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Abstract In the domain of gynecologic surgery an increasing number of surgeries are
performed in a minimally invasive manner. These laparoscopic surgeries require specific
psychomotor skills of the operating surgeon, which are difficult to learn and teach. This
is the reason why an increasing number of surgeons promote checking video recordings
of laparoscopic surgeries for the occurrence of technical errors with surgical actions. This
manual surgical quality assessment (SQA) process, however, is very cumbersome and time-
consuming when carried out without any support from content-based video retrieval. In this
work we propose a video content descriptor called MIDD (Motion Intensity and Direction
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Descriptor) that can be effectively used to find similar segments in a laparoscopic video
database and thereby help surgeons to more quickly inspect other instances of a given error
scene. We evaluate the retrieval performance of MIDD with surgical actions from gyneco-
logic surgery in direct comparison to several other dynamic content descriptors. We show
that the MIDD descriptor significantly outperforms the state-of-the-art in terms of retrieval
performance as well as in terms of runtime performance. Additionally, we release the man-
ually created video dataset of 16 classes of surgical actions from medical laparoscopy to the
public, for further evaluations.

Keywords Video retrieval · Video descriptor · Surgical quality assessment · Laparoscopic
video · Medical multimedia · Similarity search

1 Introduction

In the medical domain, many surgeries are performed minimally invasively, with an
approach called medical endoscopy, also known as ‘keyhole-surgery’. There are several
special areas of medical endoscopy, the most frequent ones are arthroscopy (operations per-
formed on joints), colonoscopy (procedures in the colon), and laparoscopy (operations in
the abdomen). In the particular field of gynecologic laparoscopy procedures are performed
in the area of the female reproductive systems. Typically, when laparoscopy is performed,
three to four orifices to the human body are created, where one is used for the endoscope,
and the others are used for operation instruments. The endoscope is equipped with a light
source, some fiber optics, and a high-resolution video camera (e.g., Full HD or 4K), whose
images are transmitted to a large display in the operation room. The images on this dis-
play are then used by the operating surgeon to control the endoscope and supervise actions
performed with the operation instruments.

Nowadays, surgeons commonly record the real-time images of the endoscope and store
them as digital videos in a long-term archive. The reasons behind are manifold – among
some other motivations the videos are used for: (1) teaching purposes; e.g., to train surgery
techniques with inexperienced surgeons, (2) post-operative explanations to the patients, (3)
detailed visual information for follow-up surgeries, and (4) evidence in case of lawsuits from
patients [34, 43]. Another, more recently emerged purpose for usage of the recorded endo-
scopic video footage is surgical quality assessment (SQA) [10, 22]. Through the recorded
video the surgery can be revisited, the surgeon’s level of skill can be assessed, and the video
can be thoroughly checked for the occurrence of technical errors, which is especially impor-
tant in medical endoscopy. In comparison to traditional open surgery, endoscopic surgery
requires a unique set of skills to adapt to the challenges of 2D to 3D orientation, the ful-
crum effect of the abdominal wall, tissue handling with decreased tactile sensation and
amplification of tremor [21].

Figure 1 shows a technical error scene, which could happen during the initial access to
the abdomen (the so-called Abdominal Access action). Such an event is called too much use
of force/distance and is a very common surgical error in general laparoscopy, because it is
hard for surgeons to determine the distance of instruments within the body while looking
only at the monitors in the operation room. In the second-last frame of the sequence, we
can see that the surgeon used too much force and the laparoscopic trocar, which has a sharp
triangular point at the end, is not visible for a short amount of time. This situation could lead
to inadvertent injuries as well as extensive complications. Therefore, surgeons are advised
to revisit their video recordings of laparoscopic surgeries after the intervention and look for
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Fig. 1 Example of abdominal access with inadequate use of too much force/distance

surgical errors in order to increase the subjective awareness and thereby improve patient
safety [1, 12, 22].

However, doing so by manual inspection without any support from content-based
retrieval methods is very tedious. Therefore, our long-term goal is to support surgeons at
SQA by providing automatic suggestions of segments to inspect. The target scenario we
are focusing on is a use case where the surgeon has already found a relevant segment.1 In
the case of surgical quality assessment this segment would contain a surgical error and the
surgeon would like to retrieve other similar segments from the video archive by performing
automatic content-based retrieval, i.e., similarity search for video segments. For this par-
ticular use case we want to investigate whether dynamic content descriptors work better or
worse than static content descriptors (which are known to work well in the medical domain).

