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Abstract Previous spectral feature selection methods generate the similarity graph via
ignoring the negative effect of noise and redundancy of the original feature space, and
ignoring the association between graph matrix learning and feature selection, so that easily
producing suboptimal results. To address these issues, this paper joints graph learning and
feature selection in a framework to obtain optimal selected performance. More specifically,
we use the least square loss function and an �2,1-norm regularization to remove the effect
of noisy and redundancy features, and use the resulting local correlations among the fea-
tures to dynamically learn a graph matrix from a low-dimensional space of original data.
Experimental results on real data sets show that our method outperforms the state-of-the-art
feature selection methods for classification tasks.

Keywords Graph learning · Optimization · Spectral feature selection

1 Introduction

With the development of science and technology, big data have appeared in various fields,
such as knowledge discovery and pattern recognition, and cause a surge of the size of the
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database in either the samples or the dimensions of features. The issue of a large num-
ber of samples can be handled by sampling methods or others [4, 13, 22, 43, 49, 52].
Moreover, the advanced techniques still are desired to remove harmful effect of redundant
and noisy features in high-dimensional data, with the expectation of accelerating execu-
tion time, reducing the storage cost, and enhancing the performance of learning models.
As a consequence, dimensional reduction is a widely used way that aims to reduce the
number of the features through removing uninformative features of high-dimensional data
[16, 36, 41, 48, 50, 53].

Dimensionality reduction techniques can be divided into two categories, i.e., feature
selection [14, 20, 40] and subspace learning [9, 10, 19, 38]. Feature selection methods
remaining important features from the original feature space can output interpretable mod-
els. Subspace learning methods projecting the original feature space into a new subspace
outputs the robust models of dimensionality reduction [44]. Spectral feature selection meth-
ods construct a framework which includes feature selection and subspace learning to obtain
the interpretable and robust models, and then has been drawing a lot of attention in machine
learning and data mining [24, 30].

Recently, a large number of spectral feature selection methods have been proposed [34,
35, 45, 51, 54, 55]. Cai et al. first conducts eigenvalue decomposition on the graph matrix
constructing from original data to obtain the graph representation of the data, and then cal-
culates the minimal error between the derived graph representation and the original data
[2]. Gu et al. [5] and Shi et al. [25] first construct the graph matrix by the neighbor rela-
tionship among the data points, followed by selecting the useful features through the sparse
regression model to find the importance feature.

It has been shown that the local structure may achieve better performance than the
global structure [8]. Thus many spectral feature selection methods discovering the optimal
local structure have been proposed [17, 23]. Previous spectral feature selection meth-
ods have two separated steps. Specifically, the first step is to explore the local structure
to construct the graph matrix, while the second step is to select the important features
by a sparse regression. However, there are at least two main issues in previous meth-
ods. Firstly, traditional spectral feature selection methods usually obtain the graph matrix
on the original high-dimensional space which usually outputs an unsatisfactory neighbor
relationship. Secondly, previous spectral feature selection methods select the features and
build the graph matrix separately. In this way, the graph matrix is obtained from origi-
nal data and remains unchanged for succeeding processes. However, the redundancy and
noisy of original data may make the graph matrix low-quality. The low-quality graph
matrix will preserve the imperfect local structure, and ultimately can not output optimal
result.

In this paper, we propose a new spectral feature selection model to jointly learns the
dynamical graph and sparse feature selection to select the important features from the
optimal subspace of the high-dimensional original data. To do this, our method takes the
dynamic neighborhood correlation among the samples into account to preserve optimum
local structures of the data. This aims at getting a robust spectral feature selection model.
More specifically, we obtain the feature weight matrix by a least square regression between
original data and its labels, with a least square loss function, and use an �2,1-norm regular-
ization to penalize the weight matrix. We also push an orthogonal constraint on the weight
matrix to improve the accuracy for feature selection vis conducting subspace learning. We
further propose to build the dynamic graph matrix, i.e., dynamically capturing the nearest
neighbor relationship among data points. Moreover, we integrate the least square regres-
sion, the �2,1-norm regularization, the dynamic graph matrix learning, and the orthogonal
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constraint in a unified framework. As a result, the redundancy and noisy could be removed
from original data, which should reduce the influence of constructed graph matrix. The
proposed spectral feature selection model can easily select the important features because
of contain an interpretable and robust low-dimensional subspace.

