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Abstract Inspecting steel surfaces is important to ensure steel quality. Numerous defect-
detection methods have been developed for steel surfaces. However, they are primarily used
for local defects, and their accuracy in detecting distributed defects is unsatisfactory because
such defects are difficult to locate and have complex texture characteristics. To solve these
issues, an improved random forest algorithm with optimal multi-feature-set fusion (OMFF-RF
algorithm) is proposed for distributed defect recognition in this paper. The OMFF-RF algo-
rithm includes the following three aspects. First, a histogram of oriented gradient (HOG)
feature-set and a gray-level co-occurrence matrix (GLCM) feature-set are extracted and fused
to describe local and global texture characteristics, respectively. Second, given the small
number of samples of distributed defect images and the high dimensionality of the extracted
feature-sets, a random forest algorithm is introduced to perform defect classification. Third, the
feature-sets vary greatly in performance and dimensionality. To improve the fusion efficiency,
OMFF-RF merges the HOG feature-set and the GLCM feature-set through a multi-feature-set
fusion factor, which changes the number of decision trees that correspond to each feature-set in
the RF algorithm. The OMFF factor is found by optimizing the fitting curve of the
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classification accuracy of the test set using a stepping multi-feature-set fusion factor. In
experiments, the effectiveness of the proposed OMFF-RF was verified using 5 types of
distributed defects collected from an actual steel production line. OMFF-RF achieved a
recognition accuracy of 91%, a result superior to support vector machine (SVM) and conven-
tional RF algorithms.

Keywords Steel surface . Distributed defect recognition . Histogram of oriented
gradient (HOG) . Gray-level co-occurrencematrix (GLCM) . Random forest (RF) . Optimal
multi-feature-set fusion (OMFF)

1 Introduction

Steel is one of the most important metals because of its high yield and extensive applications.
According to the report provided by the World Steel Association, in 2015, worldwide crude
steel production was approximately 130 million tons per month [4]. Steel is widely used in a
variety of applications such as the automobile, aviation, shipbuilding, electronics, and machine
tool industries. As the technology and economy develop, the demand level for steel quality
continues to increase, particularly in terms of surface integrity. However, a lot of problems like
poor raw material quality and systematic process problems often cause the surface defects
during the steel production process. Therefore, early inspection of steel surfaces by employing
intelligent visual recognition methods is essential to prevent inferior steel products from being
manufactured in large quantities.

Steel surface defects can be divided into local defects and distributed defects based on their
appearance [16]. Local defects are small surface defects with simple shapes and clear
boundaries, and they are easy to segment. In contrast, distributed defects have complex
textures and fuzzy boundaries, cover large surface areas, and are difficult to segment. In the
literature, methods to detect local defects such as holes [11, 30, 37], cracks [37, 43, 44] and
scratches [10, 21, 36, 38, 44, 45, 50] on steel surfaces are well established and are primarily
based on machine vision techniques. In most cases, these methods adopt the following frame
construction. First, interference is removed from surface defect images through image-
preprocessing algorithms, a step that is crucial for subsequent feature extraction. Then, the
pretreated surface defect images are analyzed for visual features such as geometric shapes [10,
11, 41, 49], gray levels [10, 11, 41, 49, 52], and statistical texture features [8, 10, 13, 27, 32,
41, 45, 52]. These features are typically concatenated into a fusion feature-set (also called a
simple multi-feature-set fusion [SMFF] in this paper), that better represents the surface defects.
Recently, deep learning models [42] have been used to extract deep features. However, they
are very time consuming during the extraction of deep features. Also, the features have high
dimensionality, which hinders the efficiency of classification models. Finally, a classification
algorithm such as a support vector machine (SVM) [1, 10–12, 21, 22, 33, 36, 40, 44, 50–52],
neural network (NN) [8, 22, 23, 28, 33, 37, 41, 48, 49], fuzzy inference system (FIS) [5, 6, 9,
48, 52], learning vector quantifier (LVQ) [43] or self-organizing map (SOM) [30, 32] is
utilized to classify defects on steel surfaces based on the fusion feature-set. However, few
research studies have focused on complex steel surface distributed defects such as scale red,
fold, heavy scale, and salt and pepper. Although some distributed defects have been considered
in previous studies, their performance need to be further improved. Therefore, investigating
additional distributed defect-recognition methods is essential.
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Tracing this problem to its cause, specialized studies that focus on recognizing distributed
defects on steel surfaces are both limited and unsatisfactory because several underlying
complications exist:

1. Distributed defects are difficult to locate on steel surfaces. In general, these types of
defects occupy most of the steel surface but are not completely connected. Local
discretization exists, and finding a region of interest (ROI) in the image is difficult; as a
result, distributed defects cannot be detected using simple methods such as threshold
methods, edge detection, or other image-segmentation approaches.

2. Distributed defects have complex (often irregular) texture characteristics on steel surfaces.
Because of these special texture characteristics, the frequently used geometric features
cannot be used to detect these types of defects. Moreover, using only a single texture
feature is unsuitable for feature extraction.

3. The commonly used SMFF functions poorly for defect recognition on steel surfaces. The
SMFF causes surface defects to be insufficiently well classified because of its forced
concatenation; this is particularly evident when the dimensionality and performance of the
concatenated feature-sets are different. Moreover, the samples of distributed defect images
are very limited.

In this paper, to overcome the aforementioned problems, a novel modeling framework
is proposed for distributed defect recognition on steel surfaces. First, to handle the
localization problem and the complex texture characteristics, two types of feature-
description operators—HOG and GLCM—were utilized to extract features from distrib-
uted defect images. To take full advantage of the HOG and GLCM feature-sets, they were
fused to ensure that the final fusion feature-set could simultaneously describe local and
holistic information. Second, to resolve the problems associated with small samples of
distributed defect images and high dimensionality of extracted feature-sets, an RF algo-
rithm was introduced. Then, the fusion feature-set via SMFF was presented to the RF
algorithm to classify the distributed defects. However, because of the serious imbalance in
the dimensionality and performance of the HOG and GLCM feature-sets and the random-
ness of feature subset selection in the RF algorithm, a direct integration of these two
feature-sets does not achieve satisfactory classification and identification performance.
Therefore, a multi-feature-set fusion factor was introduced to merge the HOG and GLCM
feature-sets. Using the curve fit of the RF classification accuracy achieved for the test set
with a stepping multi-feature-set fusion factor, an OMFF factor was obtained by optimiz-
ing the above curve-fitting function. By changing the number of decision trees corre-
sponding to each feature-set in the RF algorithm based on the OMFF factor, an OMFF-RF
algorithm was obtained to improve the classification accuracy of distributed defects on
steel surfaces. The novelties and contributions of this paper are listed below.