More precisely, in this work we provide the following contributions. First of all, we
provide a public video dataset showing short surgical actions that are very common in
gynecologic laparoscopy. The contained surgical actions are subject of surgical errors and
therefore constitute a good test data within the context of SQA. Next, we propose a novel
dynamic video content descriptor (MIDD) that clearly outperforms other recently proposed
dynamic descriptors in both terms of retrieval performance and runtime complexity. Fur-
thermore, we investigate whether a dynamic extension of the Feature Signatures descriptor
achieve equal or better performance than static Feature Signatures, which has shown good
performance for content-based retrieval in the medical domain [8]. Finally, to the best of
our knowledge we are the first to investigate content similarity search for video segments in
the domain of gynecologic laparoscopy.

The paper is organized as follows. In Section 2 we describe related work in the field
of surgical quality assessment, as well as some recent works focusing on dynamic content
descriptors. Section 3 describes the proposed dynamic content descriptor MIDD (Motion
Intensity and Direction Descriptor). Section 4 introduces the dataset we use for our eval-
uations, before detailed evaluation results are presented (in terms of MAP and runtime
performance). Finally, Section 5 concludes the findings of our work.

2 Related work

Over the last two decades several works were published that focus on medical image and
video analysis and processing. These works include (i) pre-processing of images such as
image enhancement [14, 41] and content filtering [2, 36], (ii) real-time support at procedure
time such as diagnostic decision support and computer-integrated surgery [44, 45], as well
as (iii) post-procedural applications such as quality/skills assessment [31, 51] and content-
based retrieval [47, 48]. A broad overview of such works is provided in an extensive survey
by Muenzer et al. [35].

1Please note that the second author of this paper is a surgeon that is specialized in the field of surgical quality
assessment in gynecologic laparoscopy.
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While many works have been proposed for the first two categories mentioned above,
content similarity search for supporting surgical quality assessment has been addressed
only sparsely in the literature so far. De facto standards for objective assessment methods
are just starting to establish [10, 22], and related research in this medical field is a niche
area. However, it has been shown in recent work that manual post-hoc analysis of video
recordings of laparoscopic surgeries can adequately categorize surgeons according to skill
and training level. Additional error analysis allows the detection of the surgeon’s specific
strengths and respective weaknesses. The application of this kind of post-hoc video analy-
sis of surgical videos through comprehensive surgical coaching [11] significantly improves
the performance of trained surgeons [9, 16, 32].

In the context of surgical action classification, the authors in [33] provide a prelimi-
nary work for automatic instrument recognition and tracking, especially without the need
to modify instruments to support automatic recognition. Their approach is based on parti-
cle filtering for the tracking of instruments during surgical actions. The idea is to use RGB
histograms and Bayes’ rule to distinguish between instrument or non-instrument pixels.
Otherwise for instrument classification, Primus et al. [39] uses several keypoint detections
methods as well as Support Vector Machines (SVM) with the Bag-of-visual-Words (BoW)
approach for segmentation of video content. In the field of video summarization of laparo-
scopic surgeries, Ionescu et al. [23] use temporal visual changes to create an automatic
video highlight detection. In preliminary studies, they found that keypoint scenes in such
videos have no significant motion, whereas the camera motion is very scattered and dis-
continuous in other parts. With the comparison of adjacent color histograms and thresholds
for significant motion changes, they are able to detect such keypoint moments in laparo-
scopic surgeries. Content classification has also been addressed recently by Petscharnig and
Schoeffmann [37, 38], who evaluate well-known convolutional neural network architectures
for the purpose of semantic segment annotation.

