 if sjd(k + 1) < −1

1 if sjd(k + 1) > 1
, 1 ≤ j ≤ Np, 1 ≤ d ≤ D (21)

(f) Repeat (c)-(e) until the maximum number of iterations are over. Finally, the optimal
input weights and hidden biases are obtained, and are employed on the testing data to
find the performance of the system.

As the proposed scheme uses (20) to find the optimal input weights and hidden biases,
it tends to provide the smaller norm of output weights of SLFNs. On the other hand, the
smaller norm of the output weights leads to a smaller condition value of the output hid-
den matrix. In general, the proposed IJaya-ELM has the following advantages: it has no
algorithm-specific parameters, it improves the conditioning, and it produces better general-
ization performance with a much more compact network. Compared to other gradient based
methods and classical ELM, the proposed approach does not need activation function to be
differentiable.

The proposed PBDS involves techniques like O-DR2T, PCA+LDA, and IJaya-ELM, and
hence it is referred to as O-DR2T + PCA+LDA + IJaya-ELM. The overall steps followed is
articulated in Algorithm 2.
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5 Experimental design and evaluation

In order to validate the proposed PBDS, simulation has been carried out on three differ-
ent datasets, namely, DS-66, DS-160, and DS-255. For statistical analysis, cross-validation
(CV) has been employed to avoid over-fitting problems. CV makes the classifier to general-
ize on independent datasets. In this work, we incorporate stratification into CV which splits
the folds in such a manner that each fold will have a similar class distributions. Figure 4
depicts the setting of a 5-fold CV for a single run. In each trial, one fold is used for testing,

Fig. 4 Illustration of 5-fold cross validation setting for a single run
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Table 1 Statistical setting of K-fold SCV for three benchmark datasets [8, 27, 55]

Dataset K-fold SCV Total samples Training Validation Testing

H P H P H P H P

DS-66 6 18 48 12 32 3 8 3 8

DS-160 5 20 140 12 84 4 28 4 28

DS-255 5 35 220 21 132 7 44 7 44

one for validation and the rests for training. The validation set is used to find the parame-
ters of the IJaya-ELM i.e., it helps us to know when to stop training. The test set is used to
evaluate the performance in a run of five trials. For DS-160 and DS-255, we select 5-fold
SCV. But for DS-66 (18 healthy and 48 pathological) if we select 5-fold stratified cross val-
idation (SCV), then each fold will have the different number of samples from two classes.
Hence, for DS-66, we employ 6-fold (SCV). It is worth mentioning here that the statistical
setting for all the three datasets is kept similar to the literatures as shown in Table 1. It may
be noted that we run the SCV procedure 10 times on three datasets to avoid randomness.

Four different measures, namely, sensitivity (Se), specificity (Sp), precision (Pr ) and
accuracy are used to evaluate the proposed system. Se is the fraction of pathological MR
samples correctly predicted by the model, while Sp is the fraction of healthy MR samples
correctly predicted by the model. However, accuracy (ACC) determines the fraction of the
correctly predicted samples (both pathological and healthy) in the total number of testing
samples. Moreover, to compare the proposed IJaya-ELM scheme with other schemes such
as Jaya-ELM, PSO-ELM, APSO-ELM, E-ELM and GA-ELM, two additional parameters,
namely, condition number and norm of output weights are used.

6 Experimental results and analysis

The proposed system was implemented using MATLAB toolbox on a machine with 3.4
GHz processor, 8 GB RAM, and windows 10 OS. The parameters used and the statistical
set up were kept similar to other competent schemes to derive relative comparisons.

6.1 Preprocessing and feature extraction results

The quality features of an MR image is dependent on the quality of input image. To enhance
the original MR images CLAHE is utilized, which relies on the proper setting of its param-
eters. In the present case, the original MR image is divided into 64 contextual regions. The
number of bins and the clip limit (β) are set as 256 and 0.01 respectively. It may be noted
that uniform distribution scheme is selected for each region to obtain a flat histogram shape.
The representative enhanced images corresponding to four original MR images are shown in
Fig. 5. The affected regions in the enhanced images are more clear compared to the original
images.