1. Aiming at practical industrial application, i.e., distributed defect recognition, the HOG
feature-set was introduced and fused with the GLCM feature-set to better represent
complex texture characteristics. The HOG feature-set describes local texture information,
while the GLCM feature-set, which is frequently used to extract features of local defects,
can capture global texture information. Thus, HOG and GLCM feature-sets were fused to
improve the recognition performance of distributed defects. The experiment results show
that the HOG feature-set and fusion feature-set can achieve a better performance.
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2. Focusing on small samples of distributed defect images and high dimensionality of
extracted feature-sets, the RF algorithm was first introduced to perform defect recognition
on steel surfaces. Although other classification algorithms such as SVM can also solve the
problem of small samples and high dimensionality, the RF algorithm has better classifi-
cation ability because of bootstrap resampling with replacement during the establishment
of training sets and optimal division via feature subsets.

3. Considering the difference in the dimensionality and performance of feature-sets, a new
RF algorithm—namely, OMFF-RF—is proposed that can merge multiple feature-sets and
achieve a commendable level of performance for distributed defect classification. To our
knowledge, this is the first RF algorithm using multiple features that preserves each
individual feature-set and optimally fuses all the feature-sets. The results demonstrate that
OMFF-RF have a better performance at recognizing distributed defects.

The remainder of this paper is organized as follows. In Section 2, related work concerning
background, methods to detect defects on steel surfaces as well as issues and motivation is
introduced. Section 3 presents the details of the proposed recognition algorithm, including RF
with simple multi-feature-set fusion (SMFF-RF) and OMFF-RF. Section 4 describes the
experimental procedures used in this work, including image processing, feature extraction
and classification, and presents the results of experiments and a discussion. Finally, Section 5
presents conclusions and future work.

2 Related work

2.1 Background

Defect on steel surfaces is one of the main factors affecting steel quality. Accordingly, surface
inspection is of great significance to improve steel quality. Over the past decades, a massive
number of recognition methods that employ diverse features and classification algorithms have
been developed for classifying steel surface defects. Based on the identified defect types, the
existing studies on steel surface defect recognition methods can be split into two categories:
local defect recognition and distributed defect recognition. In addition, based on the data
information used, the local defect recognition methods can also be divided into two groups:
supervised and unsupervised.

2.2 Methods to detect defects on steel surfaces

Substantial researches have focused on local defect-identification methods on steel surfaces.
SVM is one of the most widely used supervised classification algorithms [1, 10–12, 21, 22, 33,
36, 40, 44, 50–52] for steel surface defect detection. In 2006, 46 geometric features and 8 gray-
level features were extracted, and SVM was adopted as the defect classification method by
Choi et al. [11]. This method can classify 5 defect types in rolling strip steel with accuracy
values ranging from 87% to 94%. In 2010, Zhao et al. [52] introduced fuzzy functions into
SVM (FSVM) and used it to perform surface defect detection on cold rolling strips. The
extracted features included gray-level features, invariant moment features and texture features
(based onGLCM). In 2011, 49 features, including 18 geometric features, 20 gray-level features,
7 texture features (based on GLCM) and 4 projection features (found using horizontal and
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vertical edges), were selected by Chen et al. [10]. Spot planting and scratches were well
classified (achieving an accuracy of 94%) using the above features and SVM. NN is another
commonly used supervised classification approach [8, 22, 23, 28, 33, 37, 41, 48, 49] that also
works well in classifying steel surface defects. In 2009, 6 gray-scale features, 4 GLCM features
and 4 geometric features were used as inputs to a back propagation NN (BPNN) with 3 layers
and 8 hidden layer nodes [41], achieving an accuracy of 97.19%. Yazdchi et al. [49] reported
that a three-layer NN with 4 gray features and 6 geometric features could improve the
classification accuracy of defect detection on steel surfaces to 97.9%. In 2010, 12 features
were defined for each detected candidate region on steel bars by Liu et al. [28]. The overall
classification rate of the proposed architecture using BPNN for 4 defects was 90.66%. A FIS
[5, 6, 9, 48, 52], which is based on a supervised fuzzy logic-based classifier, has also played a
significant role in steel surface defect classification. In [48], 9 appropriate features were
chosen, and the FIS-fuzzy c-means (FCM) method was used. However, this strategy did not
achieve good results, classifying only 82.46% of defects correctly. In 2010, Borselli et al. [6]
used an FIS to analyze defects on flat steel surfaces using 4 features: num_regions, max_width,
shape and brightness. This method worked well for 95% of the images. Many other supervised
algorithms have also been applied to classify defects on steel surfaces. In 2006, decision tree-
type discrimination logic was employed for 7 off-line sample defect types, resulting in a
defect-detection rate of 95.5%, as reported by Sasaki et al. [38]. In 2008, a multivariate
discriminant function model was established for defect inspection by Liu et al. [27]. In this
method, surface images of a cold rolled steel strip were subdivided into blocks from which
corresponding statistical features were extracted. The results were satisfactory, yielding a 91%
detection rate. In the same year, linear discriminant analysis (LDA) [10, 13] was applied to
classify defects based on a set of features. In 2011, extended Haar rectangle features (such as
edge features, line features and center-surround features) were extracted by Yan et al. [45].
Four methods—k-nearest neighbor (KNN), BPNN, SVM and weak classifier adaptive en-
hancement—were used to classify steel surface defects, resulting in success rates of 80%,
82.86%, 88.57% and 94%, respectively.

All the above recognition algorithms are supervised. In addition, several unsupervised
recognition algorithms exist that can classify local defects on steel surfaces. These unsuper-
vised methods include LVQ [43] and SOMs [30, 32]. For example, in 2007, new frequency-
domain features optimized by the genetic algorithm (GA) were proposed [43]. In this work, 54
frequency-domain features were used as the input vector of an LVQ neural network to
recognize 11 surface defect types on hot-rolled strips with 84.56% accuracy. In 2006, a
framework using a local binary pattern (LBP) and gray-level histograms with a SOM-based
classifier was proposed by Maenpaa [32]. Overall, distinguishing different local defect types
on steel surfaces is not very difficult. A review of existing steel surface-recognition methods is
available in the literature [34].

However, there are few recognition methods for distributed defects. Although some of the
steel surface-identification methods mentioned above have been utilized to detect various types
of distributed defects, their efficacies are not high [1, 6, 8, 10, 16, 30, 38, 43, 44, 48, 49]. For
example, in 2010, Martins et al. [30] developed 2 classification systems: One exploited the
Hough transform as the detection method for 3 surface defect types on rolled steel with
geometric shapes, resulting in an accuracy of approximately 98%. The other employed
principal component analysis (PCA) to acquire features and SOMs to classify 3 surface defect
types with complex shapes, achieving an overall classification rate of 77%. Apparently, using
an SOM is relatively ineffective for classifying distributed defects. In the same year, SVM and
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vector-valued regularized kernel function approximation (VVRKFA) were applied by Ghorai
et al. [16] to classify 24 classes of flat steel surface defects—5 distributed defect types and 19
local defects. Based on their experimental results, we conclude that local defects can be readily
identified, whereas the detection performance for heavy scale, salt and pepper and waviness,
which are types of distributed defects, is relatively lower.