Apart from the special content of medical endoscopy, a few works can be found in the
literature that focus on dynamic content descriptors. One approach utilizes the analysis
of spatial and temporal information by building a space-time volume. More specifically,
DeMenthon and Doermann [17] introduce a spatio-temporal descriptor that exploits the
location, color, and dynamics of independently moving regions for a small number of con-
secutive frames. In their proposed approach, temporally ordered frames are stacked together
to capture stable color-motion information of each pixel with respect to time. The regions
are then produced by a Hierarchical Mean Shift clustering approach to summarize individual
motion patterns. The authors use this feature to detect patterns of motion, such as actions in
surveillance videos. Since their approach is focused on centralized and distinctive actions,
it is not applicable to the medical domain where the content is highly self-redundant and
contains both global camera and local object motion.

Further approaches for dynamic action recognition extends the notion of interest points
into the spatio-temporal domain. Laptev [29] introduces a temporal extension of the Harris-
Laplace detector. Spatio-temporal interest points are often used by numerous motion-based
histograms (e.g., Histogram of Oriented Gradients, Histogram of Optical Flow, Motion
Boundary Histograms) to represent motion information in a compact way. These methods
are hard to use in the medical domain since already the very first step (corner detection) is
difficult due to the very special video content, as pointed out by Schoeffmann et al. [43] and
Primus et al. [39]. Therefore, it is unsure how well spatio-temporal keypoints perform for
content retrieval in the medical domain (this should be investigated in future work). On the
other side Duta et al. [20] presented recently a descriptor that captures motion information
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by using fast temporal derivation, instead of optical flow. However, evaluations in these
works were usually limited to a single action recognition dataset.

3 Motion intensity and direction descriptor (MIDD)

In this section we introduce the proposed method to describe the motion of video segments
in videos from medical laparoscopy. Since these medical videos typically contain similar
color and similar instruments as well as similar anatomy, we argue that motion is a very
important and discriminative feature in this domain.

The proposed Motion Intensity and Direction Descriptor (MIDD) builds on our previous
work [42], where motion vectors were extracted from every frame of an MPEG compressed
video and classified into different directions. These motion vector classifications from all
frames of a segment were used to detect similar segments in sports videos. The work of
Droueche et al. [19] combined this idea with dynamic time warping (DTW) in order to
match segments of different lengths.

In the current work, however, we propose a refined descriptor that is easier to com-
pute, more flexible (in terms of different segment lengths), and has better performance. Our
descriptor consists of a normalized motion direction histogram with assigned normalized
motion intensity values and is created in pixel domain for the entire segment instead of a
per-frame basis (see Fig. 2).

Let F = fi : i = 1, ..., n denote the frames of a video segment of size W × H and Pi

denote the set of densely sampled feature points in frame fi . First, the Lukas-Kanade [13]
method is used to compute the optical flow for Pi from frame fi to frame fi+1 (∀i < n).
This way, for each feature point p ∈ Pi a motion vector μp = (x, y) is computed. For this
motion vector the motion direction Dp is determined:

Dp =
{

arccos x
|μp | if y ≥ 0

2π − arccos x
|μp | if y < 0

(1)

In order to harmonize motion directions in small areas of a frame, we use an averaging
filter for motion vectors of feature points in close proximity. For these predicted feature
points (within a distance of δ = 4 pixels), we average their x and y components.

Next, based on Dp each motion vector μp is classified into k = 12 equidistant motion
directions (each accounting for 2π

k
degrees) and point p is assigned to the corresponding

bin b ∈ 1...k in a motion direction histogram, where each bin simply counts the number
of assigned points. One additional bin (k + 1) is used in the motion direction histogram to
count the number of feature points without motion.

b =
(

Dp

k

2π
mod k

)
(2)

However, we do not only want to include the direction of motion in our final descriptor,
but also the intensity of each direction to make the descriptor more distinctive. Also, we
want to exclude points with no motion in our direction classification. Therefore, we also
compute motion intensity Ip for each point in a frame:

Ip =
√

x2 + y2 = |μp| (3)
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Fig. 2 For the MIDD descriptor we start with dense sampling of feature points from adjacent frames, for
which we compute the optical flow. The resulting motion vectors are assigned to k = 12 equidistant directions
and counted in a motion direction histogram. An additional bin (k+1) is used to count feature points without
motion, i.e., having a motion vector length of zero. The average motion vector length is computed for every
bin and added to the second part of the descriptor. Both parts are normalized

Finally, for each bin b in the motion direction histogram the average motion intensity
Ib of all assigned points is computed and added as second part of the descriptor (with k

values, one for each motion direction). This way we end up with a descriptor that has 2k+1
dimensions for each frame.