By comparing previous spectral feature selection methods, we list the main contributions
of our proposed method as follow:

– Our proposed method performs the sparse regression and the dynamic graph learning
simultaneously. In this way the feature weight matrix deriving from the regression can
remove the effect of redundancy and noisy to learn more a reliable similarity matrix.
Meanwhile, reliable graph matrix can improve the performance of the sparse regres-
sion. As a consequence, our proposed method learns the optimal local structure of the
low-dimensional data through an alternative optimization method to ultimately select
important features.

– Our proposed method proposes a reasonable constraint, where the feature weight matrix
derived by local structure and the sparse regression can be more accurate while using
the orthogonal constraint to constrain feature weight matrix.

2 Related work

Subspace learning methods project high-dimensional data into its low-dimensional space to
reduce the dimensionality of the high-dimensional data. Popular subspace learning methods
include linear projected (such as Principal Component Analysis(PCA) [32] and Locality
Preserving Projection(LPP)) and nonlinear projected (such as kernel LDA [37] and kernel
CCA [47]). Feature selection methods tend to find a subset of the features that best express
the samples from original features.

In this section, we first review recent studies of feature selection methods and then
provide a brief analysis to previous spectral feature selection methods.

2.1 Feature selection

Feature selection is widely applied in real applications because of its interpretable abil-
ity [33, 35, 39, 42, 46]. We may partition previous feature selection into three subgroups,
i.e., filter methods, wrapper methods, and embedded methods. Filter methods [6, 12, 21]
which are independent on the learning models use proxy measures to rank the features
and select valuable features. Wrapper methods [7, 11] search a best subset of feature
guided by the performance of a given blearing model, so that achieving better feature
selection results but higher computational cost than filter methods. Embedded meth-
ods [18, 28] are different from previous two kinds of feature selection methods, via
integrating the process of feature selection into the learning models, and thus achiev-
ing the effect of improving the performance and reducing the computational cost. In
particular, the sparsity regularization based embedded feature selection methods may
achieve outstanding feature selection performance. More specifically, the s�1-norm reg-
ularization is widely applied in different feature selection models such as LASSO [27]
and sparse SVM [15], aiming at preventing the issue of over-fitting and achieving the
sparse results. On the other hand, the �2,1-norm regularization further enhances the
capability of the sparsity and have been applied in multi-task learning or multi-class
learning [16].
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2.2 Spectral feature selection

The spectral feature selection methods are usually constituted by two main parts, i.e., graph
matrix learning and sparse feature selection, respectively. According to the patterns of the
graph matrix learning, we divide the previous spectral feature selection methods into two
categorizes, i.e., fixed learning methods and dynamic learning methods, respectively.

Fixed learning methods construct the graph matrix learning from original data firstly, and
then use a sparsity regularization to conduct sparse feature selection. For example, Unsu-
pervised Feature Selection for Multi-Cluster Data (MCFS) method [2] and Joint Feature
Selection and Subspace Learning (FSSL) method [5] use the �1-norm regularization and the
�2,1-norm regularization, respectively, to conduct spectral feature learning via first learn-
ing the graph matrix and then using the sparse feature selection framework. MCFS method
utilizes group sparsity i.e., the �2,1-norm regularization, to consider the global correlation
among the data, and thus has better performance than FSSL. Other fixed learning meth-
ods integrate the graph matrix learning into the feature selection to improve the reliable of
feature weight matrix. For example, the Robust Spectral Learning for Unsupervised Fea-
ture Selection (RSLUFS) method utilizes the local kernel regression as predictor to capture
the structure of the data [24]. The Non-Negative Spectral Learning and Sparse Regression-
Based Dual-Graph Reguarized Feature Selection (NSSRD) method utilizes the Gaussian
function to structure dual-graph from data space and feature space [23].

