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Abstract Hand-crafted and learning-based features are two main types of video represen-
tations in the field of video understanding. How to integrate their merits to design good
descriptors has been the research hotspot recently. Motivated by TDD (Wang et al. 2015), we
combine trajectory pooling method and 3D ConvNets (Tran et al. 2015) and put forward a
novel multi-scale trajectory-pooled 3D convolutional descriptor (MTC3D) for action recog-
nition in this paper. Specifically, we calculate multi-scale dense trajectories from the input
video and perform trajectory pooling on feature maps of 3D CNN. The proposed descrip-
tor has two advantages: 3D CNN has the ability to extract high-level semantic information
from videos and multi-scale trajectory pooling method utilizes the temporal information of
videos subtly. The experiments on the datasets of HMDBS51 and UCF101 demonstrate that
the proposed descriptor achieves state-of-the-art results.

Keywords Trajectory pooling - 3D ConvNets - Action recognition

1 Introduction

With the explosive growth in the amount of videos on the Internet, action recognition [1,
15, 27] has attracted increasing attention in recent years, which has potential applications
in different fields such as abnormal event detection [3], human-computer interaction [28],
video retrieval [33, 45] and robot perception [6]. Numerous researchers dedicate to this area
to deal with the challenges like occlusions, low resolution, background clutter and camera
motions.
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Feature extraction is the fundamental and critical step in the framework of image and
video analysis [21, 23, 24, 26, 32, 42, 46, 47]. Video representations are usually moti-
vated by image features. Compared to images, videos have additional temporal information.
How to apply the motion information contained in the time domain of videos is the core
issue when designing/learning video representations. There are two main types of features
for video description: hand-crafted descriptors and learning-based descriptors, which are
presented comprehensively in Section 2.

Hand-crafted and learning-based descriptors have their own advantages which are com-
plementary to each other: the design of hand-crafted descriptors reflects the researcher’s
observation of visual data and they are easy to explain, while learning-based descriptors
usually have higher discriminative capacity and are hard to interpret. How to combine the
benefits of these two kinds of features to design good descriptors has been an active research
area. On one hand, the experience in designing hand-crafted features can be utilized to
guide the devise of deep neural networks. For instance, 3D ConvNets [16, 38] can be con-
sidered borrowing the idea from HOG3D [18] or 3D SIFT [30]. One the other hand, some
techniques of hand-crafted descriptors are used to post-process deep descriptors. In [41],
trajectory-pooled deep-convolutional descriptor (TDD) united dense trajectories of iDT
descriptors with two-stream ConvNets [32] and achieved good performance. Motivated by
TDD, in this paper we focus on integrating trajectory pooling method with C3D descriptors
and present a novel multi-scale trajectory-pooled 3D convolutional descriptor (MTC3D) for
action recognition, as shown in Fig. 1. Specifically, multi-scale dense trajectories and C3D
features of conv4b and conv5b layers are first computed from the input videos. Then we
conduct max pooling on conv4b and conv5b feature maps of C3D to shrink their temporal
dimensions to one. In this way, a 16-frame-long trajectory is mapped to 16 points on one
corresponding pooled feature map. After two types of normalization techniques, we perform tra-
jectory pooling to the normalized feature maps and obtain the proposed MTC3D descriptors.

The proposed descriptors have two merits: 3D ConvNets has the ability to extract dis-
criminative and shift-invariant features from videos, while the trajectory pooling method
captures the temporal information of videos contained in the multi-scale trajectories of
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Fig. 1 The process of extracting MTC3D. The MTC3D framework contains three steps: extracting feature
maps of C3D and dense trajectories from raw videos and conducting trajectory-constrained pooling method
on the extracted feature maps. Finally, MTC3Ds that has C x K dimensions are obtained, where C is the
number of channels of feature maps and K is the number of trajectories of the input video

@ Springer



Multimed Tools Appl (2019) 78:507-523 509

objects. We should note that our MTC3D is different from the process of TDD. In TDD, the
feature maps of two-stream ConvNets have the same number of frames to the input videos
and trajectory pooling method is conducted on different frames of feature maps, whereas
we pool the points on the feature maps whose temporal dimensions are one in proposed
MTC3D. After MTC3Ds are gained, we employ Fisher vector to encode them and feed the
encoding results into a linear SVM classifier. We evaluate the performance of MTC3D on
two challenging action datasets: HMDBS51 [20] and UCF101 [34]. The proposed MTC3D
alone achieves 56.0% and 86.6% on HMDBS51 and UCF101. MTC3D outperforms C3D
(one net) by 4.3% on UCF101 with the same pre-trained model. When combined with iDT,
MTC3D obtains accuracies of 65.0% and 90.4% on HMDBS51 and UCF101.