The descriptors of all frames are averaged over the whole video segment. Additionally,
the descriptor is normalized in the following way: the first part of the descriptor – the Motion
Direction – is normalized by the number of feature points |Pi | in frame i, whereas the
second part – the Motion Intensity – is normalized by the maximum of W and H .

4 Experimental evaluation

As mentioned in the introduction, we focus on a scenario where the surgeon has already
found a relevant segment that shows some surgical action with a technical error and wants
to find other instances by content-based similarity search. In this query-by-example sce-
nario one segment is used as input query to retrieve a ranked list of results, where an
optimal result would return other similar instances in the top part of the list. To decide
which of the segments are regarded as similar (i.e., as correct results), we use a small num-
ber of pre-defined classes and regard membership to the same class as similarity criterion.
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Table 1 Surgical actions in the manually annotated SurgicalActions160 dataset (publicly available; see link
above)

Surgical action Segments Description

Abdominal access 10 Initial access to the abdomen (puncture)

Injection 10 Injection of anesthetization liquid

Cutting 10 Cutting tissue with scissors

Blunt dissection 10 Dissection of tissue with blunt instruments

Dissection (thermal) 10 Thermal dissection of tissue with an electrosurgical instrument

Irrigation 10 Cleaning of the operation area with the Suction and Irrigation
Tube instrument

Coagulation 10 Coagulation of tissue with the Coagulation Forceps instrument

Suction 10 Cleaning of the operation area with the Suction and Irrigation
Tube instrument

Needle positioning 10 Bringing the needle into right position and orientation

Needle puncture 10 Puncturing with the suturing needle

Knot pushing 10 Pushing an externally tied knot to the suturing area with the
Knot Pusher instrument

Knotting 10 Tying a knot during suturing (inside of the patient)

Thread cut 10 Cutting a thread after suturing

Sling-In 10 Insertion of the Dissection Sling instrument

Endobag-In 10 Insertion of the Endobag tool

Endobag-Out 10 Removal of the Endobag tool

Each video segment is about 5 seconds long, except for Abdominal Access, which contains a bit shorter
segments

Consequently, we evaluate our results with the Mean Average Precision (MAP) metric and
plot the Recall/Precision curves for all tested classes. Additionally, since we are interested in
runtime performance, we further evaluate the processing performance to create the descrip-
tors (for all videos) and the average time to retrieve the results for one query. All experiments
were performed on a Mac Pro (Late 2013) desktop computer with a 3.5 GHz 6-Core Intel
Xeon E5 CPU, 32 GB DDR3 RAM running at 1866 MHz, and a PCIe-based flash storage.

4.1 Dataset

In this work we use a manually created dataset representing typical surgical actions in
gynecologic laparoscopy, which we make available to the public with this paper.2 The
entire dataset consists of 16 different classes (see Table 1), where each class is repre-
sented by exactly 10 examples. The 160 video segments were extracted from 59 different
recordings and have a resolution of 427×240 pixels, are encoded with H.264/AVC, and
are very short in terms of duration (min: 51 frames, max: 126 frames, avg: 119.8 frames).
In total, the dataset consists of 19181 frames. Figure 3 shows example images of the 16
classes. As visible in the figure, the content of the different classes is highly similar in
terms of color and texture, and therefore hard to distinguish for medical non-experts (e.g.,
researchers in the field of multimedia). In fact, the semantics of different content classes can
only be completely understood by having medical expert knowledge. Therefore, automatic

2http://www-itec.aau.at/ftp/datasets/SurgicalActions160

http://www-itec.aau.at/ftp/datasets/SurgicalActions160
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Fig. 3 Overview of the 16 different classes of surgical actions in the SurgicalActions160 dataset (released
together with this paper)

content-based similarity search is a very challenging task in this domain and does not work
well with common static content descriptors [8].

4.2 Comparison to static content descriptors

First of all, we compare the performance of the dynamic Motion Intensity and Direction
Descriptor (MIDD) to the following three static image content descriptors. These descrip-
tors are created on a frame basis rather than on a segment basis. More specifically, they are
extracted from the centered frame of each video segment.