O-DR2T is applied to each of the preprocessed images and the features are extracted as
the transform coefficients of O-DR2T. In this case, the number of levels in 2D DWT is set
as 2 with Haar wavelet as the basis. As the images are of size 256 × 256, therefore the total
number of features extracted from a single image are 256 ∗ 256 = 65536 which is huge in
size.
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Fig. 5 Preprocessing using CLAHE. Row 1 lists the original MR samples. Row 2 lists the corresponding
contrast enhancement using CLAHE

6.2 Feature reduction results

In order to attain better performance and make the classifier’s job easier, the high dimen-
sional O-DR2T features (65536 features) are reduced using PCA+LDA. The number of
significant features is obtained based on the NCSV values of different features. It has
been observed that PCA preserves maximum information with more features, however,
PCA+LDA, requires relatively less number of features. In particular, setting the threshold
value for NCSV as 0.95, two features are considered from PCA+LDA and 15 features are
considered from PCA separately. Additionally, the classification accuracy with respect to
the number of features for both PCA and PCA+LDA on three datasets are shown in Fig. 6.
From the figures, it is clear that PCA with 15 features and PCA+LDA with two features
are providing higher results on all the three datasets. Therefore, it can be concluded that
PCA+LDA approach is more suitable than only PCA.

6.3 Classification results

For classification of MR images as healthy or pathological, we employ a combined learning
algorithm called IJaya-ELM for SLFN. In this section, first we have compared the per-
formance of the proposed IJaya-ELM with other learning algorithms, namely, Jaya-ELM,
GA-ELM, PSO-ELM, adaptive PSO-ELM (APSO-ELM), E-ELM, ELM and BPNN. The
basic PSO-ELM along with a time varying inertia weight parameter is referred to as APSO-
ELM. In IJaya-ELM, we use sigmoidal function as the activation function and normalize
all the inputs to the network into the range [-1,1]. It may be noted that the population
size and the maximum number of iterations for IJaya-ELM, Jaya-ELM, GA-ELM, PSO-
ELM, APSO-ELM, and E-ELM algorithm is kept same i.e., 20 and 30 respectively. The
ε value in IJaya-ELM is experimentally determined as 0.05. The parameters involved in
different algorithms are experimentally determined and their values are listed below. In
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Fig. 6 Classification accuracy with respect to number of features for three datasets

case of PSO-ELM, the value of acceleration coefficients c1 and c2 are set as 2, while in
E-ELM, the crossover rate (CR) and scaling factor (F ) are set as 0.9 and 0.8 respectively.
In APSO-ELM, the initial and final inertia parameters ω1 and ω2 are chosen as 0.4 and 0.9
respectively. For GA-ELM, we select the crossover rate and mutation rate as 0.7 and 0.1
respectively.

Table 2 Performance comparison of different classifiers on DS-66

Classifiers ACC (%) Hidden neurons (nh) Norm Condition number (K2)

BPNN 100.00 4 − −
ELM 100.00 5 42.4354 3.5919e+03

GA-ELM 100.00 3 32.7753 120.6437

E-ELM 100.00 3 22.3902 54.6665

PSO-ELM 99.70 3 30.3307 82.0004

APSO-ELM 100.00 3 20.7755 49.3035

Jaya-ELM 99.85 3 24.2312 62.5218

IJaya-ELM 100.00 3 16.7405 31.4217

Our proposed schemes are highlighted in bold
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Table 3 Performance comparison of different classifiers on DS-160

Classifiers ACC (%) Hidden neurons (nh) Norm Condition number (K2)