2.3 Issues and motivation

The poor performance of these recognition methods on distributed defects occurs princi-
pally because the selected features are not propitious for representing complex texture
characteristics; an SMFF is less effective for steel surface distributed defect recognition
because of its deficiencies in allowing each feature to project itself perfectly in classifica-
tion algorithms. However, the machine learning domain includes many classification
algorithms that have used multiple feature fusion techniques to address such issues. The
crucial point in solving the problem is how to determine the weights for multiple features
in classification algorithms and combine multiple features appropriately. For example, a
hierarchical regression (HR) model was designed in reference [46] to utilize the preserved
evidence derived from each individual feature, which was then cooperatively fused to gain
a multimedia semantic concept classifier. Similarly, a multiple feature-hashing (MFH)
technique was proposed for large-scale near-duplicate video retrieval by Song et al. [39].
The MFH preserved each type of feature and fused multiple features into a joint frame-
work, i.e., a group of hash functions. In reference [15], an optimal graph-learning (OGL)
technique that used multiple features was proposed to precisely encode the relationships
among the data points. Then, this OGL was integrated with semi-supervised learning
(SSL) to solve the multiple feature classification problem. The importance of each
preserved feature was determined by the parameter αt in the SSL algorithm. The above
HR, MFH and OGL are classification algorithms that use late feature fusion; they first
obtain the separate classification results from each feature and then combine these results
for the final classification. Classification algorithms with late feature fusion preserve each
type of feature, but require large amounts of computation during training. In contrast,
classification algorithms that use early feature fusion fuse multiple features at the input
stage of the classifier. For example, reference [17] first acquired the similarities of multiple
features derived from random forest classifiers and then combined these similarities to an
embedded version used as input to a random forest classifier. However, this early feature
fusion approach did not preserve each individual feature in the classification algorithms
and still required large amounts of calculation. Inspired by the success of classification
algorithms with multiple feature fusion, an effective classification algorithm that can
extract appropriate features for complex texture characteristics of distributed defects and
consider multiple feature fusion is necessary to solve the aforementioned issues.

3 The proposed algorithm

To perform distributed defect recognition, in this paper, an OMFF-RF algorithm is proposed.
An overview of the proposed algorithm is illustrated in Fig. 1. First, the HOG and GLCM
feature-sets are extracted and fused to characterize the distributed defects. Then, an RF
algorithm is introduced to perform distributed defect classification. Obviously, the SMFF-RF
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fuses multiple feature-sets used for the input stage of the RF classifier, while the proposed
OMFF-RF preserves each feature-set and optimally combines the classification results from
separate sub-RFs (i.e., RFH and RFG) with each feature-set. The details of feature extraction
and other recognition procedures are presented in the next section.

3.1 RF and SMFF-RF for distributed defect recognition

An RF algorithm was employed to establish an identification model for distributed defects
on steel surfaces. The RF algorithm was first proposed by Breiman in 2001 [7] and is a
classification algorithm that uses multiple decision trees to train and predict samples. The
RF algorithm selects the category corresponding to the maximum vote based on the votes
of the leaf nodes of multiple decision trees collected for each category. One advantage of
the RF algorithm is that it inherits many of the decision tree properties such as proxy
splitting of missing values, the ability to use non-normalized data and the ability to handle
tag and numerical features. Another advantage of RF is that its prediction performance can
be improved by applying multiple single-classification models (or single decision trees).
The established method of training sets and the randomness of feature subset selection
make each decision tree of the RF algorithm different. Thus, problems related to the small
sample sizes and high dimensionality of extracted feature-sets are solved, and the phe-
nomenon of over-fitting is eliminated. Other strengths, such as the ability to utilize out-of-
the-bag (OBB) data to estimate the split performance and to exploit a similarity matrix to
measure the proximity between two samples, are also evident. Furthermore, no redundant
depiction occurs. In one word, the RF algorithm is one of the best classification algo-
rithms, and it has been successfully applied in many fields. Therefore, this algorithm is
selected to recognize distributed defects in this work.

In SMFF-RF, the extracted multi-feature-sets are concatenated and considered as a whole
(i.e., a fusion feature-set). Therefore, only the feature-set changes, not the essence of the RF
algorithm itself. The operational principle of the SMFF-RF algorithm is quite similar to that of
RF algorithm and is described below (see Fig. 2 for reference).

Step 1. Assuming that k decision trees are to be established in the RF algorithm, for every
decision tree, adopt bootstrap resampling with replacement to randomly draw
training sets Ti(i = 1, … , k) with the same sample size from the total training set

HOG feature-set

GLCM feature-set

Simplely combine / SMFF RF

RFH

RFG

Optimally combine / OMFF RF+ &

SMFF-RF

OMFF-RF

Fig. 1 An overview of the proposed algorithm. The HOG and GLCM feature-sets are extracted and an RF
algorithm is introduced to perform distributed defect classification. The SMFF-RF is a classification
algorithm with early feature fusion, while the proposed OMFF-RF belongs to classification algorithms
with late feature fusion
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T. Then, these training sets (Ti) are regarded as the training sets for the k decision
trees (see I in Fig. 2).

Step 2. For each branch node of the ith decision tree, employ sampling without replacement
to randomly select q feature variables from the total feature-set M (i.e., the SMFF
feature-set [HOG + GLCM] consisting of HOG feature-set and GLCM feature-set)
as a feature subset Mij(i = 1, … , k, j = 1, 2,…), where j expresses the number of
feature subsets for each decision tree (i.e., the number of branch nodes). Typically,
the number of variables in a feature subsetMij is the square root of the dimensions of

the total feature-set, M:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim Mð Þp

. Therefore, j≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim Mð Þp

(see II in Fig. 2).
Step 3. Train each decision tree using Ti as a training set and Mi as a set of feature subsets.

Then, choose the variable mij with the best classification ability from the feature
subset Mij to classify the samples by setting thresholds for each branch node nodeij.
The representative choosing criterion is the Gini index:

Gini nodeð Þ ¼ ∑
C

c¼1
pc 1 − pcð Þ ¼ 1 − ∑

C

c¼1
p2c ð1Þ

Test set V or

Data to be detected

.

.

.

Sampling without 

replacment

I

.

.

.

Mk1

Mk3Mk2

.  .  .

.

.

.

M21

M23M22

.  .  .

.  .  .

.

.

.

M11

M13M12

.

.

.

SMFF feature-set M

HOG   + GLCM

Training 

.

.

.