– CNN Features (CNNA) extracted from AlexNet [27]
– CNN Features (CNNG) extracted from GoogLeNet [46]
– Feature Signatures (FS) [7, 8]

The first two descriptors are the so-called CNN Features, also known as neural codes.
These are activation weights of the last fully-connected layer in a deep convolutional neural
network. Evaluations of image retrieval tasks with these features have shown good per-
formance [3, 18]. We use the two widely known network architectures AlexNet [27] and
GoogLeNet [46] from the Caffe model zoo [25], which were trained on ILSVRC 2012
with 1000 classes from ImageNet, as described in [28]. The AlexNet architecture uses
4096 weights in the last fully-connected layer (layer fc7), while the GoogLeNet architec-
ture uses only 1024 weights (layer pool5/7×7 s1). For similarity search with CNN Features
(i.e. comparing feature vectors) we simply use Manhattan distance (L1 norm), which pro-
duces slightly better results than Euclidian distance. While these networks were trained with
common videos instead of medical videos, their performance represents an out-of-the-box
baseline that one could easily achieve without specific adaptation.
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The third descriptor is the Feature Signatures descriptor, which has shown good perfor-
mance for image retrieval (i.e. similarity search) in images extracted from medical videos
[8]. Feature Signatures are used to describe the visual content of images individually. They
are local features and commonly known in the literature as adaptive-binning histograms.

In the following, we describe Feature Signatures in more detail, since in the next subsec-
tion we also describe a dynamic extension of them, specifically developed for the evaluation
of this work. Let us assume an endoscopic image is described by means of features
f1, . . . , fd ∈ F in a numerical feature space (F, δ) such as the d-dimensional Euclidean
space (Rd , L2) [4]. The distance function δ is used to determine the (dis)similarity between
features. The signatures of an image are extracted by clustering local features with regard
to their position. To this end, each feature f is assigned a real-valued weight indicating its
contribution to the corresponding endoscopic image. In [4], Feature Signatures are defined
as follows.

Definition 1 (Feature Signatures) Let (F, δ) be a feature space. A feature signature X is
defined as

X : F → R subject to|RX| < ∞,

where the representatives RX = {f ∈ F|X(f ) �= 0} ⊆ F are determined by cluster
centroids and their weights X(f ).

According to this definition and the definition of feature representations in [4], a feature
signature X is restricted to a finite number of representatives RX ⊂ R

d . Each represen-
tative (i.e., feature vector) has a weight unequal to zero wX : RX → R

≥0 and a set of
representatives is computed for each endoscopic image individually. The computation is
frequently carried out by applying a clustering algorithm such as the k-means algorithm to
the extracted features of an endoscopic image and taking the cluster centroids as character-
istic features. The weights can be determined by the relative frequencies, i.e. the number of
assigned features of the cluster centroids.

Figure 4 depicts four laparoscopic images together with their Feature Signatures over
a multi-dimensional feature space comprising position, color, and texture information. For
each frame, a fixed number of points are chosen and described by a seven-dimensional fea-
ture vector (x, y, l, a, b, c, e) ∈ F = R

7. The vector contains information about x- and
y-position, Lab-color information, as well as contrast and entropy. These vectors are then
aggregated using k-means clustering. Following the work of Beecks et al. [8], the charac-
teristic features are visualized by colored circles with diameters indicating their weights.

Fig. 4 Four example endoscopic images and the corresponding Feature Signatures. Images are taken from
the work of Beecks et al. [8]
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This example shows that Feature Signatures are able to visually approximate the content of
endoscopic images by utilizing individual characteristics.

The (dis)similarity between two Feature Signatures is often determined in a distance-
based manner by means of signature-based distance functions [6], such as the Earth Mover’s
Distance [40], the Signature Quadratic Form Distance (SQFD), or the Signature Matching
Distance (SMD) [5]. In particular the latter is used as an asymmetric variant for the purpose
of linking endoscopic images with video segments [4].

For our evaluations we use the following settings for Feature Signatures. We sample
8000 pre-computed random sample points (for keyframes having a resolution of 427×240
pixels). The feature vectors of the sample points are then clustered into 90 clusters. As
similarity measure we use SMD.