One preliminary version on trajectory-pooled 3D convolutional descriptor (TC3D) was
first introduced in our previous work [25]. In this paper we make the following three
improvements: (1) we add Section 2 to review hand-crafted descriptors and learning-based
descriptors detailedly; (2) we integrate multi-scale motion information into TC3D and put
forward MTC3D; (3) we conduct more comparative experiments and carry out error analysis
of the results and discuss the advantages and disadvantages of MTC3D.

The remainder of this paper is organized as follows: In Section 2, We give an introduction
to hand-crafted descriptors and learning-based descriptors. In Section 3, the proposed multi-
scale trajectory-pooled 3D convolutional descriptor is introduced in detail. We report the
experimental results on HMDBS51 and UCF101 datasets in Section 4. Finally, the whole
paper is concluded in Section 5.

2 Related works

There are two main types of features for video description: hand-crafted descriptors and
learning-based descriptors, as presented below.

Hand-crafted descriptors Hand-crafted descriptors contain Histograms of Oriented Gra-
dients (HOG) [4], Histograms of Optical Flows (HOF) [21], Motion Boundary Histograms
(MBH) [5], HOG3D [18], 3D SIFT [30], and so on. The process of extracting hand-crafted
descriptors mainly can be divided into two steps: the first step is to detect interest points
using some interest-point detector [13] or in a dense way, and then the local information
(e.g., pixel value, optical flow) or its gradient in the neighborhood of detected points is
aggregated to construct a histogram. HOG [4], HOF [21] and MBH [5] describe the infor-
mation of image gradients, optical flow and motion boundaries (i.e., gradients of optical
flow) respectively. HOG3D [18] and 3DSIFT [30] imitate the process of HOG [4] and
SIFT [24] and compute histograms of 3D spatio-temporal gradients. The most success-
ful hand-crafted descriptor for action recognition so far is Improved Dense Trajectories
@iDT) [39]. In essence, it extracts special spatio-temporal interest areas using dense tra-
jectories where HOG, HOF, and MBH descriptors are calculated. iDT outperforms other
hand-crafted descriptors in almost all the public action datasets. After getting hand-crafted
descriptors, feature encoding methods such as bag-of-words (BoW) model [10], sparse cod-
ing [9, 48] or Fisher Vector [29] are applied to learn higher-level features and enhance
the recognition results. These hand-crafted descriptors contain researchers’ observation
and experience and thus achieve great successes in this area. However, designing a good
hand-crafted feature is difficult and time-consuming, and rely on expert knowledge. More-
over, hand-crafted descriptors are usually only applicable to certain applications and do not
generalize well.
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Learning-based descriptors A transformation from raw input to the representation is
learned by machine learning methods for learning-based descriptors. At first, some shallow
learning techniques were used in this domain. In [22], a stacked convolutional Independent
Subspace Analysis network was proposed to learn invariant spatio-temporal features from
videos. With the developments of deep learning, convolutional neural networks (CNN) [19],
which is inspired by the behavior of the animal visual cortex, has been proved to be
an effective feature learning technique in action recognition [17, 32]. CNN can be used
to process videos in an end-to-end way or provide deep features as the input of feature
encoding approaches and classifiers. Some deep descriptors (e.g., Deep ConvNets [17])
learned high-level features from raw videos directly by 2D convolutions. Convolutional
3D descriptors (C3D) [38] employed 3D convolution and 3D pooling operations to model
the temporal information of the videos better and give superior results. Two-stream Con-
vNets [32] used two networks to handle the spatial and temporal information separately
and the inputs of its spatial and temporal stream ConvNets are RGB frames and optical
flow fields. Driven by the success on speech translation [12] and machine translation [36],
Long Short-Term Memory (LSTM) [14] that is a special type of recurrent neural net-
works has been applied to model video sequences recently. In [8], Donahue et al. utilized
LSTM to learn long-term dependencies in videos and developed Long-term Recurrent Con-
volutional Networks for three vision tasks (i.e., activity recognition, image description,
and video description). Ng et al. [44] compared different convolutional temporal feature
pooling architectures and LSTM to explore a better way of feature aggregation in time
domain. In [35], the LSTM Encoder-Decoder framework was used to learn video repre-
sentations in an unsupervised way. Sharma et al. [31] merged a soft attention based model
into multi-layered LSTM, which learned to focus on the spatial areas in each frame that
were relevant for the recognition task. These deep descriptors work well due to the high
discriminative capacity and good generalization ability of deep neural networks. But in a
sense, deep learning techniques are a black box and the features they learn are not easy to
interpret.