BootstrapTotal training 

set T resampling

Training 

set T1

Training 

set T2

Training 

set Tk

Training 

Training 

Classified result

f(v)

The 1st decision tree

classification result

RF1(v)

The 2nd decision tree

classification result

RF2(v)

The kth decision tree

classification result

RFk(v)

Predicting

Predicting

Predicting

Fig. 2 A schematic diagram of the operational principle underlying the SMFF-RF algorithm. The different colors
and numbers denote different modules and steps, respectively: blue and I indicate the process for producing
training sets (step 1); light purple and II represent the sampling procedure for feature subsets (step 2); green and III
indicate the training of the classifier (step 3); burgundy and IV depict the prediction of the test set (step 4); and gold
or orange indicate the classifier established via the steps described above
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where pc is the proportion of samples belonging to class c in the node node. The best
classification ability is guaranteed to minimize Gini split index:

Ginisplit nodeij
� � ¼ plGini nodelð Þ þ prGini noderð Þ ð2Þ

where pl and pr denote the proportion of samples assigned to child nodes nodel and noder of
parent node nodeij. Thus, the variable mij with the best classification ability is chosen by

mij ¼ arg min
m∈Mij

Ginisplit nodeij
� �

: ð3Þ

Repeat this process until classification is completed or all the feature subsets have been
used. At the end, this process obtains an RF classifier {RF(Ti,Mi), i = 1, … , k} where
RF(Ti,Mi) is the classification model of the ith decision tree (see III in Fig. 2).

Step 4. Input the test set V, collect the voting results of all decision trees, and search for the
category that received the maximum number of votes (i.e., the classification result):

f vð Þ ¼ arg max
c

∑
k

i¼1
I RFi vð Þ ¼ cð Þ ð4Þ

where v represents a sample from test set V, f(v) is the final recognition result, RFi(v) expresses
the classification result of ith decision tree, c is the class label, and I indicates the characteristic
function (see IV in Fig. 2).

The introduction of the randomness of feature subset selection and the establishment of
training set can equip the SMFF-RF algorithm with excellent anti-noise characteristics and
avoids the over-fitting phenomenon. The SMFF-RF algorithm can handle data with high
dimensionality; therefore, feature reduction is not required.

3.2 Improved OMFF-RF for distributed defect recognition

The SMFF-RF algorithm can fuse a variety of feature-sets, but it may cause a problem owing
to the randomness of feature subset selection and the feature variables having independent and
identical distributions. As the difference in the dimensionality of different types of feature-sets
increases, the selection probability of feature variables in the higher-dimensionality feature-sets
also increases, resulting in an extreme imbalance in feature-set fusion in which the low-
dimensionality feature-sets will be meaningless. Another problem that must be considered,
is that different types of feature-sets have different strengths and weaknesses. Therefore, the
SMFF-RF algorithm must be improved to guarantee that different types of feature-sets can be
fully fused and that the advantage of each feature-set can be adequately utilized.

In this paper, we primarily consider the fusion of two types of feature-sets. The HOG
feature-set and the GLCM feature-set are used as an example. A multi-feature-set fusion factor,
ε, is introduced to determine the proportion of decision trees that are separately allocated to the
two feature-sets in the RF algorithm. This variable ε is defined as follows:

ε ¼ n
k

ð5Þ

where n denotes the number of decision trees occupied by HOG feature-set, and k is the
number of decision trees to be established in the RF algorithm. Therefore, the proportion of
decision trees dominated by the GLCM feature-set is 1 − ε. The value of ε is between 0 and 1.
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The difference between the improved RF algorithm (which involves a dynamic
multi-feature-set fusion factor) and the SMFF-RF algorithm is that the branch nodes
of n decision trees among all decision trees are fragmented with the feature subset
Hij(i = 1, … , n, j = 1, 2,…) obtained from the HOG feature-set, whereas the branch
nodes of the remaining k − n decision trees are divided by feature subset G(i − n)j(i =
n + 1, … , k, j = 1, 2,…) obtained from the GLCM feature-set (Fig. 3). Similar to the
SMFF-RF algorithm, the variable numbers in the feature subsets Hij and G(i − n)j areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dim Hð Þp
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dim Gð Þp

. This improvement is based on the fact that multi-feature-
set fusion is accomplished by adjusting the proportions of the decision trees corre-
sponding to the different feature-sets.

To make the improved RF algorithm effective for distributed defects, the OMFF factor εmax
must be determined. To do that, we selected different multi-feature-set fusion factor ε values via
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.

.

.

Fig. 3 A schematic diagram of the operational principle underlying the improved RF algorithm with the multi-
feature-set fusion factor ε. All the representations are similar to those in Fig. 2, except that the HOG&GLCM
feature-set is obtained when the OMFF factor εmax is actualized

16750 Multimed Tools Appl (2018) 77:16741–16770



equal interval sampling to acquire the RF classification accuracies for the test set and then used
a curve to fit the discrete points and obtain the RF recognition accuracy function rf of the test
set. Finally, the OMFF factor εmax was determined by optimizing the above function.

The detailed procedures are shown below.

Step 1. The discrete points with RF classification accuracy Rf(εi) of the test set can be
obtained using a stepping multi-feature-set fusion factor, εi, where the step length is
m, as follows:

εi;Rf εið Þð Þjεi ¼ i� l; h ¼ 1

l
; i ¼ 0; 1;…; h

� �
: ð6Þ

Step 2. The RF recognition accuracy function rf of the test set can be obtained by curve
fitting (CF) the above discrete points:

rf εð Þ ¼ gCF ε; θ*
� �

;where θ* ¼ arg min
θ

∑
n

i¼1
gCF εi; θð Þ − Rf εið Þ½ �2: ð7Þ

Here, θ represents the parameters in the curve-fitting function.

Step 3. The optimization algorithm is used to find the ε at which the value of the RF
recognition accuracy function of the test set is maximized, namely, the OMFF factor:

εmax ¼ argmax
ε

rf εð Þ: ð8Þ

The method described above is the proposed OMFF-RF algorithm, which fuses the HOG
and GLCM feature-sets with the OMFF factor εmax (i.e., HOG&GLCM). This approach can be
adapted for cases where three or more feature-sets must be fused using principles similar to the
above. The advantage of the OMFF-RF algorithm is that it is suitable for fusing different
feature-sets with larger or smaller differences in dimensionality. Moreover, the OMFF-RF
algorithm inherits all the performance of the RF algorithm.

3.3 Implementation details

This subsection will discuss the implementation details of our proposed OMFF-RF algorithm.
Figure 4 shows the flowchart of proposed algorithm. Table 1 provided the detailed implemen-
tation steps of the proposed modeling framework.

4 Experiments and results

In this paper, because of the limited numbers of some distributed defect types, only 5
types of representative distributed defects on steel surfaces were collected from an
actual steel production line and analyzed: scale red, fold, heavy scale, rolled-in scale
and salt and pepper (Fig. 5a-e). Images of these defects were used to build a model
for distributed defect recognition on steel surfaces. We randomly selected 350 images
(768 × 240 pixels) to construct the training set. Then, 132 images (768 × 240 pixels)
that were completely different from those used in the training set containing the 5
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types of distributed defects were used to create a test set. Table 2 lists information of
the training and test sets for each type of distributed defect in the experiments.
Moreover, the experimental platform was a single personal computer (PC) containing
a Core i5–4460 central processing unit (CPU) running at 3.20 GHz and an 8G
internal storage.