4.3 Comparison to dynamic content descriptors

We further compare the performance of the Motion Intensity and Direction Descriptor
(MIDD) to several other dynamic video content descriptors:

– Histogram of Oriented Gradients (HOG) [15, 30]
– Histogram of Optical Flow (HOF) [30]
– Histogram of Motion Gradients (HMG) [20]
– Dynamic Feature Signatures (DFS)

The Histogram of Oriented Gradients (HOG) was originally proposed by Laptev et al.
[30] and designed to effectively represent human actions in videos. The authors use a spatio-
temporal Bag-of-Features (BoF) approach to encode video segments and perform content
classification with Support Vector Machines (SVM). In this work, however, we use them
for similarity search, i.e., retrieval purpose, and build on the extension proposed by Uijlings
et al. [49] that encodes HOG descriptors using Vectors of Locally Aggregated Descriptors
(VLAD) [24] as well as Fisher Vectors (FV) [26]. Furthermore, we also evaluate with His-
togram of Optical Flow (HOF) [30], and with the Histogram of Motion Gradients (HMG)
descriptor, recently proposed by Duta et al. [20], which showed superior performance than
HOG and HOF for human action recognition.

We use the same settings as proposed in the work of Duta et al.: the codebook for VLAD
and FV is trained with 500000 training examples, which were extracted from additional
training segments selected from the 16 classes of the dataset (these training segments are
not contained in the actual dataset and are not contained in the test set). For encoding VLAD
we use 512 clusters, for encoding Fisher Vectors we use 256 vectors; both encodings are
created with the VLFeat library [50].

Finally, we compare our proposed MIDD descriptor to a dynamic extension of Feature
Signatures, which we explicitly created for this work – this also allows us to investi-
gate whether a dynamic representation of Feature Signatures works better than the static
counterpart described above.

Following the conventional static approach, the Feature Signatures are extracted and
aggregated for each frame individually. To describe their dynamic changes, the features
f ∈ F of the resulted representatives RX ⊆ F = R

6 of each feature signature X are
extended by two additional dimensions. These dimensions represent the start and end posi-
tions of the displaced cluster centroids within a sequence of Feature Signatures. Therefore
each feature f contains additional information of its spatial movement and is described as
follows:

(xstart , ystart , l, a, b, c, e, xend , yend) ∈ F̃ = R
9,
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Fig. 5 To create Dynamic Feature Signatures (DFS), static Feature Signatures are extracted from several
frames of the segment. Their clusters (i.e., cluster centroids) are tracked over the video segment in order to
compute a motion vector for each cluster, which is stored in addition to position, color and texture

where F̃ represents the extended feature space comprising nine-dimensional feature vectors.
Figure 5 illustrates this approach to extract Dynamic Feature Signatures (DFS). In the first
step (Fig. 5a), static Feature Signatures are extracted for a set of frames. For tracking of
clusters we use Feature Signatures of the extracted subset of frames (Fig. 5b) and calculate
their displacement to the previous frame. The spatial movement is found by the nearest
neighbor search within two frames and the feature vectors are extended by the end position
of it. As can be seen, instead of storing each track separately the average value of all tracks
is calculated (Fig. 5c). This way, each video segment is modeled via a dynamic feature
signature X̃ (Fig. 5d). For the Dynamic Feature Signatures we use the same settings for each
sample frame as for the static Feature Signatures (described above). As frame sampling rate
we use 50 frames per segment. The similarity of DFS is also computed with SMD.

4.4 Retrieval performance

For evaluation of the retrieval performance of the different descriptors, we employ a typi-
cal query-by-example approach, where each video segment – or representing keyframe, in
case of the static descriptors – is used as input for a similarity search query. The retrieved
result list (containing all 160 segments of the dataset; in optimal case the query segment at
first place) is ranked by distance. For MIDD, CNNA, CNNG, HOG, HOF, and HMG we
evaluate with Manhattan distance (L1 norm) and Euclidian distance (L2 norm). Since Fea-
ture Signatures have varying dimensionality they need an own distance measure (see [6]).
We employ the Signature Matching Distance (SMD) for that purpose, using the L1 norm as
ground distance.

