
SRIHASS - a similarity measure for discovery of hidden
time profiled temporal associations

Vangipuram Radhakrishna1 &

Puligadda Veereswara Kumar2 & Vinjamuri Janaki3

Received: 1 June 2017 /Revised: 8 August 2017 /Accepted: 30 August 2017 /
Published online: 21 September 2017
# Springer Science+Business Media, LLC 2017

Abstract Mining and visualization of time profiled temporal associations is an important
research problem that is not addressed in a wider perspective and is understudied. Visual
analysis of time profiled temporal associations helps to better understand hidden seasonal,
emerging, and diminishing temporal trends. The pioneering work by Yoo and Shashi Sekhar
termed as SPAMINE applied the Euclidean distance measure. Following their research,
subsequent studies were only restricted to the use of Euclidean distance. However, with an
increase in the number of time slots, the dimensionality of a prevalence time sequence of
temporal association, also increases, and this high dimensionality makes the Euclidean
distance not suitable for the higher dimensions. Some of our previous studies, proposed
Gaussian based dissimilarity measures and prevalence estimation approaches to discover time
profiled temporal associations. To the best of our knowledge, there is no research that has
addressed a similarity measure which is based on the standard score and normal probability to
find the similarity between temporal patterns in z-space and retains monotonicity. Our research
is pioneering work in this direction. This research has three contributions. First, we introduce a
novel similarity (or dissimilarity) measure, SRIHASS to find the similarity between temporal
associations. The basic idea behind the design of dissimilarity measure is to transform support
values of temporal associations onto z-space and then obtain probability sequences of temporal
associations using a normal distribution chart. The dissimilarity measure uses these probability
sequences to estimate the similarity between patterns in z-space. The second contribution is the
prevalence bound estimation approach. Finally, we give the algorithm for time profiled
associating mining called Z-SPAMINE that is primarily inspired from SPAMINE. Experiment
results prove that our approach, Z-SPAMINE is computationally more efficient and scalable
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compared to existing approaches such as Naïve, Sequential and SPAMINE that applies the
Euclidean distance.

Keywords Temporal . Prevalence . Time stamp . Support bounds . Seasonal patterns .

Association . Distance function

1 Introduction

Time profiled temporal association mining is one of the challenging areas of research interest
in temporal data mining. The problem of mining interesting seasonal or temporal trends,
emerging patterns hidden in time stamped temporal data throws several challenges for
researchers to address approaches for improving computational efficiency. One of the draw-
backs is the dearth of similarity measures that can address high dimensionality challenges of
time stamped temporal data. This area of research is comparatively understudied when
compared to its counterparts such as temporal clustering, classification, search & retrieval
[8]. The pioneering work that addressed mining temporal associations in time stamped
temporal data is SPAMINE by Jin Soung Yoo and Shashi Shekhar [59–61]. Yoo and Shashi
Shekhar uses the Euclidean distance measure and propose approaches for support estimation
of temporal associations. No effort has been made to devise new dissimilarity measure and this
was coined as the future work of authors [60]. It is known that the Euclidean distance measure
is sensitive to high dimensional data [34] and hence it is not suitable for efficient mining of
temporal associations from time stamped temporal data. Studies and research addressed in
[59–61] is extended in our previous research by devising novel fuzzy Gaussian-based dissim-
ilarity measures [8, 44–46]. However, the design of dissimilarity measures proposed in all the
previous studies [8, 23, 34, 44–47, 49, 50, 56, 59–61] is not based on the standard score and
normal probability. To the best of our knowledge this research proposes a novel approach for
mining time profiled associations applying the concept of standard score and probability
distribution. In this paper, a dissimilarity measure based on the concept of normal distribution
is introduced. i.e. the design of dissimilarity measure is now extended to suit the possibility of
mining time profiled temporal association patterns through computing standard scores and
normal probability. The basic idea is to transform support value and support sequences into
equivalent z-score value and z-score sequences. For these z-score sequences, the probability
value is computed using a normal distribution chart. Finally, temporal patterns are expressed as
sequences of z-score probability values. This paper extends our previous research studies with
a novel contribution by proposing a new dissimilarity measure for retrieving all possible and
valid time profiled temporal association patterns from the given input time stamped temporal
database.

This paper is outlined as follows: Section-1 explores some of the important and
significant studies related to frequent pattern mining, association rule mining, temporal
association rule mining, closest related works to time profiled temporal association
mining. The scope for present research, basic terminology and notations are also
outlined in this section. The proposed prevalence estimation approach and z-score
based dissimilarity measure are discussed in section-2 and section-3 respectively.
Section-4 outlines the algorithm design and Section-5 gives the time profiled associ-
ation mining algorithm, Z-Spamine. Experiment results and discussions are discussed
in Section-6 by considering various test cases that study algorithm scalability and
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performance. Section-7 gives the normal distribution chart used to design the dissim-
ilarity measure in this research. Section-8 concludes this paper.

1.1 Related works

1.1.1 Mining associations in transaction databases

Some important algorithms that address discovery of frequent items in a transaction database
are discussed in this subsection. Discovery of association rules in transaction database is
initially addressed by introducing two algorithms called AIS and SETM [3]. Both AIS and
SETM algorithms generate candidate itemsets on the fly in a given pass as and when data is
being read. The idea of AIS and SETM is to verify for itemsets that are found to be large in the
previous pass and then extend itemsets in the current pass that contain itemsets from previous
pass. In otherwords, the supports are computed for these items in the current pass. The
drawback of these two algorithms is that all unnecessary combinations are also considered
for generation and counts too many candidate items that are actually not large. This drawback
of AIS and SETM algorithms has been well addressed and overcome in the later research by
agarwal and srikant [2] which is considered as the significant milestone in the field of data
mining. The pioneering work is the apriori [2] and aprioriTid [2] algorithms addressed for
mining frequent itemsets and hidden association rules in a transaction database. These
algorithms only consider itemsets that are found to be large in the previous pass and generate
candidate itemsets in the next pass with out scanning the database. The limitation of apriori (or
aprioriTid) algorithm is that it does not consider the structural properties of frequent
itemsets.

Zaki (in year, 2000) proposed scalable algorithm for mining association rules that consider
structural properties of frequent items called Eclat algorithm [62]. Eclat algorithm uses lattice
traversal technique for finding frequent itemsets and aims at minimizing I/O costs. This work
was later extended by Zaki (in year, 2001) by coming with a vertical mining based approach
called Dclat algorithm [63] for frequent itemset mining. Dclat algorithm uses novel vertical
data representation called Diffset. Mining frequent patterns in time series databases and
transaction databases have been extensively studied in data mining and most of the earlier
studies use candidate set generation and test such as apriori which is computationally
expensive.

Han [21] proposed a compressed tree based approach for finding frequent patterns
called FP-tree approach. The advantages of FP-tree approach are i) it generates a
highly compact FP-tree that is substantially smaller than original transaction database
ii) it avoids costly candidate generation and test process by concatenating the
frequent-1 itemsets present in the conditional FP-trees iii) the partitioning based divide
and conquer approach reduces the size of the conditional patterns. The FP-tree
approach of frequent pattern mining [21] is extended in [11] which applies recursive
elimination principle. The advantage of this approach is simple tree structure. Follow-
ing works of [2] several works on association rule mining have been addressed that
includes generalized association rule mining [52], multiple-levl association rule mining
[19], quantitative association rule mining [53], high-dimensional association rule
mining [58], constraint based and multiple minimum support based ARM [36, 55],
incremental association rule mining [16, 30], parallel association rule mining [1, 38].
An interesting work (in year, 2001) carried by cohen [17] address correlation based
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association rule mining that is useful in many data mining applications such as clustering web
data, finding similar web documents, colloborative filtering and other data mining related
applications. Association rules may be extended to web data amalgation [22] w.r.t cloud and
concept of similarity measure may be extended to find outliers.

1.1.2 Temporal association rule mining

The fundamental objective of traditional association rule mining (ARM) is to retreive the set of
all rules that satisfy certain constraints such as support, confidence of an itemset and the
interestingness. Association rule mining for non-temporal databases is extended to temporal
databases by introducing the concept of time and the rules so obtained are termed as temporal
association rules [4]. The conventional support in ARM does not consider the lifespan of an
itemset because of which all transactions are considered irrespective of the lifespan of itemset.
This limitation is overcome by considering lifespan of an itemset in which it is valid and
introducing the concept of temporal support and confidence. The apriori algorithm for non-
temporal databases [2] is extended for temporal databases in [4]. This is followed by several
approaches for mining association rules from subset database that consider the time aspect [10,
12, 13, 18, 20, 32, 57]. Although, algorithms such as FP-tree and constraint based approaches
exist unfortunately, all these algorithms do not help to discover interesting rules from publi-
cation databases. An approach called Bprogressive partioned miner^ [31] is addressed to
discover temporal association rules from publication databases and causal relationalship
between itemsets that are actually infrequent.

Another type of temporal association rules called cyclic association rules [37] are proposed
by Ozden, Ramaswamy, and Silberschatz. Cyclic association rules are association rules that
satisfy periodicity. i.e. if an association rule satisfies at a given time point or time instant, then
this rule also holds good for all other cycles at that particular instant. Similarly, if a rule does
not hold true for a time instance, then for all cycles it also does not hold good. On the
otherhand, most of the real life patterns are actually not perfect and the objective is to find all
imperfect patterns. Another limitation is that they are not addressed for multiple time granu-
larities but have only been addressed to a single time point. Hence, these cannot at least
address a query of the form, Bsecond holiday of every year .̂ Given a time stamped transaction
dataset, the problem of mining association rules in calendar schema is addressed in [32, 33].