To verify the effectiveness of our proposed algorithm, after performing the same image prepro-
cessing and feature extraction tasks, the proposed OMFF-RF was compared to SVM and traditional
RF with HOG, GLCM, and SMFF (i.e., HOG + GLCM) feature-sets. Figure 4 depicts the
experimental procedures to perform distributed defect recognition on steel surfaces using our
proposed OMFF-RF. Full details of the experimental process, including image preprocessing, feature
extraction and classification, are described below.

4.1 Image preprocessing

Many types of interference occur during the process of acquiring, transmitting, and converting
steel surface images and they can be roughly divided into external and internal interference.
External interference primarily involves lighting sources and electromagnetic waves. In contrast,
internal interference comprises changes in the basic properties of photosensitive resistance and
interior circuits that are generated during the photoelectric conversion process of the image-

Training set Test set

Image 

preprocessing

Image 

preprocessing

Feature 

extraction

Feature 

extraction

RF

7-SFCF GA

OMFF factor  

OMFF-RF

Classification 

result

MF-GFH

BI

SLGT

HOG 

feature-set

GLCM 

feature-set

RFH RFG

Fig. 4 The flowchart of the proposed OMFF-RF algorithm. The complete process consists of image prepro-
cessing, feature extraction and classification. MF-GH, SLGT, BI, 7-SFCF and GA represent median filtering
based on the gray frequency histogram, segmented linear gray transform, bilinear interpolation, 7th-order sine-
function curve fit and genetic algorithm, respectively
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acquisition system. These interferences might result in the phenomena of polarized light,
decreased definition and motion blur of steel surface images. In particular, because of the
reflective characteristics of steel surfaces [29], the lighting power supply partially illuminates
the steel surface images, which significantly affects subsequent operations. Thus, steel surface
images require preprocessing before feature extraction. Image preprocessing consists of image
restoration, image enhancement, image transformation and image segmentation. Image restora-
tion and image enhancement are the primary considerations in this paper.

The main objective of image restoration is image de-noising to restore degraded images.
The types of noise that arise during steel image acquisition include Gaussian noise, salt and
pepper noise, and impulse noise. Particularly, Gaussian noise is a type of sensor noise or
electronic circuit noise caused by low light or high temperatures, and it can negatively impact

Table 1 The implementation details of the proposed OMFF-RF algorithm

Algorithm OMFF-RF

Let = {( , , ), … , ( , , ) } and = {( , , ), … , ( , , ) } represent the training set and test 

set via image preprocessing and feature extraction respectively, where , and , denote the feature vectors

extracted from HOG feature and GLCM feature respectively, and is the corresponding image-class label.

For = 0: : 1

For = 1:

1. Randomly draw training set of size A from via bootstrap resampling.

2. Randomly select feature subset obtained from the HOG feature-set by sampling without 

replacement to form a set of feature subsets .

3. Use and to fit a tree:

a. Find the variable with the best binary split among the feature subset for each branch 

node according to formula (3).

b. Repeat Step (a) until classification is completed or all the feature sets have been used.

End

For = ( + 1):

1. Randomly draw training set of size A from via bootstrap resampling.

2. Randomly select feature subset ( ) obtained from the GLCM feature-set by sampling without 

replacement to form a set of feature subsets ( ).

3. Use the and ( ) to fit a tree:

a. Find the variable ( ) with the best binary split among the feature subset ( ) for each 

branch node according to formula (3).

b. Repeat Step (a) until classification is completed or all the feature sets have been used.

End

( ) = arg max ( ( ) = ) + ( ( ) = ) (9)

=
( , ) ≤

, ( ) >
(10)

Make a prediction at a test set :

where

and get the RF classification accuracy ( ) of the test set.

End

Obtain the RF classification accuracy function according to formula (7) using curve fitting.

Find the OMFF factor via an optimization algorithm.

The dashed line is used for division
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subsequent procedures. Thus, a median filtering [19, 24] process based on the gray frequency
histogram (MF-GFH) was proposed to perform image de-noising. As shown in Fig. 6, the gray
values of the steel surface image are concentrated in the range 40–160. These values primarily
correspond to the gray values of backgrounds that have relatively few fluctuations associated
with low-intensity noise. The application of traditional MF to steel surface images results in
distortion. To overcome the limitations of the traditional MF, a filter center frequency fcenter
was introduced. By compiling statistics about the frequency of each gray level using a GFH,
we acquired the maximum frequency fmax and, subsequently, adopted fmax/2 as the filter center
frequency fcenter:

f center ¼
f max
2

: ð11Þ

Then, using fcenter as a threshold, MF is not performed when the frequency f of the
gray level is not less than fcenter (i.e., where the frequency primarily corresponds to the

Table 2 The number of each type
of distributed defect images in the
training and test sets

Distributed defect types Number in
training set

Number in
test set

Scale red 80 30
Fold 56 21
Heavy scale 76 30
Rolled-in scale 64 24
Salt and pepper 74 27

Total 350 132

An example of a scale red defect An example of a fold defect 

An example of a heavy scale defect An example of a rolled-in scale defect 

 An example of a salt and pepper defect 

a b

c

e

d

Fig. 5 Example images of the 5 distributed defect types on steel surfaces examined here. These images were
collected from an actual steel production line. In this figure, panels (a-e) show scale red, fold, heavy scale, rolled-
in scale, and salt and pepper defects, respectively
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image background). Otherwise, MF is required. The mathematical expression is as
follow:

Y ij ¼ MedN X ij
� �

X ij

�
f X ij

< f center
f X ij

≥ f center
ð12Þ

where the median filter is represented byMed;N is called the neighborhood window; Xij and Yij
are pixel values of image point (i, j) before and after filtering, respectively; and f X ij

is the

frequency corresponding to the pixel value of the original image point (i, j).
The purpose of image enhancement is to retain or highlight useful information; improve

the image quality [14]; better display the ROI; and enhance the operational value of
images by, for example, highlighting or enhancing edge information, contour information,
or the contrast ratio. The non-uniformity of illumination [29, 31] and the reflective
characteristics [29] of steel surfaces make steel surface images appear partially light or
dark, which can interfere with the defect edge information of images. Thus, the segmented
linear gray transform (SLGT) is applied to extend the background regions whose gray
values are more concentrated and compress other regions to effectively eliminate the
distortion of the edge information of defect images caused by the reflective characteristics
and the non-uniform illumination. Compressing the gray-level range of the noise associ-
ated with steel surface images using the method described above generates processed
images with less noise, greater uniformity and stronger contrast.

To facilitate feature extraction and reduce computational complexity, the original images
were resized and normalized to 64 × 64 pixels by applying bilinear interpolation (BI).