3 Multi-scale trajectory-pooled 3D convolutional descriptors

In this section, we elaborate a new multi-scale trajectory-pooled 3D convolutional descriptor
for video representation, as shown in Fig. 1. We first explain the extraction process of dense
trajectories and 3D convolutional feature maps from the raw videos. Then, the feature map
normalization and trajectory pooling steps are described in detail. We finally introduce the
multi-scale strategy we use.

3.1 Dense trajectories

We adopt improved trajectories [39], which is originally used to compute iDT descriptor, to
extract dense trajectories due to its good performance. Improved trajectories is a modified
version of dense trajectories [40]. In dense trajectories, feature points are first sampled on
a grid spaced by 5 pixels. Then each point is tracked by median filtering in a dense optical
flow field w = (uy, vy).

Py = (X415 Y1) = (6, y1) + (M % w) x5, (1)

where P, = (x;, y;) represents the feature point at frame ¢, M is the kernel for median
filtering, and (X;, y,) is the rounded position of (x;, y;). After the dense optical flow field
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is calculated, points of adjacent frames are linked to get the trajectories. To avoid drifting
problem, the length of a trajectory is limited to 15 frames in [39]. Static trajectories and
trajectories with sudden large displacements are also removed to make the obtained dense
trajectories more robust.

Compared with dense trajectories, camera motion is considered in improved trajectories
to enhance the performance. Camera motion is calculated based on the assumption that
two adjacent frames are associated by a homography [37]. To compute the homography
matrix, two complementary methods (i.e., SURF descriptor [2] and dense optical flow)
are combined to find the matches between two frames at first. Afterward, the RANSAC
approach [11] is applied to estimate the homography. Eventually, camera motion is removed
to get a better optical flow that is more focused on foreground moving objects. In this
way, the trajectories generated by background camera motion are suppressed to get small
displacements and then removed by a thresholding method. In the proposed descriptor, the
length of a trajectory is set at 16 frames to match the temporal length of the input clips of
C3D. Given a video V, we get dense trajectories

TWV)={I,Ty -, Tk} 2)
where T}, represents the k" trajectory of the video V:
To={ (W wh.db), (W whodb) oo (o wh, b )| 3)

where (h¥, wg, dllg) denotes the p'” point in trajectory T and P represents the length of a
trajectory.

3.2 Convolutional feature maps

We employ 3D ConvNets [16, 38] to learning features from videos in MTC3D. 3D con-
volution and 3D pooling operations are adopted in 3D ConvNets. 3D convolution is the
natural extension of 2D convolution. Both 3D convolution and 2D convolution can have
multi-dimensional inputs, and the differences exist in the outputs. The outputs of 2D con-
volution are two-dimensional feature maps, whether its output has two or more dimensions,
as shown in Fig. 2a and b. In contrast, the output volumes of 3D convolution can have mul-
tiple dimensions, as illustrated in Fig. 2c. In other words, 3D convolution conserves the
temporal information of the input videos. Hence, we can utilize multiple 3D convolutional
layers to handle the spatial and temporal information of the inputs in a hierarchical way
simultaneously.