Most of these studies did not address time profiled temporal association mining that has
various applications in stock market exchange, analyzing sales trends in market-basket, climate
measurement (such as temperature, moisture, precipitation etc) to mention a few of them.
Although, studies [28, 29, 33, 51, 64] have considered transaction data that is implicitly related
to time, all these studies did not address approaches that can discover special regulation
patterns such as Bemerging temporal patterns^, Bseasonal temporal patterns^ or diminishing
patterns which consider Bactual prevalence similarity .̂ Studies [59–61] addressed the problem
of Bsimilarity-based temporal association mining^ but they were restricted to the use of
Euclidean distance measure for mining time profiled associations. Mining temporal patterns
from interval databases is addressed in [14] that proposed Gaussian based similarity measure.
Summary, detailed information and implementation of various data mining algorithms and
respective synthetic and real time data sets for sequential pattern mining, sequential rule
mining, sequence prediction, frequent itemset mining, periodic itemset mining, high utility
pattern mining, association rule mining, time series mining, clustering and classification are
available as open source (http://www.philippe-fournier-viger.com/spmf).
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1.2 Time profiled temporal association mining

Similarity profiled temporal association pattern mining is one of the topics of wide
research interest in the context of temporal data mining. The pioneering work to
address the solution in this direction is by the authors, Jin Soung Yoo and Shashi
Shekhar [59–61]. All these studies use Euclidean distance measure. From the exten-
sive literature survey performed and to the best of our knowledge, there are no
significant findings recorded in the literature in the direction of proposing new
measures to address the above said problem. This fact has motivated us to come up
with new similarity measures, so that these measures can be used to retrieve all valid
similar temporal patterns w.r.t any chosen reference pattern. Some of our earlier
studies [5, 15, 39–43, 48] proposed new similarity (or dissimilarity) measures that
extend the basic Gaussian function and the approaches to estimate the supports of
temporal association patterns.

In [39], we come up with a dissimilarity measure for mining temporal association
patterns, all those patterns whose prevalence variations are same as prevalence vari-
ations of reference pattern. The drawback [39], is that it is not addressed as to what
deviation must be chosen for applying the dissimilarity measure. This drawback was
later overcome and addressed by proposing the expression for computing deviation [8,
44–47, 56] and for choosing proper threshold value corresponding to the deviation.
Approaches for estimating supports of temporal association patterns are discussed in
[15, 48–50]. These similarity measures designed may also be applied to different
applications related to [6, 7, 9]. Application of similarity measures for dimensionality
reduction is discussed in [25–27].

1.3 Research scope

The present research is inspired from [23, 34, 59–61]. Past research [49, 50, 59–61] that
addressed mining time profiled temporal associations considered the widely known Euclidean
distance measure. It is a well-known fact that the Euclidean distance falls prey to high
dimensionality and hence does not suit for time profiled association mining, which have the
support sequences that are implicitly highly dimensional. Some of our previous works [5, 8,
42–47, 56] propose the fuzzy Gaussian based distance measures for finding similarity between
temporal trends and patterns. However, all these distance measures that are proposed does not
consider transforming support time sequences to a different time space. The following are
several findings that lead to the following research

a. There is a scope for research to find the similarity of temporal associations to a given query
time sequence in transforming space. This scope for research has motivated the present
work. The idea is to find the standard score of support time sequences of time stamped
temporal patterns and then transform these sequences to z-score probability sequences.

b. There is also scope for coming out with a dissimilarity measure that can find the similarity
between the temporal pattern in z-space. Our research thus addresses a novel dissimilarity
measure to find similarity between time stamped temporal patterns in such transforming space.

c. There is a scope for proposing a method for estimating prevalence time sequence limits of
temporal associations that can address computational complexity and is compatible with
proposed similarity/distance measure
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1.4 Problem statement

Given a time stamped transaction database and subset constraints that include i) reference time
sequence ii) allowable dissimilarity threshold and iii) a dissimilarity function that maps the
prevalence time sequence of temporal itemset and reference time sequence onto a transformed
space in which the similarity between two given temporal associations can be accurately
estimated. The problem of time profiled temporal association mining is to discover set of all
valid time profiled associations that satisfy all those subset constraints through estimating
prevalence time sequence of temporal associations by performing a minimum number of true
support computations to achieve improved computational efficiency.

1.5 Basic terminology

In this section, we introduce the basic terms and notations followed in this paper.

1.5.1 Time stamped transaction database

It is defined as the transaction data that is defined over a finite number of ‘n’ disjoint time slots
where each time slot is a point in time.

1.5.2 Temporal item or itemset

An item or itemset present in a given transaction (or transactions) of a time stamped temporal
database.

1.5.3 Positive temporal item (or positive itemset)

A positive temporal item or itemset denotes the existence of itemset in the time stamped
transaction database. A positive itemset is also called as the positive temporal pattern. Unless
specified, the default itemset is considered as a positive temporal item or itemset. A positive
itemset say ‘I’ is denoted using TI where T denotes temporal nature of itemset.

1.5.4 Negative temporal item (or negative itemset)

A negative temporal item or itemset denotes the non-existence of itemset in the time stamped
transaction database. A negative itemset is also called as the negative temporal pattern. A
negative temporal itemset is denoted using �TI where T denotes temporal nature of itemset.

1.5.5 Prevalence (or support)

Let ‘ti’ denote i
th time slot and the transaction database defined at ti be represented using the

notation, Di. Prevalence of an itemset, I at timeslot, ti is denoted using TIi and is equal to the
fraction of transactions that contain the itemset in Di. It is also called as the support of itemset.
The prevalence value is always between 0 and 1. For example, if a particular time slot, t3
contains 100 transactions and a given item is present in 40 transactions, then the prevalence
value of itemset at the time slot, t3 is equal to 40/100 = 0.4.
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1.5.6 Positive prevalence (or support)

Let ti be the ith time slot and the transaction database defined at ti be denoted as Di.
The positive prevalence of a temporal item or itemset in a given time slot, ti is
defined as the fraction of transactions that contain the temporal item or itemset in the
time slot, ti. It is also called as support of itemset. The positive prevalence value
always lies between 0 and 1. For example, if a particular time slot say, t1 contains
250 transactions and a given item is present in 25 transactions, then the prevalence
value at the time slot considered is 25/250 = 0.1.

1.5.7 Negative prevalence (or support)

Let ‘ti’ denote ith time slot and the transaction database defined at ti be represented
using the notation, Di. The negative prevalence of an itemset, I at timeslot, ti is
denoted using �TIi and is equal to the fraction of transactions that do not contain the
itemset in the database, Di. Negative prevalence value defines the probability of non-
existence of an item or itemset. For example, if a particular time slot, t3 contains 100
transactions and a given item is present in 40 transactions, then the negative preva-
lence value of itemset at the time slot, t3 is equal to 60/100 = 0.6.

1.5.8 Positive prevalence time sequence TI
�!� �

Let I be any itemset, then the prevalence time sequence is the sequence of prevalence values of
a time stamped temporal item or itemset defined over ‘n’ disjoint time slots and is denoted

using TI
�!

. The prevalence time sequence corresponding to positive itemset is defined as
positive prevalence time sequence. A prevalence time sequence is also called positive prev-
alence time sequence.

1.5.9 Negative prevalence time sequence �TI
�!� �

Let I be any itemset, then the negative prevalence time sequence is the sequence of prevalence
values of a time stamped temporal item or itemset defined over ‘n’disjoint time slots for a

negative temporal itemset and is denoted using �TI
�!

.

2 Prevalence bounds estimation

One of the important challenges that are to be addressed when discovering all the
valid similar temporal association patterns from a time stamped temporal database of
disjoint transactions is the number of true support computations that are required to be
performed. For example, for ‘N’ items, there exists 2N item set combinations and
hence the complexity is O(2N). This means that the total number of true support
computations required is 2N in the worst case. Hence, if we can come up with
approaches for estimating prevalence bounds of association patterns (or item sets)
by devising a suitable procedure then, it shall help to reduce the total number of true
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support scans that must be carried out. Sections 2.2 and 2.3 give the approaches for
estimating prevalence values of temporal associations.

Let ‘N’ be the number of items in the finite itemset, ‘I’ and pattern size be
represented using notation ‘S’. Suppose that P and Q are any two items chosen from
‘I’. Then, notations TP and TQ each denote corresponding positive temporal pattern
for P and Q respectively. Similarly, notations �TP and �TQ each denote corresponding
negative temporal pattern. For estimating prevalence bounds of patterns, the complete
set of possible patterns are mainly divided into three categories, each representing,
temporal patterns of sizes, S = 1, S = 2 and S > 2. Necessary expressions which are
required to estimate support bounds of temporal association patterns of size (i) |S| = 2
and (ii) |S| > 2 are discussed in subsections below.

2.1 Prevalence bounds for single time slot

Let, TP and TQ are any singleton temporal patterns and TPQ is temporal association
pattern generated from temporal patterns, TP and TQ. The support bounds for temporal
association pattern, TPQ are computed using expressions defined in Eq. (1)

TPQ ¼ Tp1−min Tp1 ; 1−TQ1

� �
Tp1−max Tp1−TQ1

; 0
� ��

ð1Þ

The expression to compute the minimum prevalence bound is given by Eq. (2)

Tmin
PQ ¼ Tp1−min Tp1 ; 1−TQ1

� � ð2Þ

The expression to compute the maximum prevalence bound is given by Eq. (3)

Tmax
PQ ¼ Tp1−max Tp1−TQ1

; 0
� � ð3Þ

Throughout this discussion, the notation TIk represents support value of temporal item or
itemset at kth time slot.

2.2 Prevalence bounds for level-2 temporal pattern (size, S = 2)

Let, TP and TQ are any two temporal patterns defined over ‘n’ time slots. For ‘n’ time slots, we

denote respective pattern support time sequences as TP
�!

= (TP1 ; TP2 ; TP3 ;…………; TPn )

and TQ
�!

= (TQ1
; TQ2

; TQ3
;…………; TQn

). The bounds for all temporal association patterns
(i.e of the form TPQ) at level-2, are obtained applying Eq. (4),

TPQ
��! ¼ TP1−min TP1 ; 1−TQ1

� �� �
; TP2−min TP2 ; 1−TQ2

� �� �
;…; TPn−min TPn ; 1−TQn

� �� �� �
TP1−max TP1−TQ1

; 0
� �� �

; TP2−max TP2−TQ2
; 0

� �� �
;…:; TPn−max TPn−TQn

; 0
� �� �� �

8<
: ð4Þ

For a temporal pattern of the form, TPQ, the minimum prevalence time sequence is denoted

by Tmin
PQ

��!
and is given by Eq. (5),

Tmin
PQ

��! ¼ Tmin
PQ1

; Tmin
PQ2

; Tmin
PQ3

;…………………………; Tmin
PQn

� �
ð5Þ
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where

Tmin
PQ1

¼ TP1−min TP1 ; 1−TQ1

� �
Tmin
PQ2

¼ TP2−min TP2 ; 1−TQ2

� �
……………………………:
Tmin
PQn

¼ TPn−min TPn ; 1−TQn

� �
In similar lines, its maximum prevalence sequence bound is given by Eq. (6),

Tmax
PQ
��! ¼ Tmax

PQ1
; Tmax

PQ2
; Tmax

PQ3
;…………………………; Tmax

PQn

� �
ð6Þ

where

Tmax
PQ1

¼ TP1−max TP1−TQ1
; 0

� �� �
Tmax
PQ2

¼ TP2−max TP2−TQ2
; 0

� �� �
……………………………:
Tmax
PQn

¼ TPn−max TPn−TQn
; 0

� �� �

2.3 Pattern support bound for ‘n’ time slots and S > 2

Let, P and Q are any two items of sizes equal to (S-1) and 1 respectively, in a time stamped
transaction database of ‘n’ number of disjoint time slots. Then, notations TP and TQ each
denote temporal itemset (or pattern) of size, equal to (S-1) and 1 respectively. The respective

support time sequence of TP and TQ over ‘n’ time slots are denoted by TP
�!