4.2 Feature extraction

Feature extraction is a critical step before classification. Features for which high performance
can be achieved and that can reflect the nature of images contribute significantly to image
classification and recognition. As described in Section 1, the extracted features of steel surface
images are commonly statistical features such as geometric shape features, gray features and
statistical texture features. The use of other features such as morphological features, spatial

Gray value

F
yc

n
e

u
q

er

fmax

fmax /2

40 160

Fig. 6 The gray frequency histogram (GFH) of an example distributed defect image. The gray values of this
example lie primarily in the range 40–160 and correspond mainly to the gray values of the background, which
has a frequency exceeding fmax/2. Although the gray values of other distributed defect image backgrounds can
fall outside this range (40–160), their frequencies are basically greater than fmax/2
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domain features, frequency domain features and fractal model features is comparatively rare.
Because of the complex texture characteristics of distributed defects, geometric shape features
cannot be used; instead, for this research, statistical texture features represent the best choice.
Currently, the most commonly used methods for statistical texture feature extraction are
GLCM [8, 10, 14, 20, 41, 52], LBP [20, 32, 47], HOG [2, 26, 35, 47], scale-invariant feature
transform (SIFT) [3, 25, 40, 47], and Haar [26, 45, 47]; among these, HOG and SIFT are
frequently used for object classification and facial recognition. To account for both the
characteristics of distributed defects and the advantages and disadvantages of each texture
feature, HOG and GLCM features, which describe the local and global texture information of
images, respectively, are used to characterize distributed defects.

HOG, a feature description operator, is utilized for visual inspection by calculating the
gradients of every pixel in a local image region and constructing a gradient direction histogram
[47]. The information about the gray and texture changes of local image regions, especially
edge feature information, can be included in the features extracted by this method without
knowing the locations of the defects.

The basic steps of the algorithm are shown in the flow diagram in Fig. 7. Because of the
image size (64 × 64 pixels) after image preprocessing, the algorithm works as follows (for
reference, see Fig. 7): First, gamma correction is applied to the input images, and the gradient
of each pixel is calculated. Next, 8 × 8-pixel areas are identified as cells, for a total of 64 cells
(8 × 8 = 64). The gradient direction of every pixel in the cell is divided into 9 bins (e.g., 40° −
60° and 220° − 240° is a bin), and the direction gradient histogram of each cell is obtained by
projecting the gradient direction onto each bin. Thus, the number of features in each cell is

Gamma correction

Calculate the gradient of every 

pixel

Input images

Ascertain the sizes of the cells 

and  build direction gradient 

histogram for each cell  

Form partially overlapping 

blocks using adjacent cells 
and normalize them

Acquire the HOG feature-set 

by  connecting the features of 

all blocks in turn

8 cells

8
 cells

Fig. 7 A schematic diagram of the HOG feature-extraction process. The flow diagram on the left describes the
basic steps to acquire the HOG feature-set, whereas the segmentation map on the right denotes the factual work.
Blue indicates the treatment of cells, whereas red reflects the processing procedures for blocks
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limited to 9. Then, adjacent 2 × 2 = 4 cells are selected to form a block, resulting in a total of 49
partly overlapping blocks ((8 − 1) × (8 − 1) = 49). The features of each block normalized by the
L2-norm method are derived from the serial features of all cells in a block; thus, 4 × 9 = 36
features exist in each block. Finally, the HOG feature-set of the distributed defect images is

Table 3 Scalar GLCM features and their properties

Feature types Properties

Energy Reflects the uniformity of the gray-level distribution
and the coarseness of the texture

Correlation Reflects the main direction of the texture

Sum of Average Reflects the luminance of the images

Inverse Different Moment Reflects the regularity of the texture

Contrast Reflect the clarity of the images and the groove depth of the texture
Variance of Difference

Variance Reflect the cyclical nature of the texture
Sum of Variance

Entropy Reflect the heterogeneity and complexity of the texture
Sum of Entropy
Difference of Entropy

Shadow of Clustering –
Prominence of Clustering

Maximal Probability –
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Fig. 8 The recognition accuracy of different RBF kernel parameter values of γ using SVM with the HOG,
GLCM and SMFF feature-sets. The optimal RBF kernel parameter values of γ are within the ranges [0.02, 0.1],
[10, 50] and [0.002, 0.01], respectively
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acquired by connecting the features of all blocks in turn, eventually resulting in a total of 49 ×
36 = 1764 features.

The GLCM, which is a joint probability matrix, is utilized to describe the spatial correla-
tions among pixels in texture images [14, 18]. The GLCM of an image can contain compre-
hensive gray information about the direction, adjacent spacing and magnitude of changes, and
it is sensitive to changes in the texture of the entire image. Therefore, the GLCM is a feasible
method for representing the overall features of distributed defect images on steel surfaces.

Assuming that the target image area is f(x, y) and that S represents a set of ordered pixel
pairs with a particular spatial relationship in the target image region, the value of each element
in the joint probability matrix P is

P f 1; f 2; d; θð Þ ¼ # x1; y1ð Þ; x2; y2ð Þ½ �∈Sj f x1; y1ð Þ ¼ f 1& f x2; y2ð Þ ¼ f 2f g
#S

ð13Þ

where the numerator on the right side of the equation indicates the number of pixel pairs whose
distance is d, whose angle is θ and whose gray values are f1 and f2. The denominator is the total
number of pixel pairs (# is used to denote quantities), and P is a normalized GLCM. A
different GLCM can be obtained by selecting a different distance d and angle θ.

The GLCMs of distributed defect images in 4 directions can be obtained by setting the
distance d equal to 1 and the angle θ equal to 0°, 45°, 90° or 135°. Indeed, the angle θ can be

Fig. 9 The function curve of the discrete points of RF recognition accuracy with the stepping multi-feature-set
fusion factor obtained using 7-SFCF. The green dashed line represents the envelope of the curve peaks

Table 4 Recognition accuracy obtained with stepping multi-feature-set fusion factor ε

ε 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Accuracy 0.7500 0.8636 0.8864 0.8636 0.8409 0.8636 0.8864 0.8636 0.8636 0.8409 0.8409
ε 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1
Accuracy 0.8864 0.8409 0.8409 0.9091 0.8864 0.8409 0.8864 0.8864 0.8409 0.8182
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expressed in terms of the distance d. That is, 0°, 45°, 90° and 135° can be represented as [0 1],
[−1 1], [−1 0] and [−1 − 1], respectively. To more directly depict the texture properties with a
GLCM, 14 scalar features [18] were applied to characterize the GLCM in every direction and,
thus, better describe the distributed defects contained in images of steel surfaces (the concrete
scalar features and their properties are listed in Table 3).

Accordingly, 56 texture features were abstracted by the GLCM.
In summary, 1764 HOG features and 56 GLCM features were extracted and normalized to

values between 0 and 1. The subsequent multi-feature-set fusion is based on the HOG and
GLCM feature-sets described above.