Dynamic learning methods learn graph matrix highly depending on the feature weight
matrix, which is obtained from the low-dimensional space of high-dimensional data, so that
they obtain the optimal solution by iteratively update the graph matrix and feature weight
matrix. For example, the Structured Optimal Graph Feature Selection (SOGFS) method [18]
utilizes dynamic graph learning to capture the neighbor relationship and uses �2,1-norm
regularization to penalize the projection matrix.

3 Methodology

In this section, we first list notations and definition of norms used in this paper in
Section 3.1, and then the detail of our method is described in Sections 3.2 and 3.3. Finally,
the optimization problem of the proposed method is elaborated in Sections 3.4 and 3.5.

3.1 Notations

In this paper, we use boldface uppercase letters, boldface lowercase letters, and normal italic
letters, respectively, to denote matrices, vectors, and scalars. We denote X = {xi}ni=1 ∈
R

n×d as the feature matrix of the samples, where i-th row and j-th column of X are denoted

as xi and xj , respectively. The Frobenius norm of X is denoted as ||X||F =
√∑

ij |xij |2 and
the �2,1-norm of X is denoted as ||X||2,1 = ∑

i

√∑
ij xij

2 Furthermore, we denote tr(X) as

the trace of X, XT as the transpose of X and X−1 as the inverse of X, respectively.

3.2 Dynamic graph learning

The previous literature has shown that the graph matrix learning can capture geometri-
cal information of the samples to enhance the performance of dimensionality reduction.
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Nevertheless, the redundancy and noise from samples or features can make the graph matrix
unreliable and inaccurate. Thus, in this paper, we utilize the model of dynamic graph learn-
ing to preserve the optimal local structure. Given a data matrixX, the similarity graph matrix
S is initialized as follows:

sij =
⎧
⎨
⎩

f (xi, xj )
if xi ∈ N(xj )

or xj ∈ N(xi)

0 otherwise
(1)

where N(x) represents the k-nearest neighbors set of sample x. If the i-th sample xi is
contained in k-nearest neighbors set of sample xj , then the value of Sij (i.e., the element of

matrix S) is determined by the heat kernel (i.e., f (xi, xj ) = exp(−||xi−xj ||22
2σ 2 ), where σ is a

tuning parameter), otherwise sij = 0. According to the common sense, closer data points on
the sample space have greater similarity, thus Sij can be revised by the square of Euclidean
distance between xi and xj (i.e., ||xi − xj ||22). Therefore, obtain the determing value of Sij

from original data space can be seen as solving:

min
S

∑n

i,j
||xi − xj ||22sij (2)

Although (2) learns a fixed graph matrix S from the high-dimensional space of original
data to preserves the local structure of data, but it ignores the negative effect from redun-
dancy and noisy. If original data contain noisy and redundancy (it always true in real world
data), the graph matrix which learn from original data will become unreliable and inaccu-
rate. Moreover, the quality of S has been proved very sensitive to the tuning parameter σ .
This led us to learn the graph matrix from low-dimensional space (it contained the possibil-
ity of redundancy and noisy is small) and to decrease the dependency on parameters (i.e.,
reduce the number of tuning parameters). To address this, we utilize a weight matrix project
the original data into its low-dimensional space and learn the graph matrix by iteratively
optimization instead of using the heat kernel function, which depend the tuning parameter
σ . We rewrite (2) as follows:

min
S,W

∑n

i,j

(
||xiW − xjW||22sij + α||si ||22

)
,

s.t., ∀i, sT
i 1 = 1, si,i = 0,

si,j ≥ 0 if i ∈ N(j), otherwise 0 (3)

where α is a regularization parameter, the �2-norm of si (i.e., ||si ||22) is used to avoid the
trivial solution and add add a prior of uniform distribution, 1 represent a vector of all-one-
element. By solving problem (3), the reliable graph matrix will be learning, thus obtained
the information of local structure is more accurate.