=

(TP1 ; TP2 ; TP3 ;…………; TPn ) and TQ
�!

= (TQ1
; TQ2

; TQ3
;…………; TQn

).
A temporal association pattern TPQ is generated from itemset association PQ (or may be

viewed as generated from temporal patterns, TP and TQ). The size of temporal association
pattern, TPQ is equal to |S| (or S) while the size of patterns TP and TQ is equal to (|S|-1) and 1
respectively. Let, Ss(PQ) be the subset itemset of size equal to (|S|-1) and S(PQ) denotes the
singleton item of size equal to 1 which are obtained from their superset itemset association, PQ
of size equal to |S|. It should be noted that, itemset represented by Ss(PQ) and S(PQ) together
form the itemset association PQ and the corresponding temporal pattern is denoted using TPQ,
i.e. for some randomly chosen itemset association PQ, we have Ss(PQ) ≡ P whose size is equal
to (S-1) and S(PQ) ≡ Q of size equal to 1 respectively such that Ss(PQ) ∩S(PQ)=∅. Here,
Ss(PQ) and S(PQ) represents all possible subset combinations possible at level (l-1) and level-
1 using which superset itemset combination PQ at level ‘l’ can be generated.

For example, consider the itemset ABC of size equal to 3, then the possible size-2 itemset
are AB, AC and BC while the size-1 itemset are C, B and A. Itemset ABC may be obtained by
considering any of these three possible combinations. It can be easily verified that {A, B}∩
{C} = ∅ where Ss(ABC) ≡ AB and S(ABC)≡ C. Similarly, {A, C}∩ {B} = ∅ and {B, C}∩
{A} =∅. To find the support bounds for temporal itemset ABC, i.e. TABCwe consider all these
possible subset combinations.

In general, notations, TSs PQð Þtand TS PQð Þt are used to represent the support value of subset
temporal patterns, TSs(PQ) and TS(PQ) at t

th time slot. The support time sequence bounds
(maximum possible and minimum possible) for such temporal associations of size greater
than two are obtained for each time slot by considering every possible subset of size equal to
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(S-1), and 1 as discussed above. Subsection 2.4.4 demonstrates the computation of support
bounds of temporal itemset association, ABC.

2.3.1 Minimum support time sequence

The minimum possible support time sequence of temporal association pattern, TPQ of size equal
to |S| (i.e at level ‘l’) for ‘n’ time slots is obtained by considering each possible kth subset (i.e
Ssk(PQ)) of size, |S|-1 at previous level, i.e. (l-1) and singleton item, S(PQ) at level-1 such that
Ssk(PQ)∩S(PQ)=∅. Equation (7) represents the support time sequence of temporal association
pattern, TPQ obtained from the kth possible subset denoted by Ss(PQ) of size equal to |S|-1 and
singleton pattern S(PQ).The minimum support time sequence of temporal association pattern,
TPQ obtained over ‘n’ time slots by considering kth subset (i.e Ssk(PQ)) is given by (7)

Tk
PQ

� �min������!
¼ Tk

PQ1
; Tk

PQ2
; Tk

PQ3
;……………::; Tk

PQn

� �
ð7Þ

where

Tk
PQ1

¼ TSsk PQð Þ1−minimum TSsk PQð Þ1 ; 1−TS PQð Þ1
n o� �

Tk
PQ2

¼ TSsk PQð Þ2−minimum TSsk PQð Þ2 ; 1−TS PQð Þ2
n o� �

……………:
Tk
PQn

¼ TSsk PQð Þn−minimum TSsk PQð Þn ; 1−TS PQð Þn
n o� �

From all possible support time sequences obtained by applying Eq. (7) through considering
each subset itemset association denoted by Ssk(PQ) and S(PQ), the minimum support time
sequence is obtained by considering maximum support value at every time slot over all

possible subsets of itemset association, PQ. The minimum support time sequence, TPQ
min

����!
of

temporal association pattern, TPQ is given by Eq. (8)

TPQ
min

����! ¼ Tmin
PQ1

; Tmin
PQ2

; Tmin
PQ3

;……………; Tmin
PQn

� �
ð8Þ

where

Tmin
PQ1

¼ maximum T1
PQ1

; T 2
PQ1

; :…; Tk
PQ1

n o
Tmin
PQ2

¼ maximum T1
PQ2

; T 2
PQ2

; :…; Tk
PQ2

n o
…::
TPQn

¼ maximum T1
PQn

; T 2
PQn; :…; Tk

PQn

n o

2.3.2 Maximum support time sequence

The maximum possible support time sequence of temporal association pattern, TPQ of size
equal to |S| (i.e at level ‘l’) for ‘n’ time slots is obtained by considering each possible kth subset
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(i.e Ssk(PQ)) of size |S|-1 at previous level, i.e. (l-1) and singleton item, S(PQ) at level-1 such
that Ss(PQ) ∩S(PQ)=∅. Equation (9) represents the support time sequence of temporal
association pattern TPQ obtained by considering the kth possible subset denoted by Ssk(PQ)
of size equal to |S|-1 and the singleton pattern S(PQ)

Tk
PQ

� �max������!
¼ Tk

PQ1
; Tk

PQ2
; Tk

PQ3
;……………::; Tk

PQn

� �
ð9Þ

where

Tk
PQ1

¼ TSsk PQð Þ1−max TSsk PQð Þ1−TS PQð Þ1
n o

; 0
� �� �

Tk
PQ2

¼ TSsk PQð Þ2−max TSsk PQð Þ2−TS PQð Þ2
n o

; 0
� �� �

……………:
Tk
PQn

¼ TSsk PQð Þn−max TSsk PQð Þ2−TS PQð Þn
n o

; 0
� �� �

In all the expressions above TSsk PQð Þt and TS(PQ)t refers to support of k
th itemset combination

denoted by Ss(PQ) and singleton pattern at tth time slot respectively. From all possible support
time sequences obtained by applying Eq. (9) through considering each subset itemset associ-
ations denoted by Ssk(PQ) and S(PQ), the maximum support time sequence is obtained by
considering minimum support value at every time slot over all possible subsets of itemset

association, PQ. The maximum support time sequence, TPQ
max����!

is given by Eq. (10)

TPQ
max����! ¼ Tmax

PQ1
; Tmax

PQ2
; Tmax

PQ3
;……………; Tmax

PQn

� �
ð10Þ

where

Tmax
PQ1

¼ minimum T1
PQ1

; T 2
PQ1

; :…; Tk
PQ1

n o
Tmax
PQ2

¼ minimum T1
PQ2

; T 2
PQ2

; :…; Tk
PQ2

n o
……

Tmax
PQn

¼ minimum T1
PQn

; T2
PQn;…; Tk

PQn

n o
In sub-expressions of Eq. (9) the representation Tk

PQt
denotes the support value obtained by

considering the kth possible subset itemset combination at tth time slot and Tmax
PQt

denotes the

maximum possible support value of temporal association pattern TPQ at tth time slot.

2.4 Case study

This section explains the approach for estimating prevalence time sequence bounds of
temporal association patterns by applying the method discussed in sections 2.1 to 2.3. For
this, the time stamped transaction database generated using IBM data generator [8, 44] as
shown in Fig. 1a is considered. The database is defined over two-time slots (denoted by T2). It
consists of ten transactions per each time slot (denoted by TD10). The total number of
transactions is 20 (D20). The total number of items in finite itemset is three (I3) with average
transaction size equal to two (L2). The temporal dataset is denoted as TD10-D20-I3-L2-T2.
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The database is defined over three items A, B and C which form the finite set of items.
Figure 1b shows the lattice diagram depicting the distance computations using proposed
similarity function. Table 1 shows prevalence values of level-1 (singleton) positive and
negative temporal patterns. Notations, TA, TB, TC represent positive temporal pattern and �TA,
�TB and �TC are negative temporal pattern of itemset size equal to one at level-1. TA1 , TB1 are
positive supports of patterns at time slot t1 and TA2 , TB2 are positive supports of patterns at
time slot t2. Similarly, �TA1 , �TB1 are negative supports at time slot t1 and �TA2 , �TB2 are negative
supports at time slot t2.

In subsections 2.4.1 to 2.4.4, the proposed approach for estimating support bounds of temporal
association patterns is explained by considering itemset associations AB, AC, BC and ABC.

2.4.1 Prevalence bound of temporal itemset, AB i.e. TAB

Consider the temporal itemset, TAB. The computation of prevalence sequence bounds of
temporal patterns can be obtained by applying Eqs. (5) and (6). Figure 2a shows the maximum
possible support sequence bound and minimum possible support sequence bound for the
temporal itemset, TAB.

Maximum support time sequence of TAB, (T
max
AB
��!