The architecture of C3D is illustrated in Tables 1 and 2. 3D convolution and pooling
kernels with a size of § x § x T are used, where S and T represent the spatial and temporal
size of the kernels. C3D net has 8 convolution layers, which have 3 x 3 x 3 convolutional

(a) 2D convolution (b) 2D convolution on (c) 3D convolution
multidimensional input

Fig. 2 2D and 3D convolution. a 2D convolution on two-dimensional input. b 2D convolution on multi-

dimensional input. ¢ 3D convolution on multidimensional input. The outputs of 2D convolution are always
two-dimensional feature maps, while 3D convolution has multidimensional outputs
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Table 1 The convolutional layers of the C3D Architecture

Layer convla conv2a conv3a conv3b conv4a conv4b convsa conv5b

Size 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3 3x3x3

Stride 1x1x1 1x1x1 IxIx1l 1x1x1 1xIx1l Ix1x1l 1Ix1lx1l Ix1xl1
Channel 64 128 256 256 512 512 512 512
Ratio 1 1/2 1/4 1/4 1/8 1/8 1/16 1/16

C3D net has 8 convolution layers. The kernel sizes of all of the convolution layers are 3 x 3 x 3, with stride
1 x 1 x 1. Ratio represents the spatial map size ratio

filters, with stride 1 x 1 x 1. The kernel size of pool1 layeris2 x 2 x 1, with stride 2 x 2 x 1.
The other 4 max-pooling layers have 2 x 2 x 2 pooling kernels, with stride 2 x 2 x 2. In
our experiments C3D net is used to cope with videos as convolutional feature extractors, not
in an end-to-end way. Specifically, we compute feature maps of conv4b and conv5b layers
from the input videos and the full-connected layers are abandoned.

We denote the size of the inputs or feature maps by H x W x D x C, where H and W
are the height and width in spatial dimension, D is the depth in temporal dimension, and C
is the number of channels. Then the size of the input clips of C3D netis 112 x 112 x 16 x 3.
The conv4b and conv5b feature maps has a size of 14 x 14 x 4 x 512 and 7 x 7 x 2 x 512
respectively. Whereafter, we conduct a max-pooling operation to reduce the temporal sizes
of conv4b and conv5b feature maps to one. Finally given a clip V, the representation F), €
RHXWXC are gained, where H and W are 7 or 14 and C is 512.

3.3 Feature map normalization and trajectory pooling

Given the representation F,, two types of normalization approaches (not shown in Fig. 1)
are adopted as in TDD. The first one is spatiotemporal normalization. The result of a con-
volutional layer for each channel can be viewed as a spatiotemporal block. Spatiotemporal
normalization is conducted by dividing the feature map values by the maximum value of
the spatiotemporal block for each channel.

Fy(h,w, ¢) = F(h, w, ¢)/maxy ., F(h, w, c) )

The second normalization method is channel normalization, and the feature map values
are divided by the maximum value in the same spatio-temporal position across different
channels.

Fen(h,w, c) = F(h, w, ¢)/max.F(h, w, c) 5)

Table 2 The pooling layers of the C3D Architecture

Layer pooll pool2 pool3 pool4 pool5
Size 2x2x1 2x2x2 2x2x2 2x2x2 2x2x2
Stride 2x2x1 2x2x2 2x2x2 2x2x2 2x2x2
Channel 64 128 256 512 512

Ratio 1/2 1/4 1/8 1/16 1/32

C3D net has 5 pooling layers, which have 2 x 2 x 2 pooling kernels, with stride 2 x 2 x 2, except for pool1
layer. Ratio represents the spatial map size ratio
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After normalization, the values of the points on feature maps are aligned into a same
interval. In experiments, these two normalization approaches are used separately and their
results F, st (h, w, ¢) and Fch (h, w, c) are fused to further enhance the performance.

In C3D net, spatial and temporal padding are implemented on the convolutional layers to
make its inputs and outputs have the same size. And the effect of the padding is that it create
the mappings between the points in videos and those on feature maps. For example, the point
with coordinate (k, w, d) in clip V corresponds to that with coordinate (» x h,r X w) on
the obtained representation F,, where r is the spatial map size ratio calculated in advance,
as shown in Tables 1 and 2. In this way, the points on the trajectories are mapped to those
on current representations directly when conducting trajectory pooling.

Given a normalized feature map F and a trajectory 7%, trajectory pooling is carried out
as follows:

D(Ty, F) = m;;ixf ((r x h’[g) (r x w';,), c) (6)

k

where r is the spatial map size ratio, (r X h’;, roxXow,

) is mapped from the corresponding
p'" point (h’;, w’;,, df,) of original video in trajectory T}, (-) is the rounding operation.