4.3 Classification

After image preprocessing and feature extraction, SVM, RF and the proposed OMFF-RF
algorithm were employed to establish the classification model for distributed defects on steel
surfaces. The HOG, GLCM and SMFF feature-sets (i.e., HOG + GLCM) were provided for

Table 5 The experimental recognition results of 5 types of distributed defects based on the SVM with the HOG
feature-set, conducted using the optimal RBF kernel parameter γ = 0.05

Defect types Scale red Fold Heavy scale Rolled-in scale Salt and pepper Accuracy (%)

Scale red 15 0 0 9 6 50
Fold 0 21 0 0 0 100
Heavy scale 0 0 27 0 3 90
Rolled-in scale 0 0 0 24 0 100
Salt and pepper 0 0 6 0 21 77.78

Fig. 10 The process of searching for the OMFF factor εmax by adopting GA. The fitness reflects the recognition
accuracy. To eliminate random search error, the recognition performances of different numbers of separate
populations (or iterations) is displayed simultaneously. The point in the green circle is the rfmax (or best fitness)
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SVM and RF. The fusion of the HOG and GLCM feature-sets (i.e., HOG&GLCM) with the
OMFF factor εmax, which determines the proportions of the two feature-sets in the decision
trees, was utilized with the OMFF-RF algorithm. During the encoding process, the function
forest.train (the parameters such as _min_sample_count (5), max_tree_count (100),
_max_depth (50), _nactive_vars and _max_categories were set in CvRTParams) and the
function CvSVM.train (the parameters including svm_type (C_SVC), Cvalue (10) and
kernel_type (RBF) were also set in CvSVMParams) of the letter_cecog.cpp file in OpenCV
were applied to train the classifiers. The classification results can be obtained by using the
trained classifier and calling the functions forest.predict and CvSVM.predict from the
letter_cecog.cpp file. The OMFF-RF training and prediction functions are available as an
original program. It should be noted that most of the above parameter values were acquired via
experience. However, the optimal RBF kernel parameter γ of SVM and the OMFF factor εmax
of OMFF-RF were obtained through parameter optimization experiments as detailed below.

1) Optimization of the RBF kernel parameter, γ. To find the optimal RBF kernel parameter γ, a
non-uniform grid search in the form of (1, 2, 5) was used to test the recognition performance
of SVM with HOG, GLCM and SMFF (i.e., HOG + GLCM) feature-sets (see Fig. 8).
Figure 8 clearly shows that the optimal RBF kernel parameter values of γ for SVMwith the
HOG (dim(HOG) = 1764), GLCM (dim(HOG) = 56) and SMFF (dim(SMFF) = 1764 + 56)
feature-sets are within the ranges [0.02, 0.1], [10, 50] and [0.002, 0.01], respectively. Gen-
erally, for high-dimensional feature-sets, the settings of RBF kernel parameter γ are
relatively small so that feature weights will decay faster. This reduces the high-
dimensional subspace to a low-dimensional subspace. In contrast, for low-dimensional
feature-sets, to map the data into a linear separable form, the settings of RBF kernel
parameter γ are relatively large. This is the reason why the above optimal RBF kernel
parameter γ of SVM increases as the dimensionality of the feature-sets decreases. In this
paper, the optimal RBF kernel parameter values of γ for SVM with HOG, GLCM and
SMFF (i.e., HOG + GLCM) feature-sets were set to 0.05, 20 and 0.005, respectively.

Table 7 The experimental recognition results of 5 types of distributed defects based on the SVM with SMFF
(i.e., HOG + GLCM) feature-set, conducted using the optimal RBF kernel parameter γ = 0.005

Defect types Scale red Fold Heavy scale Rolled-in scale Salt and pepper Accuracy (%)

Scale red 21 0 0 6 3 70
Fold 0 21 0 0 0 100
Heavy scale 0 0 27 0 3 90
Rolled-in scale 3 0 0 21 0 87.5
Salt and pepper 0 0 6 0 21 77.78

Table 6 The experimental recognition results of 5 types of distributed defects based on the SVM with the
GLCM feature-set, conducted using the optimal RBF kernel parameter γ = 20

Defect types Scale red Fold Heavy scale Rolled-in scale Salt and pepper Accuracy (%)

Scale red 30 0 0 0 0 100
Fold 0 9 0 3 9 42.86
Heavy scale 0 0 30 0 0 100
Rolled-in scale 6 0 0 12 6 50
Salt and pepper 6 9 0 6 6 22.22
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2) Analysis of the OMFF factor, εmax. First, the RF recognition accuracy with the stepping
multi-feature-set fusion factor ε = (0 : 0.05 : 1) was obtained as listed in Table 4. Second,
by fitting the discrete points in Table 4 to a 7th-order sine-function curve fit (7-SFCF), the
RF recognition accuracy function was acquired (Fig. 9). This curve has multiple peaks, or
in other words, the synthetic recognition accuracy obtained with different values of the
multi-feature-set fusion factor ε fluctuates, resulting from differences in the representation
capabilities of diverse feature-sets for different distributed defects. Based on the envelope
of the curve peaks, the overall trend of the accuracy function is described by the slope, and
the OMFF factor value εmax ranges from 0.65 to 0.75 when the function value is
maximized (i.e., when the classification accuracy is maximized). This result is not
unexpected because HOG feature-set are better than GLCM feature-set for recognizing
distributed defects (also see Table 12). Finally, by employing the GA [2] to optimize the
above function, the OMFF factor was solved; that is, εmax ≈ 0.7159 (Fig. 10). Given that
100 decision trees were built and that the number of decision trees corresponding to each
feature-set should be an integer, we set εmax = 0.71, where the value of the recognition
accuracy function rfmax is equal to 0.917. Under these circumstances, the actual classifi-
cation accuracy is 0.9091. This result is acceptable because the difference (approximately
0.86% = (0.917 − 0.9091)/0.917) between the actual and theoretical accuracies is negli-
gible. In conclusion, the OMFF factor εmax of the proposed OMFF-RF algorithm is 0.71,
and the corresponding recognition accuracy is 0.9091.

4.4 Results and discussion

In this section, the experimental outcomes are presented, and the distributed defect recognition
capacities of the SVM, RF and OMFF-RF algorithms with diverse feature-sets are compared.