) The temporal support sequence of

temporal itemset, TAB is denoted by Tmax
AB
��!

and can be computed using Tmax
AB
��! ¼

Fig. 1 a Example dataset. b monotonicity property of proposed dissimilarity measure w.r.t Dmax−min
Z showing

distance values in the form: Dtrue
Z (Dmax−min

Z )

Table 1 Support values of singleton temporal items

Item
(I)

Positive Temporal
Pattern (T1)
(Level-1)

Prevalence
at t1 Tt1

Prevalence
at t2 Tt2

Negative Temporal
Pattern T1ð Þ
(Level-1)

Prevalence
at t1

Tt1ð Þ

Prevalence
at t2

Tt2ð Þ
A TA 0.6 0.4 TA 0.4 0.6
B TB 0.3 0.7 TB 0.7 0.3
C TC 0.8 0.8 TC 0.2 0.2
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Tmax
AB1

; Tmax
AB2

� �
where Tmax

AB1
= TA1−max TA1−TB1 ; 0ð Þ and Tmax

AB2
= TA2−max TA2−TB2 ; 0ð Þ. In

expressions for Tmax
AB1

and Tmax
AB2

the notation TA1 and TB1 represent positive supports of tem-

poral pattern at time slot, t1 and TA2 , TB2 are positive supports of temporal patterns at time slot,
t2. In the present example, we have TA1=0.6, TA2 ¼0.4, TB1=0.3, TB2 ¼0.7. So, Tmax

AB1
= TA1

−max TA1−TB1 ; 0ð Þ = 0.6 – maximum (0.6–0.3, 0) = 0.6- maximum (0.3, 0) = 0.6–0.3 = 0.3.
Similarly, Tmax

AB2
= TA2−max TA2−TB2 ; 0ð Þ = 0.4 – maximum (0.4–0.7, 0) = 0.4 – maximum

(−0.3, 0) = 0.4–0 = 0.4. Hence, Tmax
AB
��! ¼ 0:3; 0:4ð Þ :

Minimum support time sequence of TAB, (T
min
AB

��!
) The minimum temporal support sequence

of temporal itemset, TAB is denoted by Tmin
AB

��!
and can be computed using Tmin

AB

��! ¼ Tmin
AB1

; Tmin
AB2

� �
where Tmin

AB1
=TA1− min TA1 ; 1−TB1ð Þ and Tmin

AB2
= TA2− min TA2 ; 1−TB2ð Þ. In the present exam-

ple, we have TA1=0.6, TA2 ¼0.4, TB1=0.3, TB2 ¼0.7. So, Tmin
AB1

=TA1− min TA1 ; 1−TB1ð Þ = 0.6−
min(0.6, 0.7) = 0. Similarly, Tmin

AB2
= TA2− min TA2 ; 1−TB2ð Þ = 0.4− min(0.4, 0.3) = 0.1. So,

Tmin
AB

��! ¼ 0:0; 0:1ð Þ
From Fig. 2a, it can be verified that the true support sequence of temporal itemset, TAB lies

between the maximum possible support sequence (Tmax
AB
��!

) and minimum possible support

Fig. 2 Support bounds for temporal associations
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sequence (Tmin
AB

��!
) as represented by the shaded region. The shaded region in Fig. 2a is used to

represent the fact that the true support of temporal pattern, TAB can only belong to this region.

2.4.2 Prevalence bound of temporal pattern, AC i.e. TAC

The computation of prevalence sequence bounds of temporal pattern, TAC can be obtained by
applying Eqs. (5) and (6). Figure 2c shows the maximum possible support sequence bound and
minimum possible support sequence bound for the temporal itemset, TAC.

Maximum support time sequence of TAC,ðTmax
AC
��!

) The maximum support time sequence of

temporal itemset, TAC is denoted by Tmax
AC
��!

and can be computed using Tmax
AC
��! ¼ Tmax

AC1
; Tmax

AC2

� �
where Tmax

AC1
= TA1−max TA1−TC1 ; 0ð Þ and Tmax

AC2
= TA2−max TA2−TC2 ; 0ð Þ. In the expressions

for Tmax
AC1

and Tmax
AC2

the notations TA1 , TC1 represent positive supports of temporal patterns at

time slot, t1 and TA2 , TC2 are positive supports of temporal patterns at time slot, t2 . In the present
example,wehaveTA1=0.6,TA2 ¼0.4,TC1=0.8,TC2 ¼0.8. So, Tmax

AC1
=TA1−max TA1−TC1 ; 0ð Þ=

0.6 –maximum (0.6–0.8, 0) = 0.6- maximum (−0.2, 0) = 0.6–0.0 = 0.6. Similarly, Tmax
AC2

= TA2−
max TA2−TC2 ; 0ð Þ = 0.4 – maximum (0.4–0.8, 0) = 0.4 – maximum (−0.4, 0) = 0.4–0 = 0.4.

Hence, Tmax
AC
��! ¼ 0:6; 0:4ð Þ

Minimum support time sequence of TAC, (T
min
AC

��!
) The minimum support time sequence of

temporal itemset, TAC is denoted by Tmin
AC

��!
and can be computed using Tmin

AC

��! ¼ Tmin
AC1

; Tmin
AC2

� �
where Tmin

AC1
=TA1− min TA1 ; 1−TC1ð Þ and Tmin

AC2
= TA2− min TA2 ; 1−TC2ð Þ. In the present case,

TA1=0.6, TA2 ¼0.4, TC1=0.8, TC2 ¼0.8. So, Tmin
AC1

=TA1− min TA1 ; 1−TC1ð Þ = 0.6− min(0.6,

0.2) = 0.4. Similarly, Tmin
AC2

= TA2− min TA2 ; 1−TC2ð Þ = 0.4− min(0.4, 0.2) = 0.2. Hence,

Tmin
AC

��! ¼(0.4, 0.2)

2.4.3 Prevalence bound of temporal pattern, TBC

The computation of prevalence time sequence bounds of temporal patterns can be obtained by
applying Eqs. (5) and (6). Figure 2b shows the maximum possible support time sequence and
minimum possible support time sequence for the temporal itemset, TBC

Maximum support time sequence of TBC,ðTmax
BC
��!

) Thetemporalsupportsequenceoftemporal

itemset,TBCisdenotedbyT
max
BC
��!

andmaybecomputedusingTmax
BC
��! ¼ Tmax

BC1
; Tmax

BC2

� �
where Tmax

BC1
=

TB1−max TB1−TC1 ; 0ð Þand Tmax
BC2

= TB2−max TB2−TC2 ; 0ð Þ.Intheexpressionsfor Tmax
BC1

and Tmax
BC2

thenotations TB1 ,TC1 representpositivesupportsoftemporalpatternsattimeslot,t1andTB2 ,TC2 are
positive supports of temporal patterns at time slot, t2. From the given dataset, we have TB1=0.3,
TB2 ¼0.7, TC1=0.8, TC2 ¼0.8. So, Tmax

BC1
= TB1−max TB1−TC1 ; 0ð Þ = 0.3 –maximum (0.3–0.8,

0) = 0.3- maximum (−0.5, 0) = 0.3–0.0 = 0.3. Similarly, Tmax
BC2

= TB2−max TB2−TC2 ; 0ð Þ = 0.7 –

maximum(0.7–0.8,0)=0.7–maximum(−0.1,0)=0.7.Hence,Tmax
BC
��! ¼(0.3,0.7)
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Minimum support time sequence bound of TBC, (T
min
BC

��!
) Theminimumtemporal support

sequence of temporal itemset, TBC is denoted by Tmin
BC

��!
and can be computed using Tmin

BC

��! ¼
Tmin
BC1

; Tmin
BC2

� �
where Tmin

BC1
=TB1−min TB1 ; 1−TC1ð Þ and Tmin

BC2
= TB2−min TB2 ; 1−TC2ð Þ. In the

presentcase,TB1=0.3,TB2 ¼0.7,TC1=0.8,TC2 ¼0.8.So,Tmin
BC1

=TB1−min TB1 ; 1−TC1ð Þ=0.3−min

(0.3, 0.2) = 0.1. Similarly, Tmin
BC2

= TB2− min TB2 ; 1−TC2ð Þ = 0.7- min (0.7, 0.2) = 0.5. Hence,

Tmin
BC

��! ¼(0.1,0.5)

2.4.4 Prevalence bound of temporal pattern, TABC

The computation of prevalence sequence bounds of temporal pattern, TABC can be obtained by
applying Eqs. (7) to (10). Figure 2d shows the maximum possible support sequence bound and
minimum possible support sequence bound for the temporal itemset, TABC.

Maximum support time sequence of TABC,ðTmax
ABC
��!

) The maximum support sequence of
temporal associationpattern,TABC at level-3 is computedbyconsideringall possible size-2 subset
patterns of level-2 and singleton patterns at level-1. This gives following three cases

1. Case-1: k = 1, Ss1( ABC) =AB, S(ABC) = C i.e. TSs1 ABCð Þ≡TAB and TS( ABC) ≡ TC

T1
ABC

��! ¼ T1
ABC1

; T1
ABC2

� �
¼ TAB1−max TAB1−TC1 ; 0ð Þ; TAB2−max TAB2−TC2 ; 0ð Þð Þ
¼ 0:3−max 0:3−0:8; 0ð Þ; 0:3−max 0:3−0:8; 0ð Þð Þ ¼ 0:3; 0:3ð Þ

2. Case-2: k = 2, Ss2( ABC) =AC, S(ABC) = B i.e. TSs2 ABCð Þ≡TAC and TS( ABC) ≡ TB

T2
ABC

���! ¼ T2
ABC1

; T 2
ABC2

� �
¼ TAC1−max TAC1−TB1 ; 0ð Þ; TAC2−max TAC2−TB2 ; 0ð Þð Þ
¼ 0:4−max 0:4−0:3; 0ð Þ; 0:4−max 0:4−0:7; 0ð Þð Þ ¼ 0:3; 0:4ð Þ

3. Case-3: k = 3, Ss3( ABC) =BC, S(ABC) = A i.e. TSs3 ABCð Þ≡TBC and TS( ABC) ≡ TA

T3
ABC

���! ¼ T 3
ABC1

; T3
ABC2

� �
¼ TBC1−max TBC1−TA1 ; 0ð Þ; TBC2−max TBC2−TA2 ; 0ð Þð Þ
¼ 0:3−max 0:3−0:6; 0ð Þ; 0:5−max 0:5−0:4; 0ð Þð Þ ¼ 0:3; 0:4ð Þ

TABC
max�����! ¼ Tmax

ABC1
; Tmax

ABC2

� �
¼ min 0:3; 0:3:0:3ð Þ;min 0:3; 0:4; 0:4ð Þð Þ ¼ 0:3; 0:3ð Þ

So, TABC
max�����! ¼ Tmax

ABC1
; Tmax

ABC2

� �
¼(0.3, 0.3)
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Minimum support time sequence of TABC, (T
min
ABC

��!
) The minimum support sequence bound

of temporal association pattern, TABC at level-3 is computed by considering all possible size-2
subset patterns of level-2 and singleton patterns at level-1. This gives following three cases