D(Ty, F ) € RE*K is the designed trajectory-pooled 3D convolutional descriptor (TC3D),
where C is the number of channels and K is the number of trajectories.

3.4 Multi-scale extension

Above we introduce the process of extracting TC3D on single scale. Following the idea
of iDT, we compute the trajectories for multiple scales and put forward the multi-scale
extension of TC3D, that is, the proposed multi-scale trajectory-pooled 3D convolutional
descriptor (MTC3D). Specifically, We first densely sample the feature points for 8 spatial
scale by a factor of 1/+/2. Then the feature points are tracked in each scale over 16 frames.
Hence given a video V, we acquire multi-scale dense trajectories

?<V>={T1,Tz,~-,TK,,---,TI,TZ,---,TKM} )

where {T1, Tz, - - - , Tk, } represents the computed trajectories in m'" scale, and K,, is the
number of trajectones Then the proposed multi-scale trajectory-pooled 3D convolutional

descriptor is D(Tx, F) € ]RCXK where K = Zm 1 K-

4 Experiments

In this section, we test the proposed TC3D and MTC3D on two public datasets:
HMDBS51 [20] and UCF101 [34]. We first introduce the datasets and the implementation
details. Afterward, the exploration experiments and the comparisons to other methods are
presented in turn. Finally, we conduct the error analysis and the discussions on the merits
and demerits of the proposed descriptors.

4.1 Datasets
Two challenging action datasets are employed in our experiments: HMDBS51 and UCF101,

as shown in Fig. 3. The HMDBS51 dataset has 6766 video clips taken from movies, YouTube,
Google videos, etc. This dataset contains five types of actions from general facial actions
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Riding Horse Shooting Bow

Baby Crawling Bowling Playing Dhol TaiChi
Fig. 3 Sample frames from HMDBS51 (first row) and UCF101 datasets (second row)

to body movements for human interaction and covers 51 action categories.We employ
three training/testing splits and report average accuracy over three splits as in [20] . The
UCF101 dataset involves realistic videos collected from YouTube. It includes 13320 video
sequences and has 101 action classes. Each class has 25 groups and the sequences in the
same group may share some common characteristics (e.g., similar background). We use the
three training/testing splits as in [34] and also report average accuracy.

4.2 Implementation details

In the experiments, feature maps of conv4b and conv5b layers of C3D net are extracted,
whose sizes are 14 x 14 x4 x 512 and 7 x 7 x 2 x 512. When computing features maps from
the HMDBS51 and UCF101 datasets, we employ a C3D model that is pre-trained on Sports-
1M and released by Tran et al. in [38]. After max pooling operation in temporal dimension,
a representation whose size is 7 x 7 x 512 or 14 x 14 x 512 is acquired. We conduct
spatiotemporal and channel normalization to the representation, and the two normalized
representations and the original representation are utilized to compute different MTC3Ds,
which will be fused to boost the experimental results. The 16-frame-long dense trajectories
from videos are extracted because the input of C3D net is 16-frame-long clip. Then we
obtain MTC3D with a size of 512 x K by trajectory pooling, where K is the number of
trajectories in this video. Next, PCA is used to reduce MTC3Ds to 128 dimensions to cut
down the time and space overhead. After we get MTC3Ds from the videos, Fisher vector
[29] is applied to encode them. We first build a dictionary of visual words by GMM with
G (G = 256) mixtures. Then we assign MTC3D to their nearest visual words and gain a
vector with 2 x 128 x 256 dimensions. At last, linear SVM is employed as the classifier.

Table 3 The performance of different trajectory pooling methods (with conv5 features and spatiotemporal
normalization) on three splits of HMDBS51 dataset

HMDBS51 Splitl Split2 Split3 Ave
Sum pooling 52.6 50.4 49.7 50.9
Max pooling 52.6 51.8 49.6 51.3

Max pooling method outperforms average pooling method in the experiments
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Fig. 4 The recognition results of different PCA dimensions and normalization methods with conv5 features
on HMDB51. Dimension 128 and the fusion of normalization methods obtain the best results respectively

4.3 Exploration experiments

In this section, TC3D is used to explore the impact of different settings in steps of the pro-
posed pipeline, due to its lower time and space costs compared to MTC3D. We first evaluate
the performance of sum pooling and max pooling methods in trajectory pooling step on
three splits of HMDB51. TC3D with conv5 features and spatiotemporal normalization are
used in the experiments and the results are summarized in Table 3. The average accuracy of
max pooling is 0.4 higher than sum pooling. Therefore max trajectory pooling is chose in
the proposed descriptor.