Table 2 presents the performance of the proposed MIDD descriptor in direct comparison
to the static content descriptors. The performance is measured in MAP, averaged over all

Table 2 Retrieval performance of the proposed dynamic content descriptor (MIDD) and the static content
descriptors

Descriptor MIDD (proposed) CNNA CNNG FS

MAP (L1) 29.47% 21.19% 25.64% 23.25%

MAP (L2) 28.94% 21.62% 25.03% 23.10%

Values are given in MAP, averaged over all 160 queries of the 16 classes
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Table 3 Retrieval performance of the other dynamic content descriptors

Descriptor HOGV LAD HOGFV HOFV LAD HOFFV HMGV LAD HMGFV DFS

MAP (L1) 22.96% 23.73% 21.73% 21.84% 23.14% 24.11% 23.56%

MAP (L2) 25.17% 21.63% 25.31% 22.32% 25.79% 23.84% 23.50%

Values are given in MAP, averaged over all 160 queries of the 16 classes

16 classes of the dataset. We can see that – despite the fact that the performance is low in
general (which reflects the challenging content of the medical video data) – the proposed
MIDD descriptor clearly outperforms static Feature Signatures [7] as well as the CNN fea-
tures, with an average MAP value of nearly 30%. Furthermore, it is also obvious that static
Feature Signatures provide better performance than CNN features extracted with AlexNet,
but worse performance than those CNN features extracted with the GoogLeNet architecture.

Table 3 contains the performance of the Histogram of Gradients (HOG) [29], Histogram
of Optical Flow (HOF) [30], Histogram of Motion Gradients (HMG) [20], and the Dynamic
Feature Signatures (DFS). Similar to the findings of [20], HMG achieves better results than
HOG and HOF with both type of encodings – VLAD and Fisher Vectors. Interestingly, when
using L2 as distance, the VLAD encodings produce better results than the FV encodings
for all three descriptors (the vice-versa is true when using L1). Furthermore, we can see
that the DFS achieve similar performance as HOG and HOF, slightly better results than
their static counterparts (compare Table 2), but is beaten by HMG. When considering the
Recall/Precision curve of selected descriptors (see Fig. 6) we can see that HMG (using

Fig. 6 Recall/Precision curve for MIDD, CNNG, HMGFV , SFS, and DFS, evaluated over all 160 queries
(of all 16 classes)
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Fig. 7 Comparison of best performing descriptors for each class individually

L1 norm with Fisher Vector encoding, as proposed by [20]) is only marginally better than
DFS. However, all dynamic content descriptors in Table 3 are clearly outperformed by the
proposed MIDD descriptor, which achieves better performance over the whole Recall range
(see Fig. 6).

In order to further investigate the retrieval performance, we evaluate the achieved MAP
values of each class for the three best performing descriptors (see Fig. 7): MIDD (L1),
CNNG (L1), and HMGFV (L1) – the latter setting (FV with L1) was also found optimal for
HMG in [20].

As shown in the figure, HMG can beat MIDD for only three classes – Abdominal Access,
Suction, and Endobag-Out. For all other 13 classes, MIDD clearly outperforms HMG, with
nearly double performance for the classes Injection, Dissection (thermal), and Endobag-In.

The significantly better performance of CNNG (over both other dynamic descriptors) for
the two classes Cutting and Sling-In is quite remarkable when keeping in mind that the infor-
mation is extracted from a single keyframe of the segment. However, we hypothesize that

Table 4 Runtime performance of the proposed dynamic content descriptor (MIDD) and the static content
descriptors

Descriptor MIDD (proposed) CNNA CNNG FS

Feature vector size 25 4096 1024 630

Extraction performance (frames/s) 103 12* 8* 3

Retrieval time (ms/query) 2 97 29 8

*...Please note that extraction time for the CNN features cannot be directly compared, since they were
extracted on a similarly powerful computer, but with GPU support, using an NVIDIA GeForce GTX 1080 Ti
graphics card
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Table 5 Runtime performance
of the other dynamic content
descriptors (HOG and HOF
omitted, but with almost identical
values to HMG)

Descriptor HMGVLAD HMGFV DFS

Feature vector size 73728 73728 810

Extraction performance (frames/s) 10 11 1

Retrieval time (ms/query) 1700 1788 8

the reason for this is the rather unique content – namely the distinctive Scissors instrument
in the class Cutting, and the very unique Dissection Sling instrument in class Sling-In (also
compare with Fig. 3). This assumption is further reinforced when considering the rather low
performance of CNNG for the classes Injection, Dissection (thermal), and Knotting, which
lack of distinctive instruments (or have varying usage of different instruments, like with
Dissection (thermal)) but contain distinctive motion. MIDD performs much better in these
motion-based classes, hence we can conclude that the proposed dynamic content descriptor
is very well suited for content-based retrieval in videos of laparoscopic surgery.