1 Case-1: k = 1, Ss1( ABC) =AB, S(ABC) = C i.e. TSs1 ABCð Þ≡TAB and TS( ABC) ≡ TC

T1
ABC

��! ¼ T1
ABC1

; T1
ABC2

� �
¼ TAB1−min TAB1 ; 1−TC1ð Þ; TAB2−min TAB2 ; 1−TC2ð Þð Þ
¼ 0:3−min 0:3; 0:2ð Þ; 0:3−min 0:3; 0:2ð Þð Þ
¼ 0:1; 0:1ð Þ

2 Case-2: k = 2, Ss2( ABC) =AC, S(ABC) = B i.e. TSs2 ABCð Þ≡TAC and TS( ABC) ≡ TB

T2
ABC

��! ¼ T2
ABC1

; T2
ABC2

� �
¼ TAC1−min TAC1 ; 1−TB1ð Þ; TAC2−min TAC2 ; 1−TB2ð Þð Þ
¼ 0:4−min 0:4; 0:7ð Þ; 0:4−min 0:4; 0:3ð Þð Þ
¼ 0:0; 0:1ð Þ

3 Case-3: k = 3, Ss3( ABC) =BC, S(ABC) = A i.e. TSs3 ABCð Þ≡TBC and TS( ABC) ≡ TA

T3
ABC

��! ¼ T3
ABC1

; T 3
ABC2

� �
¼ TBC1−min TBC1 ; 1−TA1ð Þ; TBC2−min TBC2 ; 1−TA2ð Þð Þ
¼ 0:3−min 0:3; 0:4ð Þ; 0:5−min 0:5; 0:6ð Þð Þ
¼ 0:0; 0:0ð Þ

TABC
min

����! ¼ Tmin
ABC1

; Tmin
ABC2

� �
¼ max 0:1; 0; 0ð Þ;max 0:1; 0:1; 0ð Þð Þ ¼ 0:1; 0:1ð Þ

So, TABC
min

����! ¼ Tmin
ABC1

; Tmin
ABC2

� �
¼(0.1, 0.1)

Thus, the minimum and maximum possible support sequences of temporal association

pattern, TABC are TABC
min

����!
= (0.1, 0.1) and TABC

max�����!
= (0.3, 0.3) while the true support sequence

of temporal pattern, TABC is (0.3, 0.3).

3 SRIHASS – the proposed Z-score based dissimilarity measure

Let Tp and Rr be the temporal and reference pattern and their respective prevalence values at
kth time slot are denoted by Tpk , Rrk . The corresponding prevalence time sequences over ‘m’

time slots are represented using TP
�!

= (Tp1 , Tp2 , Tp3 , ………., Tpm ) and Rr
!

= (Rr1 , Rr2 , Rr3 ,
………., Rrm ). The dissimilarity measure discussed in this section is motivated from the basic
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Gaussian membership function [23] and is extended using [8, 44–47, 56]. Discovering
time profiled (or similarity profiled) temporal patterns using proposed approach
requires transforming support time sequences of temporal patterns (association pattern)
into their equivalent standard score (z-score) values. The idea is to obtain z-score
sequences and their corresponding normal probability values using standard normal
distribution table.

3.1 Z-score of temporal pattern

The z-score of a temporal pattern at a given time slot is defined as the standard score obtained
by considering the support value of a temporal and reference pattern for a chosen deviation
(σz). The deviation value is a function of threshold value specified in euclidean space denoted
using notation, Δ. Formally, the z-score value of a temporal pattern, Tp w.r.t reference, Rr at k

th

time slot is denoted using Z Tpk

� �
and is computed using Eq. (11),

Z Tpk

� � ¼ Tpk−Rrk

� �
σz ð11Þ

where
σz ¼ Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

abs 1−0:2212*Δ
� �

 !vuut
ð12Þ

3.2 Z-score and probability sequence of temporal pattern

Z-score sequence is the standard score sequence obtained by representing z-score values of a
temporal pattern for all ‘m’ time slots as an m-tuple. Z-score sequence of a temporal pattern

over ‘m’ time slots is denoted by Z Tp
� ����!

and is formally represented using Eq. (13)

Z Tp
� ����! ¼ Z Tp1

� �
; Z Tp2

� �
; Z Tp3

� �
;……:; Z Tpm

� �� � ð13Þ
The normal probability of z-score of a temporal pattern, Tp at k

th time slot is denoted using

the notation, P Z Tpk

� �� �
and the corresponding probability sequence, P Z Tp

� �� �������!
over ‘m’ time

slots is represented using Eq. (14)

P Z Tp
� �� �������! ¼ P Z Tp1

� �� �
;P Z Tp2

� �� �
;P Z Tp3

� �� �
;……::…;P Z Tpm

� �� �� � ð14Þ

3.3 Z-score based dissmilarity measure

Consider the probability sequence, P Z Tp
� �� �������!

represented by Eq. (14). The membership value

of a temporal pattern, Tp at k
th time slot w.r.t reference is given by Eq. (15)

ℳ
Tpk
Rrk

¼ e
−

P Z Tpkð Þð Þ
σz

� �2

ð15Þ
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Extending Eq. (15) for ‘m’ time slots, the normalized similarity of temporal pattern w.r.t
reference is given by Eq. (16),

ℳavg
Tp;Rr

¼
∑
k¼m

k¼1
ℳ

Tpk
Rrk

m
ð16Þ

The true dissimilarity between temporal pattern and reference is denoted by Dtrue
Z and is

defined using Eq. (17)

Dtrue
Z ¼

1−Mavg
Tp;Rr

0:2212
¼

1−
∑k¼m

k¼1 e
−

P Z Tpkð Þð Þ
σz

� �2

m
0:2212

ð17Þ

Statement:Given ′Δ′, TP, and Tq , two temporal patterns TP , Tq are considered to be similar,
if the computed dissimilarity value denoted by Dtrue

TP ;Tq
does not exceed, Δz. i.e. Dtrue

TP ;Tq
≤Δz.

3.4 Threshold in Z-space

Let ′Δ′ be the threshold specified in Euclidean space which represents the allowable dissimilarity
limit between temporal pattern and reference pattern, then, the z-score of Δ is obtained using,
zΔ ¼ Δ

σz . The probability of zΔ that is obtained using normal distribution chart is denoted by P(zΔ) .
The expression for threshold in (normalized space) transformed space is given by Eq. (18)

Δz ¼ 1−e−
P zΔð Þ

σz

� �2
0:2212

ð18Þ

The value for σz used in the Eq. (18) is obtained by applying Eq. (12).

3.5 Deviation

The derivation of expression for deviation is straight forward. We can derive the expression by
equating the dissimilarity expression for single time slot using proposed measure and
dissmilarity value provided by the user in Euclidean space as depicted in Eq. (19)

1−e
−

P Z Tpkð Þð Þ
σz

� �2

0:2212
¼ Δ ð19Þ

This results in Eq. (20)

e
−

P Z Tpkð Þð Þ
σz

� �2

¼ 1−0:2212*Δ ð20Þ
Solving Eq. (20), we get expression for deviation given by Eq. (21) as specified in Eq. (12)

σz ¼ Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

abs 1−0:2212*Δ
� �

 !vuut
ð21Þ
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3.6 Analysis

In this section, we analyze possible values for the similarity measure for different cases.

3.6.1 Best case

In the best case, the dissimilarity between temporal patterns is zero. i.e. the similarity
between temporal pattern and the given reference pattern is unity.

For the best case, for kth time slot,

Z TPkð Þ ¼ Tpk−Rrk

� �
σz

¼ 0

This is because Tpk≅Rrk . This gives P Z TPkð Þð Þ = 0. Hence, MTpk
Rrk

¼ e
−

P Z Tpkð Þð Þ
σz

� �2

¼ 1

Extending this to ‘m’ number of time slots, we get the average value for similarity as

ℳavg
Tp;Rr

¼
∑
k¼m

k¼1
ℳ

Tpk
Rrk

m
¼ 1þ 1þ 1……m

m
¼ 1

Hence the dissimilarity value for the best case situation is

Dtrue
Z ¼

1−ℳavg
Tp;Rr

0:2212
¼ 1−1

0:2212
¼ 0 ð22Þ

In other words, similarity between temporal pattern and the reference is, sim ¼ 1−Dtrue
Z =

1–0 = 1.

3.6.2 Worst case

In the worst case, the dissimilarity between temporal patterns is one (or unity). i.e. the
similarity between temporal pattern and the given reference pattern is zero. Similar to the best
case, we have in the worst case,

ℳavg
Tp;Rr

¼
∑
k¼m

k¼1
ℳ

Tpk
Rrk

m
¼ 0:7788þ…m times

m
¼ 0:7788

Hence, the dissimilarity value for the worst case situation is

Dtrue
Z ¼

1−ℳavg
Tp;Rr

0:2212
¼ 1−0:7788

0:2212
¼ 1 ð23Þ

In other words, similarity between temporal pattern and the reference is, sim ¼ 1−Dtrue
Z = 1–

1 = 0.
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3.7 Distance bound computations

3.7.1 Max-min distance bound

Let, Tmax
p
��!

= ( Tmax
p1

, Tmax
p2

, Tmax
p3

;……., Tmax
pm

) be the maximum possible support time

sequence of temporal pattern, Tp. To obtain maximum possible minimum dissimilarity value,

z-score value at each time slot is to be computed by considering Tp
max���!

and Rr
!

. The Z-score of
a temporal pattern at kth time slot may be obtained by using Eq. (24)

Z Tmax
pk

� �
¼

Rrk−Tmax
pk

� �
σz ;Rrk > Tmax

Pk

0 ;Rrk ≤T
max
Pk

8><
>: ð24Þ

All these z-score values obtained by applying Eq. (24) for ‘m’ time slots are represented as
the z-score sequence denoted by Eq. (25),

Z Tmax
p
��!� ������!

¼ Z Tmax
p1

� �
; Z Tmax

p2

� �
; Z Tmax

p3

� �
………:; Z Tmax

pm

� �� �
ð25Þ

The probability sequence, P Z Tmax
p
��!� ������!	 
���������!

obtained by computing probability value using

normal distribution chart for each Z TPk
maxð Þ is represented using Eq. (26)

P Z Tmax
p
��!� ������!	 
���������!