3.3 Dynamic graph learning for feature selection

Let the Y = {yi}ni=1 ∈ R
n×c as the response matrix, where represents the label i-th sample.

Motivated by the generally used supervised learning method, we utilize the regression
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to fit each sample to its label and adding a regularization, thus have the following sparse
regression model:

min
W

β||Y − XW||ρ∗ + γ ||W||ω∗ (4)

where W = [w1, w2, . . . , wd ] ∈ R
d×c is the feature weight matrix. Although there are

many different case to choose ρ∗ and ω∗, in this paper, we select || · ||2F as ρ∗ and || · ||2,1 as
ω∗, respectively. The reason is that the F-norm regularization has steady fitting performance
and the �2,1-norm regularization may conduct the row sparsity. In particular, ||W||2,1 can
be eaily optimized. The sparse regression model is rewritten as follow:

min
W

β||Y − XW||2F + γ ||W||2,1 (5)

When graph matrix learning and sparse feature selection are jointly performed, the fea-
ture weight matrix will affect the graph matrix. This is, the feature weight matrix not only
select the important feature, but also conduct the graph matrix learning. We combine the
objective function (3) with (5) as:

min
S,W

∑n

i,j
||xiW − xjW||22sij + α||S||2F

+β||Y − XW||2F + γ ||W||2,1
s.t., ∀i, sT

i 1 = 1, si,i = 0,

si,j ≥ 0 if i ∈ N(j), otherwise 0 (6)

In feature selection tasks, PCA method can not be used as high-dimensional data prepro-
cessing. Therefore, we use the constraint WT W = I to promote the performance of feature
selection [18]. Our final objective function as follows:

min
S,W

∑n

i,j
||xiW − xjW||22sij + α||S||2F

+β||Y − XW||2F + γ ||W||2,1
s.t., ∀i, sT

i 1 = 1, si,i = 0, si,j ≥ 0 if i ∈ N(j)

otherwise 0,WT W = I (7)

Equation (7) iteratively updates the graph matrix S and the feature weight matrix until
achieve their individually optimal result. In this way, the optimal local structure can be
preserved by iteratively updated graph matrix, and obtain excellent performance in feature
selection model ultimately. As a consequence, given the optimal W, we sort the value of
||wi ||2, i = 1, 2, . . . , d in descending order, and we are based on the top r ranked �2-norm
values to select top r features as the final result of our proposed method.

3.4 Optimization

In this paper, we employ the alternative optimization strategy that fixed a variable while
iteratively optimizing the others until the algorithm converges. We list the pseudo code in
Algorithm 1.

1). Update S by fixed W
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The fixed W can be seen as constant, (7) becomes:

min
S,W

∑n

i,j
||xiW − xjW||22sij + α

∑n

i,j
s2i,j

s.t., ∀i, sT
i 1 = 1, si,i = 0,

si,j ≥ 0 if i ∈ N(j), otherwise 0 (8)

For easy the optimization (8), we optimize each vector si , i = 1, . . . , n, inden-
pendently instead of the optimization of S, the optimization problem be changed as
follows:

min
sT
i 1=1,si,i=0,si,j ≥0

∑n

i,j

(
||xiW − xjW||22si,j + αs2i,j

)
(9)

We calculate the Euclidean distance between all samples to yield k-nearest neigh-
bors, and then set the values of si,j by optimizing (9) if the j-th sample is one of nearest
neighbors of the i-th sample, otherwise, the value of si,j is 0. By denoting G ∈ R

n×n,
where gi = ∑n

j ||xiW − xjW||22, we rewrite (9) as follows:

min
sT
i 1=1,si,i=0,si,j ≥0

∑n

i

∣∣∣∣
∣∣∣∣si + 1

2α
gi

∣∣∣∣
∣∣∣∣
2

2
(10)