We employ TC3D with conv5 features and spatiotemporal normalization and investigate
the impact of different PCA dimensions in Fig. 4a. Dimension 128 gets the best perfor-
mance among them. Thus, TC3Ds and MTC3Ds are reduced to 128 dimensions and then
fed into Fisher vector in the whole experiments. In Fig. 4b, we use TC3D with conv5
features and describe the average accuracy of different normalization methods. St_Norm
and Cha_N orm represents spatiotemporal normalization and channel normalization respec-
tively. No_Norm stands for the original representation without normalization. Combination
of them is 3.1% better than No_N orm, which demonstrates the effects of the normalization
methods.

Table 4 reports the recognition results of TC3D with different convolutional layers.
We see that the combination of conv4 and conv5 improves the average accuracy, which
indicates that TC3Ds with different layers are complementary to each other. Table 5 illus-
trates the average accuracy of TC3D and MTC3D. MTC3D computes multi-scale dense
trajectories and captures richer motion information and outperforms TC3D on these two
datasets.

Table 4 The average accuracy of TC3D with different convolutional layers on HMDBS51 and UCF101

Datasets conv4 convS conv4 + conv5
HMDBS51 49.7 54.2 55.5
UCF101 83.2 83.1 86.5

The combination of features from different layers improves the recognition accuracy significantly
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Table 5 The average accuracy of TC3D and MTC3D on HMDBS51 and UCF101

Datasets TC3D MTC3D
HMDB51 55.5 56.0
UCF101 86.5 86.6

MTC3D captures multi-scale information and surpasses TC3D on two datasets

4.4 Comparison to the state of the art

We compare the proposed TC3D and MTC3D with other algorithms and summarize the
action recognition accuracy in Table 6. The upper part shows the recognition methods
whose inputs are only RGB videos. The lower part presents other algorithms that take
both RGB frames and precomputed optical flow fields as inputs. We can observe that
TC3D and MTC3D combined with Fisher vector and linear SVM perform much better
than HOG descriptor and other RGB videos based deep neural networks, containing Deep
networks [17], Spatial stream network [32], LRCN [8] and LSTM composite model [35].
TC3D and MTC3D also outperform C3D [38] and conv4 and conv5 spatial layers of
TDD [41]. MTC3D and C3D (1 net) use the same pre-trained model in the whole experi-
ments and MTC3D performs 4.3 % better than C3D (1 net) on UCF101. The results indicate

Table 6 Action recognition results on HMDBS51 and UCF101

Method HMDBS51 UCF101
HOG [39] + FV 40.2 724
Deep networks [17] - 65.4
Spatial stream network [32] 39.0 72.6
LRCN [8] - 71.1
LSTM composite model [35] 44.1 75.8
C3D (1 net) [38] - 82.3
Spatial conv4 and conv5 of TDD [41] + FV 50.0 82.8
TC3D + FV 55.5 86.5
MTC3D + FV 56.0 86.6
iDT [39] + FV 572 84.7
Two-stream networks [32] 59.4 88.0
LRCN [8] - 82.9
LSTM composite model [35] - 84.3
Conv. pooling on long clips [44] - 88.2
LSTM on long clips [44] - 88.6
TDD [41] + FV 63.2 90.3
TC3D and iDT + FV 64.5 90.1
MTC3D and iDT + FV 65.0 90.4

The upper part shows the recognition methods whose inputs are only RGB frames. The lower part presents
the algorithms that take both RGB frames and optical flow fields as inputs. MTC3D outperforms C3D (1 net)
by 4.3% on UCF101 with the same pre-trained model
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Confusion matrix (56.47 % accuracy) Confusion matrix (86.17 % accuracy)

80 90 100

5 10 15 20 25 30 35 40 45 50 10 20 30 40

(a) HMDBS5 1 (b) UCF101

50 60 70

Fig. 5 The confusion matrices of the recognition results of TC3D on Splitl of HMDBS51 and UCF101
datasets

that trajectory pooling method captures the inherent nature of temporal dimension and pro-
motes the recognition accuracy. When united with iDT descriptors, MTC3D performs better
than other deep learning methods whose inputs are RGB frames and optical flow fields
and achieves state-of-the-art results. The confusion matrices of the recognition results using
TC3D on Splitl of HMDBS51 and UCF101 are illustrated to give an intuitive view in Fig. 5.