¼ P Z Tmax
p1

� �� �
;P Z Tmax

p2

� �� �
;…:;P Z Tmax

pk

� �� �� �
ð26Þ

The membership degree between temporal pattern, Tp
max���!

and the reference at kth time slot

is represented using ℳ
Tpk
R

U
and is given by Eq. (27)

MTpk U
R ¼ e

−
P Z Tmaxpkð Þð Þ

σz

� �2

;P Z Tmax
pk

� �� �
≠0

1 ;P Z Tmax
pk

� �� �
¼ 0

8>><
>>: ð27Þ

Equation (28) gives the normalized similarity of temporal pattern w.r.t reference consider-
ing all, ‘m’ dis-joint time slots,

ℳavg
Tp

U ¼
∑
k¼m

k¼1
ℳ

Tpk
R

U

m
ð28Þ

The dissimilarity bound denoted by Dmax−min
Z is computed using Eq. (29),

Dmax−min
Z ¼

1−

∑k¼m
k¼1

e
−

P Z Tmaxpkð Þð Þ
σz

� �2

;P Z Tmax
pk

� �� �
≠0

1 ;P Z Tmax
pk

� �� �
¼ 0

8>><
>>:

m
0:2212

ð29Þ
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3.7.2 Min-min distance bound

Similar to the computation of max-min distance bound, the distance bound, Dmin−min
Z is given

by Eq. (30)

Dmin−min
Z ¼

1−

∑k¼m
k¼1

e
−

P Z Tminpkð Þð Þ
σz

� �2

;P Z Tmin
pk

� �� �
≠0

1 ;P Z Tmin
pk

� �� �
¼ 0

8>><
>>:

m
0:2212

ð30Þ

3.7.3 Minimum distance bound

The dissimilarity degree between temporal pattern (Tp) and reference (Rr) obtained by

summing two dissimilarity bounds, Dmax−min
Z and Dmin−min

Z is termed as the minimum bound

dissimilarity and is denoted by Dmin
Z . Equation (31) gives the expression for Dmin

Z ,

Dmin
Z ¼ Dmax−min

Z þ Dmin−min
Z ð31Þ

4 Algorithm design

In the naive approach for temporal association pattern mining, we must find true supports of all
patterns to judge if a temporal pattern is similar or not. This makes the computational
complexity class, NP. If these resulting number of true support scans can be reduced, the
computational efficiency shall be improved. The proposed Z-Spamine algorithm (which uses
proposed dissimilarity measure that is based on standard score named as SRIHAAS) is
designed to reduce the overall computation cost. The improvement in the computation cost
is addressed by

& Proposing approach for estimating temporal pattern prevalence time sequence bounds
without examining the temporal dataset before computing true supports for early pruning
(section-2)

& Reducing temporal pattern search space through defining temporal dissimilarity measure
that hold monotonicity. (section-3)

The following subsections outlines the algorithm design.

4.1 Cover of prevalence time sequences

One of the severe data sensitive operations when discovering time profiled association patterns
is generating true prevalence time sequences of temporal patterns (or temporal itemset). This is
because in the worst case, this can generate prevalence sequences of all possible temporal
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pattern combinations. Approaches for estimating temporal pattern support values are proposed
in the work of Calders [54], Jin Soung Yoo [59–61] and Vangipuram [49, 50]. The prevalence
estimation approach addressed in section-2 is used in the proposed Z-Spamine algorithm. The
dissimilarity measure used in Z-Spamine algorithm is introduced in section-3.

4.2 Minimum dissimilarity bound

The minimum bound dissimilarity of a temporal pattern to a given reference is equal
to the sum of the maximum and minimum bounding dissimilarities of temporal
pattern. The computation cost of temporal pattern mining process can be reduced if
we can somehow prune all the invalid temporal association patterns (i.e those tem-
poral patterns whose dissimilarity value for the reference exceeds user threshold)
much ahead in the pattern mining process. This objective is achieved through com-
puting the minimum dissimilarity bound value in Z-spamine pattern mining algorithm.
The basic idea is to find the value of minimum dissimilarity bound for a given
temporal pattern (w.r.t reference) and if this value exceeds the threshold limit, then
the temporal pattern is pruned. This is because whenever the minimum bound
dissimilarity value exceeds the dissimilarity threshold then, its true dissimilarity also
exceeds the threshold limit.

4.2.1 Definition-1

Given a reference support sequence, R
!

= (Rr1 ;Rr2 ;Rr3 ;…………;Rrm ) and the maximum

po s s i b l e p r e v a l e n c e s e q u e n c e o f a n i t em s e t , Tmax
I
��! ¼ ð Tmax

I1 ; Tmax
I2 , Tmax

I3 ,

………………,Tmax
Im Þ. let RU

�! ¼ (r1 , r2 ,……… , rw ) and

TL
I

�! ¼ ð Tmax
I1 ; Tmax

I2 , ………………,Tmax
w Þ be the subsequences of R

!
and Tmax

I
��!

respectively,

where rt > Tmax
It ; 1 ≤ t ≤ w. The maximum possible minimum dissimilarity value between

temporal patterns, R
!

and Tmax
I
��!

, Dmax−min
Z Tmax

I
��!

; R
!� �

is defined as D TL
I

�!
; RU
�!	 


.

Explanation: Let D TI
�!

; R
!� �

denote the distance between temporal itemset and the refer-
ence sequence. For example, when the proposed dissimilarity function introduced in section-3
is used then,

Dmax−min
Z Tmax

I
��!

; R
!� �

¼ D TL
I

�!
; RU
�!	 


¼
1−

∑t¼m
t¼1 MTIt

max

R

m
0:2212

ð32Þ

whe r e , MTIt
max

R ¼ e

−
P Z Tmax

It

� �� �
σz

0
@

1
A2

; i f P Z Tmax
It

� �� �
≠0 and i s equa l t o 1 ; i f

P Z Tmax
I t

� �� �
¼ 0.

Similarly, the maximum possible minimum dissimilarity between true support sequence of
temporal itemset association and the reference is
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Dtrue
Z TI

�!
;Rr
!� �

¼ D TL
I

�!
; RU
�!	 


¼

1−Mavg
TI ;Rr

0:2212
¼

1−

∑k¼m
k¼1 e

−
P Z TIkð Þð Þ

σz

� �2

;P Z TIkð Þð Þ≠0
1 ;P Z TIkð Þð Þ ¼ 0

8<
:

m
0:2212

ð33Þ

4.2.2 Definition-2

Given a reference support time sequence, R
!

= (Rr1 ;Rr2 ;Rr3 ;…………;Rrm ), the

maximum possible prevalence sequence of an item set, Tmax
I
��! ¼ ð Tmax

I1 ; Tmax
I2 , Tmax

I3 ,

………………,Tmax
Im Þ and the minimum possible prevalence sequence of an item set,

Tmin
I

��! ¼ ð Tmin
I1 ; Tmin

I2 , Tmin
I3 , ………………,Tmin

Im Þ. The minimum dissimilarity bound,

Dmin
Z Tmax

I
��!

; Tmin
I

��!
;Rr
!� �

is equal to the sum of maximum possible minimum dissimilarity

bound, Dmax−min
Z Tmax

I
��!

;Rr
!� �

and minimum possible minimum dissimilarity bound,

Dmin−min
Z Tmin

I

��!
;Rr
!� �

. This is formally denoted as

Dmin
Z Tmax

I
��!

; Tmin
I

��!
;Rr
!� �

¼ Dmax−min
Z Tmax

I
��!

;Rr
!� �

þ Dmin−min
Z Tmin

I

��!
;Rr
!� �

ð34Þ

Explanation: The distance is computed considering ‘m’ time slots and applying proposed
dissimilarity measure. If true distance is to be computed then we consider support values of
temporal and reference pattern for all time slots. Alternatively, if lower bounding distance is to
be computed then, for computing upper-lower bound distance, only those support values
which satisfy Rrm> Tmax

Im at ‘mth’ time slot are considered. Similarly, for lower-lower bound

computation only those pattern support values which satisfy Rrm< Tmin
Im are considered. This

makes the above definition hold well.

4.2.3 Lemma-1

Given the maximum possible prevalence sequence, Tmax
I
��! ¼ ð Tmax

I1 ; Tmax
I2 , Tmax

I3 ,

………………,Tmax
Im Þ, minimum possible prevalence sequence, Tmin

I

��! ¼ ð Tmin
I1 ; Tmin

I2 , Tmin
I3 ,

………………,Tmin
Im Þ, true support sequence, TI

�!
= (TI1 ; TI2 ; TI3 ;…………; TIm ) of tem-

poral pattern TI and a reference temporal pattern, R
!

= (Rr1 ;Rr2 ;Rr3 ;…………;Rrm ). The

lower bounding distance and the true distance holds the inequality, Dmin
Z Tmax

I
��!

; Tmin
I

��!
;Rr
!� �

≤Dtrue
Z TI

�!
;Rr
!� �

;if the proposed measure of section-3 is used as a similarity function.
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Proof: According to definition of lower-bounding distance using proposed dissimilarity

measure, it is known that Dmin
Z Tmax

I
��!

; Tmin
I

��!
;Rr
!� �

=Dmax−min
Z TI

�!
;Rr
!� �

þ Dmin−min
Z TI

�!
;Rr
!� �

i.e.

Dmin
Z Tmax

I ;
���!

Tmin
I ;
��!

Rr
!� �

¼

1−

∑k¼m
k¼1

e

−
P Z Tmax

Ik

� �� �
σz

0
@

1
A2

;Rrk > Tmax
Ik

1 ; else

8>>><
>>>:

m
0:2212

þ
1−

∑k¼m
k¼1

e

−
P Z Tmin

Ik

� �� �
σz

0
@

1
A2

;Rrk < Tmin
Ik

1 ; else

8>>><
>>>:

m
0:2212

≤

1−

∑t¼m
t¼1 e

−
P Z Tmax
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� �� �
σz

0
@

1
A2

;P Z Tmax
I t

� �� �
≠0

1 ;P Z Tmax
I t

� �� �
¼ 0

8>>>><
>>>>:

m
0:2212

þ
1−

∑t¼m
t¼1 e

−
P Z Tmin

I t

� �� �
σz

0
@

1
A2

;P Z Tmax
I t

� �� �
≠0

1 ;P Z Tmax
I t

� �� �
¼ 0

8>>>><
>>>>:

m
0:2212

≡
1−

∑t¼m
t¼1 e

−
P Z TItð Þð Þ

σz

� �2

m
0:2212

¼ Dtrue
Z T I

�!
;Rr
!� �

ð35Þ

4.3 Non-decreasing property of maximum-minimum dissimilarity bound

This section explores pruning scheme which is used to reduce the temporal itemset
(or pattern) search space. Monotonicity property of the support (or prevalence)
measure is the most popular technique which is used to reduce the search space of
itemset [2]. The prevalence values of all possible superset temporal itemset (or
patterns) of a given itemset cannot be greater than item set’s prevalence values.
Hence, according to the monotonicity property of support measure [2], if a temporal
itemset does not satisfy support threshold, then all its superset temporal itemset can
also be pruned. If we can come up with an interest measure (also called as dissim-
ilarity measure) which has a property that is like monotonicity then, the search space
can be reduced, thus achieving improved computational efficiency. The supporting
argument or proof for this is discussed in the following subsection 4.3.1.