The Lagranian function of (10) is:

min
si ,λ,υ

∣∣∣∣
∣∣∣∣si + 1

2α
gi

∣∣∣∣
∣∣∣∣
2

2
− λ

(
sT
i 1 − 1

)
− υT si (11)

where λ and υ are the Lagrangian multipliers. The optimal solution of si yield by the
Karush-Kuhn-Tucker (KKT) conditions [1] is:

si,j =
(

− 1

2α
gi,j + λ

)

+
(12)

2). UpdataW by fixed S
By fixed S, we have the following objective function:

min
S,W

∑n

i,j
||xiW − xjW||22sij

+β||Y − XW||2F + γ ||W||2,1
s.t.,WT W = I (13)

The optimization of (13) on W is nonsmooth but convex due to the regularization term
||W||2,1. Thus we employ the the Iteratively Reweighted Least Square (IRLS) [3] to opti-
mize (13) on the variable W, iteratively optimizing W until (13) converges. We change (9)
as:

min
W

tr(WT XT LXW)

+β||Y − XW||2F + γ tr(WT QW)

s.t.WT W = I (14)
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where L is a Laplacian matrix and P is a diagonal matrix which i-th element pii =∑n
j=1si,j . Q ∈ R

d×d is diagonal matrix with its i-th element define as:

qii = 1

2||wi ||22
, i = 1, . . . , d (15)

where wi is the i-th row of W. Equation (14) contain an orthogonal constraint, we use [31]
to solve it and list the pseudo code of the optimization algorithm of W in Algorithm 2,
where the derivative of (10) is ∇F = XT LXW + β(XT XW − XT Y) + γQW.

3.5 Convergence analysis, complexity, and parameters’ determination

3.5.1 Proof of convergence

Wen and Yin [31] proved the convergence of Algorithm 2. Thus, we prove the convergence
of Algorithm 1. We have the following Lemma:

Lemma 1 The inequality √
u − u

2
√

v
≤ √

v − u

2
√

v
(16)

is always hold for all positive real numbers of u and v, according to the literatures [31].

Theorem 1 The objective function value of (7) monotonically decreases until Algorithm 1
converges.
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Proof After the t-th iteration, we have obtained the current optimal W(t) and S(t). In the
(t + 1)-th iteration, we fixW(t) to optimize S(t). According to (12), we know that s(t+1)

i,j has
global solution for all i, j = 1, ..., n. Thus we have the inequality as follows:

∑n

i,j
||xiW(t) − xjW(t)||22s(t+1)

i,j

+α
∑n

i
||s(t+1)

i ||22 + β||Y − XW(t)||2F
+γ ||W(t)||2,1
≤

∑n

i,j
||xiW(t) − xjW(t)||22s(t)

i,j

+α
∑n

i
||s(t)

i ||22 + β||Y − XW(t)||2F
+γ ||W(t)||2,1 (17)

When update W(t+1) by fixing S(t+1), we get the following inequality according to
Theorem 1:

∑n

i,j
||xiW(t+1) − xjW(t+1)||22s(t+1)

i,j

+α
∑n

i
||s(t+1)

i ||22 + β||Y − XW(t+1)||2F
+γ ||W(t+1)||2,1
≤

∑n

i,j
||xiW(t) − xjW(t)||22s(t+1)

i,j

+α
∑n

i
||s(t+1)

i ||22 + β||Y − XW(t)||2F
+γ ||W(t)||2,1 (18)

Through the integration of (17) and (18), we obtain:
∑n

i,j
||xiW(t+1) − xjW(t+1)||22s(t+1)

i,j

+α
∑n

i
||s(t+1)

i ||22 + β||Y − XW(t+1)||2F
+γ ||W(t+1)||2,1
≤

∑n

i,j
||xiW(t) − xjW(t)||22s(t)

i,j

+α
∑n

i
||s(t)

i ||22 + β||Y − XW(t)||2F
+γ ||W(t)||2,1 (19)

According the (19), we can see that the objective function values of (7) are reduced after
each iteration of the Algorithm 1. Thus, Theorem 1 has been proved.