4.5 Runtime performance

We further compare the complexity of the descriptors in terms of (i) feature vector length
(i.e., dimensions) per segment, (ii) extraction performance in frames per second, and (iii)
average retrieval time for one example query in milliseconds. The corresponding values
for the proposed MIDD descriptor, the CNN features, and the static Feature Signatures are
given in Table 4, while the values for HMG and DFS are presented in Table 5 (the values of
HOG and HOF are almost identical to HMG, but are omitted due to space limitations).

First of all, it can be seen that the MIDD uses the smallest feature vector size, namely only
25 floating point values, whereas HMG (encoded with VLAD using 512 clusters, or with
FV using 256 clusters) results in 73728 floating point values. This extreme difference has
direct impact on the retrieval performance, where MIDD requires only 2 ms to retrieve all
160 results for a query (i.e., perform 160 comparison operations), HMG with FV encodings
requires 1788 ms (nearly 900 times slower).

Also the feature extraction performance of MIDD is remarkably high: it can process 103
frames per second on our evaluation system, while HMG can only process 11 frames per
second. It has to be noted though that MIDD is implemented in C++ with OpenCV (as is
FS and DFS), while for HMG/HOG/HOF we used the MATLAB implementation provided
by Duta et al. [20] together with the VLFeat library [50]. The feature extraction performance
of CNNA and CNNG cannot be directly compared, since we extracted them with the Caffe
framework [25] on a similarly powerful computer, but with GPU support (see caption of
Table 4).

5 Conclusions

In this work we evaluated video content descriptors in terms of retrieval performance for
video recordings from gynecologic laparoscopy. For that purpose, we have manually cre-
ated a dataset consisting of example segments of 16 different surgical action classes, which
are very typical in medical laparoscopy. We are releasing the dataset together with this paper
in order to allow other researchers to compare to our results. We have proposed a novel
video content descriptor called MIDD (Motion Intensity and Direction Descriptor), which
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outperforms other dynamic content descriptors recently proposed in the literature for the
specific domain of medical laparoscopy. We have shown that MIDD achieves not only bet-
ter retrieval performance, but also is much faster to extract and to compare than alternative
descriptors, such as the Histogram of Motion Gradients (HMG) [20]. We have also shown
that our dynamic extension of Feature Signatures (DFS) can achieve slightly better retrieval
performance than static FS– which are known to work well for content-based retrieval in
medical videos [8] – but cannot outperform HMG for our dataset. To the best of our knowl-
edge, we are the first to focus on content similarity search in video archives of gynecologic
laparoscopy, with the ultimate goal to support the surgical quality assessment process [11,
22]. This work is only a first step in this domain, which would also benefit from semantic
content classification approaches, which we want to investigate in the near future.
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39. Primus M, Schoeffmann K, Böszörmenyi L (2015) Instrument classification in laparoscopic videos. In:

2015 13th international workshop on content-based multimedia indexing (CBMI), pp 1–6
40. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J

Comput Vis 40(2):99–121
41. Saint-Pierre C-A, Boisvert J, Grimard G, Cheriet F (2011) Detection and correction of specular reflec-

tions for automatic surgical tool segmentation in thoracoscopic images. Mach Vis Appl 22(1):171–180

https://doi.org/10.1007/s11042-017-4699-5


Multimed Tools Appl (2018) 77:16813–16832 16829

42. Schoeffmann K, Lux M, Taschwer M, Boeszoermenyi L (2009) Visualization of video motion in context
of video browsing. In: 2009 IEEE International Conference on Multimedia and Expo, pp 658–661

43. Schoeffmann K, Del Fabro M, Szkaliczki T, Böszörmenyi L, Keckstein J (2015) Keyframe
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