4.3.1 Lemma-2

The prevalence time sequence of temporal associations (or patterns) decreases with the
size of the temporal pattern at each disjoint time slot. i.e. the prevalence value is
monotonically non-increasing.
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Proof: The prevalence time sequence of a temporal pattern is obtained by considering
prevalence values obtained from disjoint set of transactions for each time slot. As the size of
temporal pattern increases, the prevalence value of a temporal pattern (or itemset) decreases
w.r.t each time slot. Prevalence time sequences for all temporal patterns hold this property. For
example, if TI and TJ are two temporal patterns such that J⊆I, then prevalence (TI) ≤ prevalence
(TJ).

4.3.2 Lemma-3

The maximum possible minimum (upper-lower) dissimilarity bound between the true support
time sequence of temporal pattern and reference sequence monotonically increases with
respect to the size of the temporal itemset.

Proof: Here, the generalized proof for monotonicity of maximum possible minimum bound
dissimilarity value to true prevalence time sequences using proposed dissimilarity measure in

the sec t ion-3 i s out l ined . Let , R
!

= (Rr1 ;Rr2 ;Rr3 ;…………;Rrm ) and TI
�!

=
(TI1 ; TI2 ; TI3 ;…………; TIm ) be the reference and temporal pattern support time sequences
of a size-k itemset, I then the maximum possible minimum dissimilarity value is given by

Dmax−min
Z TI

�!
;Rr
!� �

¼
1−

∑k¼m
k¼1 e

−
P Z Tmax

Ik

� �� �
σz

0
@

1
A2

; P Z T max
I k

� �� �
≠0

1 ;P Z T max
I k

� �� �
¼ 0

8>>>><
>>>>:

m
0:2212

ð36Þ

Consider the size, (k + 1) item set, I’ = I ∪ { i’} where I’ ∉ I. The prevalence time sequence

of this temporal pattern is denoted by TI ’
�!

= (TI ’1 ; TI ’2 ; TI ’3 ;…………; TI ’m ). From lemma-2,

it is known that the prevalence value of a temporal pattern shows non-increasing behavior with
the increase in pattern size i.e. (TI ’ t ) ≤ (TIt ) for any tth time slot. This holds true for all time

slots in case of time stamped temporal database. So, for any time slot ‘t’, the prevalence value
of superset temporal pattern is less than or equal to its subset temporal patterns.

So, if TI ’ t ≤ TIt , TIt < Rrt and TI ’ t < Rrt then, Rrt−TIt ≤ Rrt−TI ’ t . This means that

1−

∑t¼m
t¼1 e

−
P Z TItð Þð Þ

σz

� �2

; P Z TItð Þð Þ≠0
1 ; else

8<
:

m
0:2212

≤
1−

∑t¼m
t¼1

e

−

P Z T

I ’ t

 ! !
σz

0
BBB@

1
CCCA

2

; P Z T
I ’ t

 ! !
≠0

1 ; else

8>>>>>>>><
>>>>>>>>:

m
0:2212

ð37Þ
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i.e., Dmax−min
Z TI

�!
;Rr
!� �

≤Dmax−min
Z TI ’ t

�!
;Rr
!� �

. On similar lines, it can also be proved that the

monotonicity of maximum possible minimum dissimilarity to maximum possible prevalence

sequence also holds good, i.e. Dmax−min
Z Tmax

I
��!

;Rr
!� �

≤Dmax−min
Z TI ’ t

max���!
;Rr
!� �

.

4.4 Temporal pattern pruning

We follow pruning strategies discussed in [8, 44, 59–61] but apply the pruning
strategy using the proposed dissimilarity measure. Computational cost of pattern
mining process is reduced by performing the pattern pruning process using minimum
dissimilarity bound (lower bounding distance) and monotonicity of maximum possible
minimum dissimilarity bound. The pattern pruning scheme is explained below.

4.4.1 Pruning using subset checkup

The first strategy of pruning temporal patterns is through subset checkup. In this
strategy, if the maximum possible minimum dissimilarity bound,

Dmax−min
Z Tmax

I
��!

;Rr
!� �

of any subset of a candidate temporal pattern is computed and

if this dissimilarity value does not satisfy the threshold constraint then, the candidate
temporal pattern is pruned by using the principle of monotonicity.

4.4.2 Pruning based on minimum dissimilarity bound

The second strategy of pattern pruning is through computing minimum dissimilarity
bound value of its maximum and minimum possible prevalence sequence. A candidate
temporal pattern is pruned without the need for examining the true prevalence of
temporal pattern, whenever its minimum dissimilarity bound, Dmin

Z exceeds the allow-
able dissimilarity limit.

4.4.3 Pruning using maximum possible minimum dissimilarity Dmax−min
Z Tmax

I
��!

;Rr
!� �

This strategy of pattern pruning is applied mainly to reduce the total number of next
size candidate temporal patterns which are otherwise possible during pattern mining
process. A candidate temporal pattern is pruned whenever the maximum possible

minimum dissimilarity bound, Dmax−min
Z Tmax

I
��!

;Rr
!� �

to true prevalence sequence of a

temporal pattern exceeds the dissimilarity threshold value. In this case, the temporal
pattern is not retained for generating higher size candidate temporal patterns.

5 Z-SPAMINE

In this section, we outline the algorithm for mining time profiled temporal associations, Z-
Spamine. Z-Spamine algorithm uses the proposed dissimilarity measure, SRIHASS as the
similarity function to find similarity between temporal pattern and reference. Z-Spamine is
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extended by considering spamine proposed by Yoo and Sashi Sekhar [59–61] that uses
Euclidean distance measure as the similarity function. Our approach requires transforming
the threshold value to a new space, say z-space.

5.1 Algorithm

The Z-Spamine approach is outlined as an algorithm in this subsection.
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Explanation & Steps 1–12: Finding patterns at first level

The computation process starts with obtaining true supports of first level temporal itemsets
from the input dataset. These supports obtained at every time slot are tranformed to standard
scores and probability scores using deviation given by Eq. (12). Compute Dtrue

Z between
reference and candidate pattern. If this satisfies the similarity condition, then the pattern is
similar. Otherwise compute Dmax−min

Z . If this distance satisfies similarity condition, then retain
the pattern else kill the pattern. Record all retained and similar patterns at first level.

& Step 14–32: Finding patterns at level, L > 1

For each next level itemset, estimate the support bounds of itemsets at each time slot by
considering the previous stage itemset true supports. Obtain Dmin

Z using the computed support

bounds. If Dmin
Z satisfies the similarity constraint, then find the true support of itemset. Now,

compute Dmax−min
Z and Dmin

Z . The pattern is similar if Dmin
Z satisfies similarity condition. If Dmin

Z

exceeds the similarity condition, Dmax−min
Z is computed. If this value satisfies similarity

constraint, then itemset is retained. Other wise, it is pruned. Record all retained and similar
itemsets at each level.

& Step 33:

From the retained itemsets of previous levels, generate the combinations of itemsets for
next level and repeat the steps from 14 to 32. Prune all itemset combinations that are supersets
of subset itemset combinations that are not similar and not retained at the previous level.
Continue the process in steps 14–32.

5.2 Working example

This section explains the working of Z-spamine algorithm using proposed dissimilarity
measure. Consider the dataset shown in Fig. 1a and Lattice diagram depicted in Fig. 1b.
The true distance and maximum-minimum dissimilarity values are shown in the lattice

diagram. The true distance values of temporal itemset are as follows: Dtrue
Z TA

�!
;Rr
!� �

=

0 . 1 3 8 , Dtrue
Z TB

�!
;Rr
!� �

= 0 . 0 3 5 , Dtrue
Z TC

�!
;Rr
!� �

= 0 . 3 1 2 , Dtrue
Z TAB

��!
;Rr
!� �

=

0.165, Dtrue
Z TAC

��!
;Rr
!� �

= 0.069, Dtrue
Z TBC

��!
;Rr
!� �

= 0.035, Dtrue
Z TABC

��!
;Rr
!� �

= 0.165. It is easy

to verify that true distance does not satisfy monotonicity. For example,

Dtrue
Z TAC

��!
;Rr
!� �

< Dtrue
Z TA

�!
;Rr
!� �

, Dtrue
Z TC

�!
;Rr
!� �

. S imi la r ly, Dtrue
Z TBC

��!
;Rr
!� �

< Dtrue
Z

TC
�!

;Rr
!� �

: i.e. the condition that the dissimilarity of superset temporal patterns must be

greater than the distance of its subset temporal patterns fails in these cases. However, this
property holds good w.r.t Dmax−min

Z of temporal pattern to the reference. For example, the
maximum-minimum dissimilarity values for itemset associations AB, AC, BC, ABC are as
follows:

Dmax−min
Z TABC

��!
;Rr
!� �

¼ 0:165;Dmax−min
Z TAB

��!
;Rr
!� �

¼ 0:165;Dmax−min
Z TAC

��!
;Rr
!� �

¼ 0:0692 .
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i.e. the distance values of all superset temporal patterns are greater than their subset temporal
patterns. This also holds good for all superset temporal patterns w.r.t subset temporal patterns.
It is to be noted that the values of max-min dissimilarity bound as indicated within parentheses
while the true distance values are shown outside the parentheses in Fig. 1b.