BPNN 99.88 5 − −
ELM 99.94 6 89.1218 5.1528e+03

GA-ELM 99.88 3 27.7148 118.4492

E-ELM 100.00 3 12.9528 56.0894

PSO-ELM 100.00 3 17.2419 81.2390

APSO-ELM 100.00 3 14.2694 57.1167

Jaya-ELM 100.00 3 14.4950 63.1756

IJaya-ELM 100.00 3 11.7418 44.3138

Our proposed schemes are highlighted in bold

The performance of IJaya-ELM, Jaya-ELM, GA-PSO, PSO-ELM, APSO-ELM, E-ELM,
ELM and BPNN on three benchmark datasets are reported in Tables 2, 3 and 4. From
the tables, it is seen that IJaya-ELM obtains higher accuracy than others with less hidden
neurons on all the datasets. Jaya-ELM achieves ideal accuracy on DS-160, while it earns
smaller accuracy than IJaya-ELM on DS-66 and DS-255. Further, E-ELM earns better per-
formance compared to others except IJaya-ELM and APSO-ELM outperforms PSO-ELM.
It can also be seen that standard ELM demands more hidden neurons than other algorithms.
Furthermore, it is observed that the condition value of the matrix H obtained by IJaya-ELM
algorithm is smaller compared to others on all the datasets. The norm value of IJaya-ELM
is also found to be less than others and therefore, it can have better generalization perfor-
mance than traditional ELM and its variants. It is proved that the smaller norm value of wo

results in a smaller condition value of matrix H. Further, among Jaya-ELM and IJaya-ELM,
IJaya-ELM obtains smaller condition and norm values, and higher accuracy. Therefore, it
can be concluded that the proposed algorithm (IJaya-ELM) can achieve better generaliza-
tion performance with compact networks than others. The results reported in the tables are
the average values of 50 trials.

Moreover, to demonstrate the effectiveness of the proposed IJaya-ELM algorithm with
two features, accuracy comparison has been made with k-NN, random forest (RF), and SVM
classifier along with BPNN, ELM, and Jaya-ELM on all the three datasets and the results
are shown in Fig. 7. For DS-66, the accuracies earned by k-NN, BPNN, RF, SVM, ELM

Table 4 Performance comparison of different classifiers on DS-255

Classifiers ACC (%) Hidden neurons (nh) Norm Condition number (K2)

BPNN 99.29 5 − −
ELM 99.37 6 102.6683 4.0175e+03

GA-ELM 99.53 3 26.0816 137.5234

E-ELM 99.65 3 15.6426 74.2324

PSO-ELM 99.57 3 24.9681 113.3067

APSO-ELM 99.65 3 19.4705 98.0824

Jaya-ELM 99.61 3 18.3876 78.2147

IJaya-ELM 99.69 3 12.8941 54.0704

Our proposed schemes are highlighted in bold
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Fig. 7 Classification accuracy achieved by different classifiers on three standard datasets

and Jaya-ELM are 98.94%, 100.00%, 99.39%, 100.00%, 100.00%, and 99.85% respec-
tively. The accuracies obtained by k-NN, BPNN, RF, SVM, ELM and Jaya-ELM for DS-160
are 99.44%, 99.88%, 99.56%, 99.88%, 99.94% and 100.00%, respectively; while they are
98.88%, 99.29%, 99.02%, 99.33%, 99.37%, and 99.61% respectively for DS-255. From
these results, it can be concluded that IJaya-ELM earns ideal classification on DS-66 and
DS-160 datasets and an accuracy of 99.69% on DS-255 dataset which is superior to all
other classifiers. Therefore, the proposed learning algorithm is found to be the most suitable
algorithm among all other learning algorithms.

Table 5 lists the correctly classified samples and the corresponding accuracies obtained
by O-DR2T+ PCA+LDA + IJaya-ELM on DS-255 during each trial of a 10 × K-fold SCV
process. The results in the table indicate that the proposed scheme can correctly classify
2542 samples out of 2550 samples (2200 pathological and 350 healthy samples). Further,
among 2200 pathological samples, 2195 are correctly classified by our scheme and the
rest five samples are misclassified to healthy class. While among 350 healthy samples, 347
samples are correctly classified by our scheme and rest three samples are misclassified to
pathological class. Considering these results, the sensitivity (Se), specificity (Sp), and pre-
cision values (Pr) of the proposed scheme are computed as 99.77%, 99.14%, and 99.86%,
respectively which are listed in Table 6.
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Table 5 10 × 5-fold SCV result of O-DR2T + PCA+LDA + IJaya-ELM method on DS-255

Run Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Total

1 51 (100.00) 51 (100.00) 51 (100.00) 50 (98.04) 50 (98.04) 253 (99.22)

2 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 255 (100.00)

3 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 255 (100.00)

4 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 255 (100.00)

5 50 (98.04) 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 254 (99.61)

6 51 (100.00) 51 (100.00) 51 (100.00) 50 (98.04) 51 (100.00) 254 (99.61)