Table 9 The experimental recognition results of 5 types of distributed defects based on the RF with the GLCM
feature-set

Defect types Scale red Fold Heavy scale Rolled-in scale Salt and pepper Accuracy (%)

Scale red 27 0 0 0 3 90
Fold 0 12 0 9 0 57.14
Heavy scale 0 0 27 0 0 100
Rolled-in scale 0 0 0 21 3 87.5
Salt and pepper 12 0 0 6 9 33.33

Table 8 The experimental recognition results of 5 types of distributed defects based on the RF with the HOG
feature-set

Defect types Scale red Fold Heavy scale Rolled-in scale Salt and pepper Accuracy (%)

Scale red 21 0 0 6 3 70
Fold 0 21 0 0 0 100
Heavy scale 0 0 30 0 0 100
Rolled-in scale 6 0 0 18 0 75
Salt and pepper 0 0 9 0 18 66.67
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The experimental recognition results of the 5 types of distributed defects obtained via the
SVM algorithm with the HOG, GLCM and SMFF (i.e., HOG + GLCM) feature-sets,
conducted using the optimal RBF kernel parameter γ in Section 4.3, are shown in Tables 5,
6 and 7, respectively. The experimental recognition results of 5 types of distributed defects
obtained via the RF algorithm with the HOG, GLCM and SMFF (i.e., HOG + GLCM) feature-
sets are shown in Tables 8, 9 and 10, respectively. The experimental recognition results of the 5
types of distributed defects obtained via the OMFF-RF algorithm, conducted using the OMFF
factor value εmax in Section 4.3 to fuse the HOG and GLCM feature-sets (i.e., HOG&GLCM),
are shown in Table 11. Finally, Table 12 presents the comparative experimental results of all
the recognition methods regarding average accuracy and overall runtimes (in seconds). Here,
the overall runtime reported in the last column of Table 12 reflects the entire runtime including
image preprocessing, feature extraction, classifier training, and test set prediction in OpenCV.

The recognition capacities of the HOG and GLCM feature-sets can be derived by compar-
ing Tables 5 and 6 and Tables 8 and 9. To present the differences more clearly, Fig. 11 shows
the comparative recognition accuracy of the HOG and GLCM feature-sets using the two
different classification algorithms on each type of distributed defect. It is clearly shown that the
HOG feature-set works well for fold, heavy scale and rolled-in scale, while the GLCM feature-
set performs extremely well for scale red and heavy scale. However, both feature-sets
underperform for salt and pepper, although the HOG feature-set is superior to the GLCM
feature-set for this distributed defect type. This phenomenon suggests that the inspection
capabilities of diverse feature-sets for different distributed defects are different. Moreover,
according to Table 12, when using the HOG feature set, both SVM and RF produced better
performances than they did when using the GLCM feature-set. This is the reason that the HOG
feature-set was introduced and fused with the GLCM feature-set to represent the complex
texture characteristics of distributed defects.

In the SVM classifier, the comparative recognition capacities of SMFF (HOG + GLCM)
feature-set and all the individual feature-sets are drawn from Tables 5, 6 and 7. For a visual

Table 11 The experimental recognition results of 5 types of distributed defects based on the OMFF-RF
algorithms, conducted using the OMFF factor value εmax = 0.71 to fuse the HOG and GLCM feature-sets (i.e.,
HOG&GLCM)

Defect types Scale red Fold Heavy scale Rolled-in scale Salt and pepper Accuracy (%)

Scale red 27 0 0 0 3 90
Fold 0 21 0 0 0 100
Heavy scale 0 0 30 0 0 100
Rolled-in scale 6 0 0 18 0 75
Salt and pepper 0 0 3 0 24 88.89

Table 10 The experimental recognition results of 5 types of distributed defects based on the RF with SMFF (i.e.,
HOG + GLCM) feature-set

Defect types Scale red Fold Heavy scale Rolled-in scale Salt and pepper Accuracy (%)

Scale red 27 0 0 0 3 90
Fold 0 21 0 0 0 100
Heavy scale 0 0 27 0 3 90
Rolled-in scale 6 0 0 18 0 75
Salt and pepper 0 0 6 0 21 77.78
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comparison, Fig. 12 shows the comparative recognition accuracy of the SMFF (HOG +
GLCM) feature-set and all the individual feature-sets using SVM for each type of distributed
defect. From Fig. 12, the SMFF feature-set relies upon the strengths of the better-performing
feature-set to compensate for the deficiencies of the other feature-set, especially for scale red,
fold, rolled-in scale and salt and pepper. This finding demonstrates that feature fusion can
increase the effectiveness of classification algorithms. This improved effectiveness is also
apparent from the results of the traditional RF classifier listed in Tables 8, 9 and 10 and in
Fig. 13. In addition, from Table 12, regardless of what feature-set is used, the SVM algorithm’s
classification performance is worse than that of the RF algorithm introduced to perform defect
recognition on steel surfaces. The possible cause for this phenomenon is that the RF algorithm
establishes training sets via bootstrap resampling with replacement and optimally splits via the
feature subsets to resolve the problems of small samples and high dimensionality.

By analyzing Tables 7, 10 and 11 and Fig. 14, we can draw several conclusions about our
proposed OMFF-RF algorithm. First, the OMFF-RF algorithm retains the best recognition
accuracy of the other two classification algorithms when using the SMFF feature-set for scale
red and fold. Second, compared to the other two classification algorithms when using the SMFF
feature-set, OMFF-RF improves the recognition accuracy for heavy scale and salt and pepper.
These results benefit from the fact that the OMFF-RF algorithm preserves each individual feature-
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Fig. 11 The comparative recognition accuracy of the HOG and GLCM feature-sets using the two different
classification algorithms for each type of distributed defect

Table 12 The comparative experiment results of all recognition methods on average accuracy and overall
runtimes in seconds

Classifier Features Average accuracy (%) Overall runtime

SVM HOG 81.82 3.681
GLCM 65.91 41.091
HOG + GLCM 84.09 56.303

RF HOG 81.82 8.502
GLCM 72.73 43.477
HOG + GLCM 86.36 60.840

OMFF-RF HOG&GLCM 90.91 9.537

The bold value denotes the best performance in the column
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set and fuses all the feature-sets in an optimized manner particularly when the dimensionality and
performance of the feature-sets are different. According to Table 12, our method achieves results
8.11% and 5.27% higher than SVM and RF with SMFF feature-set, respectively.

From Table 12, the runtime of the SMFF feature-set is visibly longer than the runtimes of
all the single-feature-sets because of its higher dimensionality. The runtime of the OMFF
feature-set is between those of the two feature-sets using the RF algorithm because of the
invariant total number of decision trees and the variable feature fusion factor ε. The overall
time (9.537 s) included the processing runtimes of both the training set (350 images) and the
test set (132 images). Because the training runtime is longer, the prediction runtime for a single
image is considerably less than 9.537 s/482 = 19.79 ms; this value is very suitable for practical
industrial applications.
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5 Conclusions and future work

In this paper an OMFF-RF algorithm that fuses the HOG and GLCM feature sets with the
OMFF factor was presented to distinguish 5 types of distributed defects on steel surfaces
acquired from an actual steel production line. The results of the described experiments showed
that the OMFF-RF algorithm has great potential for distributed defect recognition and that its
image-processing runtime is relatively short.

However, in this work, the types and sample quantities of distributed defects on steel
surfaces were limited, and the recognition capabilities of the OMFF-RF algorithm for local
defects and free defects were not considered. These issues will considered in future work. For
this algorithm to be utilized in practical industrial applications, the OMFF factor, which is
determined based on test results, must be periodically reviewed in terms of historical data. In
the future, we plan to investigate other texture features to characterize distributed defects on
steel surfaces.
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