3.5.2 Complexity analysis

In each iteration, the time cost of Algorithm 1 focuses on the computation cost ofXT LXW+
β(XT XW − XT Y) + γQW in Algorithm 2 and fi,j in (12), and their corresponding com-
plexity are O(n2d) and O(nd2), where n, d, respectively, are the number of the data points
and the features. In our experiments, our method usually converges within 30 iterations, so
the time complexity of Algorithm is max {O(n2d), O(nd2)}.
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3.5.3 Parameters’ determination

The size of value of the parameter α determines the number of nearest neighbors of samples.
Specifically, α = 0 means the number of nearest neighbors k is 1. α → ∞ means the
number of nearest neighbors k is n (n is the number of samples). Without loss of generality,
we suppose gi = {gi,1, ..., gi,n} as a ascending order of gi , i = 1, ..., n, according to (12)
we know sik > 0 and si,k+1 = 0. Therefore, we have

⎧
⎨
⎩

− 1
2α gi,k+1 + λ ≤ 0

− 1
2α gi,k + λ > 0

(20)

Based on the constraint sT
i 1 = 1, we have

∑k

j=1

(
− 1

2α
gi,j + λ

)
= 1

⇒ λ = 1

k
+ 1

2kα

∑k

j=1
gi,j (21)

Combining (20) and (21), we have the following inequality:

k

2
gi,k − 1

2

∑k

j=1
gi,j < α <

k

2
gi,k+1 − 1

2

∑k

j=1
gi,j (22)

In order to obtain an optimal solution si which has k nonzero elements, we set α as:

αi = k

2
gi,k+1 − 1

2

∑k

j=1
gi,j (23)

The mean of α1, ..., αn could be set as final α. We have

α = 1

n

∑n

i=1

(
k

2
gi,k+1 − 1

2

∑k

j=1
gi,j

)
(24)

After fixing α, the parameters k, β, γ in (7) still needs to tuning. In this paper, we follow
the literature [29] to determine the value of k, and employ a cross-validation method to
estimate other.

4 Experiments

In this section, we use the classification performance to evaluate our proposed method and
compare with five comparison methods on eight data sets.

4.1 Data sets

The data sets (such as Umist, Ecoli, Cane, and Isolet) and the data sets (such as Colon, Coil,
Orl) come from UCI Machine Learning Repository1 and the website of Feature Selection
Data sets.2 We use the data set Lung from [26]. The data sets of our used can be divided
into text data (Cane, Isolet), biological data (Colon, Ecoli, Lung) and image data (Coil, Orl,
Umist). The number of data features is greater than 343, where half of all data sets our used
(such asColon, Lung,Coil, Orl) exceed 1000 dimension. The detail of data sets is lised in Table 1.

1http://archive.ics.uci.edu/ml/.
2http://featureselection.asu.edu/datasets.php.
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Table 1 The summarization of
the used datasets Data sets #(Samples) #(Features) #(Classes)

Umist 575 644 20

Cane 1080 856 9

Colon 62 2000 2

Ecoli 336 343 8

Lung 203 3312 5

Isolet 1559 618 26

Coil 1440 1024 20

Orl 400 1024 40

4.2 Comparison methods and experimental setting

We list the detail of the comparison methods as follows:

– Baseline method uses all features to conduct classification tasks via SVM.
– Convex Semi-supervised multi-label Feature Selection (CSFS) use the least square

regression to select feature and employs an �2,1-norm to conduct row sparsity.
– �2,0-norm ALM (FSRobustALM) uses an �2,1-norm to deal with the minimization loss

problem and tackles the sparse problem with �2,0-norm constraint.
– Regularized Self-Representation (RSR) joints the feature-level self-representation loss

function and a �2,1-norm regularization to flitter the unimportant features.
– Robust Unsupervised Feature Selection (RUFS) uses local learning regularization to

learn pseudo cluster label and minimizes the fitting error both of feature learning and
label learning by employing an �2,1-norm regularization.

– Structured Optimal Graph Feature Selection (SOGFS) selects important features by
learn the local structure between the samples from low-dimensional feature space.