7 51 (100.00) 51 (100.00) 50 (98.04) 51 (100.00) 51 (100.00) 254 (99.61)

8 50 (98.04) 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 254 (99.61)

9 51 (100.00) 51 (100.00) 51 (100.00) 51 (100.00) 50 (98.04) 254 (99.61)

10 51 (100.00) 51 (100.00) 50 (98.04) 51 (100.00) 51 (100.00) 254 (99.61)

Sum 2542

Average 254.2 (99.69)

To compare the efficacy of PCA+LDA over PCA, another experiment has been carried
out on all the three datasets. The performance of both the schemes, namely, O-DR2T+ PCA
+ IJaya-ELM and O-DR2T+ PCA+LDA + IJaya-ELM are shown in Table 6. It may be
noticed that the proposed O-DR2T+ PCA+LDA + IJaya-ELM scheme earns better perfor-
mances than O-DR2T+ PCA + IJaya-ELM on all the datasets with relatively less number of
features. Moreover, O-DR2T+ PCA + IJaya-ELM obtains slightly lesser sensitivity, speci-
ficity and precision values than O-DR2T+ PCA+LDA + IJaya-ELM. However, the higher
the sensitivity value of a CAD system, the better is the performance of the CAD system.
Therefore, the proposed O-DR2T+ PCA+LDA + IJaya-ELM scheme holds greater potential
in making correct clinical decisions.

Table 6 Classification performances (%) of the proposed schemes based on PCA and PCA+LDA over three
datasets

Dataset Schemes O-DR2T+PCA+IJaya-ELM O-DR2T + PCA+LDA + IJaya-ELM

No. of features 15 2

DS-66 Se 100.00 100.00

Sp 100.00 100.00

Pr 100.00 100.00

ACC 100.00 100.00

DS-160 Se 99.64 100.00

Sp 99.00 100.00

Pr 99.86 100.00

ACC 99.56 100.00

DS-255 Se 99.50 99.77

Sp 98.29 99.14

Pr 99.73 99.86

ACC 99.33 99.69
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Table 7 Classification accuracy (%) comparison of the proposed method with wavelet based method

Schemes No. of features DS-66 DS-160 DS-255

DWT + PCA + IJaya-ELM 15 100.00 99.38 99.17

DWT + PCA+LDA + IJaya-ELM 2 100.00 99.94 99.41

O-DR2T + PCA+LDA + IJaya-ELM 2 100.00 100.00 99.69

Our proposed scheme is highlighted in bold

Further, in order to support the effectiveness of O-DR2T features over DWT features, we
have conducted an experiment where DWT features are used in place of O-DR2T features
and record the results with the same number of features as shown in Table 7. It may be seen
that the proposed scheme achieves better performance than DWT based schemes on all the
datasets. Here, the DWT features are extracted from all the sub-bands of 3-level decompo-
sition. Additionally, the DWT features used in literature [10, 27, 53] are also tested which
results in smaller accuracy than the proposed scheme. Finally, it is concluded that with O-
DR2T features the proposed scheme brings potential improvements in the performance of
the PBDS system.

6.4 Comparison with other PBDSs

An extensive comparison with twenty-two existing competent PBDSs has been made on
three datasets in the context of feature size, run size, and the classification accuracy as given
in Table 8. It can be seen that a large number of the PBDSs yield perfect classification on
DS-66, but merely two schemes, such as RT + PCA + LS-SVM [8] and DWPT + TE +
GEPSVM [52] offer ideal classification on DS-160. It can also be noticed that no existing
PBDSs can achieve perfect classification, but the suggested system earns higher classifi-
cation accuracy i.e., 99.69% than others with a minimum number of features. Though the
improvement in accuracy is marginal and comparable with some of the existing schemes,
the result is obtained over a number of runs of a K-fold SCV procedure. This reflects the
improvement in proposed scheme to be robust and reliable. The use of IJaya-ELM in the
proposed scheme leads to have better generalization performance and faster response on
unknown testing data.