4.5 Error analysis

Some misclassified samples of HMDBS51 dataset are displayed in Fig. 6. We illustrate four
main reasons about the misclassifications. The first one is that a video may contain multiple

Multiple actions Camera motion

Examples
True labels Brush_hair Eat
Predicted labels Laugh Smoke
Motion similarity
Examples
True labels Swing_baseball Chew Sword_exercise Dribble
Predicted labels Throw Eat Draw_sword Shoot_ball

Fig. 6 Misclassified samples of HMDBS1 dataset. The first line under the examples is the true labels, and
the second line represents the predicted labels. There are four reasons that cause the misclassifications: mul-
tiple actions (top left), camera motion (top right), motion similarity (bottom left), and appearance similarity
(bottom right)
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actions, which is an inherent problem for action recognition task. Two example videos are
shown on the top left and in the first one a girl is brushing her hair and laughing at the
same time. It is hard to classify the video correctly, even to human labelers. The second
reason is camera motion as shown on the top right. Camera motions (e.g., pan, tilt and
zoom) produce the background motion and also interfere the foreground motion, which
degrades the recognition results. Shot changes can also fall into this category roughly, which
sometimes result in unpredictable classification outputs.

Motion similarity is the third reason as shown on the bottom left of Fig. 6. Some actions
share similar body motions. For example, both swinging baseball and throwing may con-
tain the motions of holding the object over the head and throwing it out. These motions
generate similar motion-based features, which makes the classification extremely difficult.
The last one is appearance similarity shown on the bottom right. Two actions can have the
same scene, background or objects, which leads to similar appearance-based features. For
instance, both dribbling and shooting ball occur at the basketball court and relate to the
basketball and the basketball stand.

Camera motion increases the intra-class variation, while motion and appearance similar-
ity reduces inter-class distance. And the first reason that multiple actions exist in one video
has both of these two roles. The four reasons mentioned above bring great difficulties and
challenges for action recognition task. From the misclassified examples, we can see that the
mistakes are reasonable and the proposed descriptor indeed “understands” the video sam-
ples. These recognition errors also indicate potential directions on how to further improve
the discriminative ability and the robustness of descriptors next.

4.6 Discusion

The proposed MTC3D extracts discriminative deep features from the inputs and meanwhile
captures the temporal information of videos by the trajectory pooling method. Furthermore,
compared to TDD [41], there is no need to train temporal network for optical flow frames
when extracting MTC3D.

However, MTC3D performs worse than some recent works, such as TSN [43] and
TLE [7]. A primary reason is that new techniques are used in these works. For example,
the main idea of TSN is that the input video is divided into several segments which are
processed by different spatial and temporal stream ConvNets and the class scores of these
segments are fused to obtain a video-level prediction. TLE follows the idea of TSN and adds
a temporal encoding layer besides. These techniques (i.e., segmenting videos and adding
feature encoding layer in the network) can also be incorporated into MTC3D to further
improve the recognition accuracy. In this paper, we focus on integrating trajectory pooling
method with C3D descriptors and thus do not utilize the above techniques. Another reason
is that we make use of the C3D model pre-trained on Sports-1M directly owing to the limits
of our computing power and storage capacity. For example, the spatial size of conv4b and
conv5b feature maps in C3D net is only 14 x 14 and 7 x 7, which affects the performance
of MTC3D. Thus adopting new techniques in our pipeline and training new 3D ConvNets
will be our future work.

5 Conclusion and future work

In this paper, we combine C3D with dense trajectories and present a new multi-scale
trajectory-pooled 3D convolutional descriptor for action recognition. We take advantage
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of both 3D ConvNets that extracts high-level features from videos and trajectory pooling
strategy that utilizes important motion information. Experiments validate the superior per-
formances of the proposed descriptor on two challenging datasets. Based on the discussion
section above, we will imitate C3D net to design our own 3D ConvNets that is more suitable
for trajectory pooling method and add the feature encoding layer in the network in future.
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