For avoided the generalization error on classifier, we compare all methods by used 10-
fold cross-validation. We repeated the whole process 10 times to avoid the possible bias
during data set partitioning for cross-validation. The final result was computed by averaging
results from all experiments. We conduct 5-fold cross-validation on the training data to
conduct model selection. That is, we further separated the training data into five parts, where
one of parts is used to validate the model built by the left four parts. In the validation step,
we search the best parameters’ combination by grid search method in the given ranges of
the parameters. The best parameters’ combination has best classification performance on
testing data. We set the value of k and β, γ as 15 and {10−3, ..., 103}, respectively.

In our experiments, we used the Average Classification Accuracy (ACA) as evaluation
metric to evaluate our method. We investigated the robustness of our proposed method based
on parameters’ sensitivity and convergence of Algorithm 1.

4.3 Experimental result

The ACA result of all methods is revealed in Fig. 1, where the horizontal axis represented
the dimension of feature of performing feature selection.

Obviously, compare with other method (such as SOGFS, RUFS, RSR, FSRobustALM,
CSFS and Baseline) our method achieved the best performance. For example, our proposed
method improved by 12.1% and 17.5%, respectively, compared to CSFS and RSR in data
set Lung. Moreover, other observations are as follows.
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Fig. 1 ACC of all methods on all data sets at different number of selected features

First, with the increase of features number, the classification performance of all feature
selection methods first increase to optimal and then start to fall. For example, while selec-
tion the 20% and 60% features of sample, the ACA result were about 83.7% and 88.6%,
respectively, but while keeping the features as 80% features of sample, the ACA went down
to 83.6% at the data set Colon. High-dimensional data which contain redundancy and noisy
may affected the classification performance, so conducted the feature selection is necessary.

Second, most of feature selection methods have outstanding performance than baseline,
which conduct classification by use all features, where our proposed method improved on
average by 15.2% compared to Baseline. This verified that feature selection is necessary to
deal with high-dimensional data again.

4.4 Parameters’ sensitivity

We set the range of the parameters β and γ as {10−3, 10−2, ..., 103}, and the result listed by
Fig. 2.
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Fig. 2 ACC result of our proposed method at different parameters’ setting
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Fig. 3 The convergence of our proposed Algorithm 1

From Fig. 2 we can see that our proposed method is sensitive to the parameters’ setting.
Namely, the best classification results rely on the suitable parameter combinations. Hence,
tuning the parameters is necessary to our method. More specifically, β is a control parameter
to tune the magnitude between the local structure learning

∑n
i,j ||xiW−xjW||22sij and least

square regression ||Y − XW||2F , while γ is used to adjust the sparsity term ||W||2,1. When
setting β = 10 and γ = 10, our method obtain the best performance on the data sets Colon
and Ecoli. However, for the data set Coil, our method achieve the best ACA 99.1% with
β = 100 and γ = 100.

4.5 Convergence of algorithm

Figure 3 illustrates the variation of the objective values of our proposed method (i.e., Algo-
rithm 1) associated with the increase of the iterations. In experiments, we set the stop criteria

as
||obj (t+1)−obj (t)||22

obj (t)
≤ 10−3 to both of Algorithms 1 and 2, where indicate the objective

function value of the t-th iteration on (7).
From Fig. 3 we can discover that 1) with iteration of Algorithm 1 the objective function

values are monotonically decreases until Algorithm 1 converges; 2) the proposed Algorithm
1 reach the convergence only needed few iterations (i.e., less than 20), which proof the effi-
cient of our method. Moreover, the Algorithm 2 of our proposed also achieves convergence
within 30 iterations at all data sets.

5 Conclusion

This paper has proposed a novel spectral feature selection method, which dynamic learning
graph matrix and selecting the features simultaneously, to obtain more reliable similarity
between the data, we use an orthogonal constraint onW to our method. Compared with the
other feature selection methods, the experimental results on real data sets demonstrated our
proposed method achieved the best performance.

In the future work, we will extend our proposed framework to conduct unsupervised
learning on the high-dimensional data since the missing label data sets are often found in
real world.
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