From the experimental results, it is clear that the suggested scheme yields superior per-
formance in the context of classification accuracy and number of features used compared
to other existing schemes over all the three datasets. The proposed system employs O-
DR2T, and IJaya-ELM which possesses several advantages. O-DR2T helps in capturing
edge and texture features effectively from MR images. IJaya-ELM obtains compact net-
work structure, faster learning speed and better generalization performance in contrast to
other traditional learning algorithms that are frequently employed in existing PBDSs. These
methods collectively increase the strength of the system. However, the proposed system has
the following loopholes. The proposed system has been validated on three available datasets
which accommodate images from patients during the late and middle stages of diseases, but
a larger dataset with images from all stages of diseases can be tested in order to achieve
better generalization performance. The current work deals with solving a two-class classifi-
cation problem, however solving a multi-class brain disease classification problem is highly
in demand.
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Table 8 Comparative analysis with other competent PBDSs on three standard datasets

Existing PBDSs Feature size Run ACC (%)

DS-66 DS-160 DS-255

DWT + SVM + POLY [5] 4761 5 98.00 97.15 96.37

DWT + PCA + BPNN + SCG [53] 19 5 100.00 98.29 97.14

DWT + PCA + FNN + SCABC [61] 19 5 100.00 98.93 97.81

DWT + PCA + FNN + ACPSO [59] 19 5 100.00 98.75 97.38

DWT + PCA + KSVM [60] 19 5 100.00 99.38 98.82

DWPT + SE + GEPSVM [52] 16 10 99.85 99.62 98.78

DWPT + TE + GEPSVM [52] 16 10 100.00 100.00 99.33

WPTE + FNN + RCBBO [38] 16 10 100.00 100.00 99.49

WE + HMI + GEPSVM [58] 14 10 100.00 99.56 98.63

DWT + PCA + ADBRF [27] 13 10 100.00 99.18 98.35

FRFE + WTT + TSVM [43] 12 10 100.00 99.69 98.98

DTCWT + VE + GEPSVM [39] 12 10 100.00 99.75 99.25

FRFE + WTT + DP-MLP + ARCBBO [55] 12 10 100.00 99.19 98.24

RT + PCA + LS-SVM [8] 9 5 100.00 100.00 99.39

DWT + PCA + k-NN [11] 7 5 98.00 97.54 96.79

FPCNN + DWT + PCA + FNN [10] 7 10 100.00 98.88 98.43

SWT + PCA + IABAP-FNN [42] 7 10 100.00 99.44 99.18

SWT + PCA + ABC-SPSO-FNN [42] 7 10 100.00 99.75 99.02

SWT + PCA + GEPSVM [51] 7 10 100.00 99.62 99.02

WE + NBC [67] 7 10 92.58 91.87 90.51

DWT + PCA + LDA + RF [25] 7 10 100.00 99.75 99.14

MBD + SLFN + PSO-TTC [63] 5 10 100.00 98.19 98.08

O-DR2T + PCA + IJaya-ELM 15 10 100.00 99.56 99.33

O-DR2T + PCA+LDA + IJaya-ELM 2 10 100.00 100.00 99.69

(Proposed)

Our proposed schemes are highlighted in bold

7 Conclusions and future work

In this paper, an attempt has been made to develop an efficient pathological brain detec-
tion system. The proposed scheme initially uses O-DR2T to extract the features from the
enhanced brain MR images. Subsequently, a PCA+LDA approach has been employed to
reduce the feature dimensionality. Finally, a novel learning algorithm called IJaya-ELM is
proposed to train the SLFN. The proposed scheme inherits the advantages of O-DR2T and
ELM for detection of pathological brain in MR images. The experimental results on three
standard datasets demonstrate that the proposed scheme yields higher accuracy than other
competent schemes with a minimum number of features. Moreover, it has been shown that
the proposed IJaya-ELM leaning algorithm holds several advantages over other learning
algorithms.

The proposed IJaya-ELM can be applied to regression problems as well as multi-label
classification problems. Other advanced machine learning techniques such as dictionary
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learning and deep learning could be investigated as potential alternatives to the proposed
IJaya-ELM in future. However, our proposed system has following limitations. The pro-
posed PBDS has been validated on small datasets, however, a larger dataset collected online
will further prove its effectiveness. Further, the images in the chosen datasets are collected
from the late and middle stage of the diseases, images collected during the all stages need
to be validated. In future, interactive machine learning (iML) algorithms [15–17] can also
be studied to overcome the issues of automatic machine learning algorithms.
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