6 Results and discussions

This section outlines results obtained by applying the prevalence estimation approach of
section 2 and dissimilarity measure of section 3 in z-spamine algorithm. Test cases consid-
ered for the experiment are i) comparison of true support computations performed by
naive using Euclidean and Z-Spamine using proposed dissimilarity measure ii) effect of
threshold value iii) effect of the total number of transaction items, iv) effect of total number
of time slots, v) effect of number of transactions per time slot. Subsections 6.1 to 6.5 outlines
the results obtained from experiments performed by considering various test cases for
scalability that includes

i) comparison of true support computations
ii) Effect of varying threshold value
iii) Effect of varying number of transaction items
iv) Effect of varying number of time slots
v) Effect of varying number of transactions per time slot

6.1 Comparison of true support computations

This section outlines some of the results obtained by applying the proposed prevalence
estimation approach in section 2.

Figure 3 depicts true support computations required for a randomly generated temporal
database denoted as TD1000-T100-I20. TD indicates number of transactions per time slot, T is
number of time slots, I is the total number of items in finite itemset. The temporal database
generated from IBM data generator comprises of one lakh transactions. The total number of
possible temporal association patterns possible is 220 which are 1 billion temporal patterns. For
example, a database generated over 10 items has 1024 different possible pattern combinations.
Figure 4 shows total number of true support computations required using proposed support
bound estimation procedure for different thresholds 0.15, 0.25 and 0.35 applying dissimilarity
measure in section 3 and Z-Spamine algorithm.

Figure 5 depicts the graph comparing the true support computations carried using naïve and
proposed approaches for a threshold, δ = 0.35.

Figure 6 depicts the graph comparing retained association patterns to consider for similarity
when adopting the naïve and proposed approaches for thresholds, δ equal to 0.15, 0.25 and
0.35.

6.2 Varying threshold value

In the second experiment, we considered varying threshold values by maintaining constant
values for transaction items, time slots and number of transactions per time slot. The
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experiment is conducted by considering a time stamped temporal dataset generated for 10
transaction items, 100 time slots and 1000 transactions per time slot. Threshold values are
varied from 0.12 to 0.26 in steps of 0.02 and execution times for naïve, sequential, spamine
and Z-Spamine approaches are plotted as a bar graph shown in the Fig. 7. It can be verified

Fig. 3 True support computations – naïve approach

Fig. 4 True support computations – Z-Spamine
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from the graph that Z-Spamine performs better to naïve and sequential approaches and has
comparatively similar or better execution times w.r.t Spamine approach.

Figure 8 shows the execution times of sequential and Z-Spamine approaches for various
thresholds varied from 0.12 to 0.26 in steps of 0.02. The number of transaction items
considered are 12. The total number of time slots is 100 and transactions in each time slot
are 1000. From the graph depicted in Fig. 8, it can be verified that the sequential approach is
very sensitive to variations in the threshold value.

Figure 9 shows the effect of varying thresholds on naïve, sequential, spamine and z-
spamine approaches on a time stamped temporal synthetic dataset generated consisting of 12

Fig. 5 Naïve vs. proposed - I20-T100-TD1000 and δ = 0.35

Fig. 6 Retained patterns - naïve vs. proposed by level for, δ = 0.25
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items, 100 time slots, and 1000 transactions per time slot. The execution time of naïve and
sequential approaches are very high compared to spamine and z-spamine. Hence, we consid-
ered to plot the graph considering log value of execution time. Z-Spamine has better perfor-
mance when compared to naïve and sequential approaches and has almost similar performance
to spamine. The effect of varying thresholds on execution times of spamine and Z-Spamine
algorithms can be viewed from the graph represented using Fig. 10 as this graph only
compares spamine to Z-Spamine.

The performance of our algorithm w.r.t spamine is clearer from the bar graph in Fig. 10. It
shows that the execution time of Z-Spamine is better to spamine.

6.3 Effect of varying total number of transaction per time slot

In the third experiment, the total number of transactions per time slot are varied with the fixed
number of transaction items, number of time slots and threshold. For experimentation, the
number of transaction items is 10, time slots are set to 100 and the threshold value chosen is
0.2. Figure 11 depicts the execution times of naïve, sequential and z-spamine approaches for
varying transactions per time slot equal to 500, 750, 1000, 1250, 1300, 1350, 1400, 1450,
1500 and 2000. The dotted line graph indicates the exponential trend line of naïve approach.
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The total number of transactions are 1,00,000 defined over 100 time slots. It can be verified
that the proposed approach (Z-Spamine) performs better to sequential and naïve approaches.
Both sequential and naïve uses Euclidean distance measure. The reduce in time taken for Z-
Spamine to output the result set is due to the reduced number of true support computations that
are carried by Z-Spamine.

The comparison of execution times of Naive and Z-Spamine approaches for varying
transactions per time slot equal to 500, 750, 1000, 1250, 1500 and 2000 is shown in Fig. 12.
The dotted line graph indicates the linear trend line for naïve approach. The graph shows that
Z-Spamine performs substantially better to naïve approach.

The performance of Sequential [61] and Z-Spamine approaches for varying transactions per
time slot equal to 500, 1000, 1500 and 2000 are depicted in Fig. 13. The dotted line graph
indicates the exponential trend for sequential approach and is denoted by the exponential
function expression, y = 25.07e0.9391x. The trend denoted by dotted exponential line shows that
the execution time of sequential approach is sensitive to the total number of transactions per
time slot and increases in an exponential manner. On the other hand, execution time of Z-
Spamine is comparatively very much better to sequential approach and less sensitive to
number of transactions per time slot.
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The performance of Spamine using Euclidean distance measure and proposed Z-Spamine
approach using support bound estimation is recorded in the Fig. 14. Two dotted lines in the
graph show the exponential trend line plotted w.r.t Spamine (top dotted line) and 2- point
moving average (bottom dotted line). The execution times plotted in the graph of Fig. 14
proves that the execution time of Spamine has comparatively more exponential behavior than
Z-Spamine approach. This is because the execution time of spamine meets the exponential
trend line which is not true for Z-spamine as visible clearly for 2000 time slots. So, it can be
deduced that, as the number of time slots increases, Z-Spamine is comparatively more scalable
to Spamine approach.

Figure 15 represents execution times of naïve, sequential and z-spamine approaches for
varying transactions per time slot equal to 500, 750, 1000, 1250, 1300, 1350, 1400, 1450,
1500 and 2000 for a constant number of transaction items equal to 12. The two dotted line
graphs indicate the exponential trend line of naïve and sequential approaches. The total
number of transactions are 1,00,000 defined over 100 time slots. From the above graph, Z-
Spamine has comparatively better performance to sequential and naïve approaches. Also, the
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two-dotted exponential trend in Fig. 15 proves that the execution time of Z-Spamine is less
sensitive to the total number of transactions per time slot.

The performance of Z-Spamine and Spamine approaches is recorded in Fig. 16 by varying
transactions per time slot. The total number of transactions per time slot chosen are 500, 1000,
1500 and 2000 for a time-stamped temporal database defined over 100 time slots and the total
number of transaction items equal to 12. Two trend lines are plotted corresponding to Spamine
showing linear and exponential behaviors. The bar graph in Fig. 16 shows that the perfor-
mance of Z-Spamine is almost same or better to Spamine. In general, Z-Spamine performance
is comparatively better than Spamine.

6.4 Varying total number of time slots

In the fourth experiment, we consider varying the number of time slots for a constant number
of transactions per time slot equal to 100, threshold equal to 0.2 and number of transaction
items equal to 10. The minimum number of transactions is 50 k and maximum number of
transactions is 200 k. Figure 17a compares the execution time of naïve, sequential and z-

500 1000 1500 2000
SEQUENTIAL 52.595 201.768 502.436 887.775
Z-SPAMINE 10.421 37.235 80.859 141.893
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spamine approaches. The proposed approach performs better to naïve and sequential ap-
proaches. Execution times of Spamine and Z-Spamine are compared in Fig. 17b. The
performance comparison of naïve, sequential, Spamine using Euclidean distance and Z-
Spamine using proposed dissimilarity measure is depicted in Fig. 17c. The execution time
of Z-Spamine is better compared to all other approaches. It can be concluded that execution
time of z-spamine is less sensitive to change in time slots when compared to other approaches.

The graph shown in Fig. 18 depicts the execution time comparison of spamine and z-
spamine approaches for 12 items, 100 transactions per time slot and 0.2 threshold. The
performance of z-spamine is better to Spamine approach that applies the Euclidean distance.

6.5 Varying total number of transaction items

In the fifth experiment, the execution time and performance of naïve, sequential, spamine and
Z-Spamine approaches are studied and recorded by varying the total number of transaction
items. Figure 19 shows the line graph plotted depicting, the execution times of naïve,
sequential and z-spamine approaches. The number of transaction items considered are 10,
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11, 12, 13 and 14. The time stamped temporal database considered for this experiment has 100
time slots and each time slot has 1000 transactions which are constant. The threshold chosen is
0.2. The graph proves that Z-spamine is less sensitive to the increase in number of transaction
items whereas the other two approaches i.e. naïve and sequential are more sensitive to number
of transaction items and shows exponential increase in time.

The comparison of execution times of Spamine and Z-Spamine for variable transaction
items (10, 11, 12, 13 and 14) is shown in Fig. 20 using a line graph. Similarly, Fig. 21 depicts
execution times of Spamine and Z-Spamine for varying number of transaction items equal to

Fig. 17 a Comparison of naïve, sequential, Z-Spamine. b Comparison of Spamine, Z-Spamine for varying time
slots for varying time slots. c Comparison of all approaches
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10,11,12,13,14,15,16,17,18,19 and 20. Both these graphs depict that Z-Spamine has near-
ly same or lesser execution time when compared to Spamine that applies the Euclidean
distance. It is to be noted that Z-Spamine uses the proposed dissimilarity measure and support
estimation technique.

The bar chart in Fig. 22 shows the execution time of two approaches (spamine and Z-
Spamine) for number of transaction items equal to 10, 15, 20 and 25. In general, we can
conclude that Z-Spamine has almost similar execution time or less execution time compared to
Spamine approach. It is also seen that Z-Spamine is less sensitive to increase in transaction
items compared to Spamine.

6.6 Visualization

To visualize the number of temporal associations for which true supports are computed,
number of retained temporal associations and temporal trends, we have devoloped a visual
tool for time profiled temporal association mining. Figure 23 shows the layout of the visual
mining tool which has a provision to generate synthetic time stamped transcation database for
a given set of specifications such as i)number of time slots ii) number of transactions per time

10 11 12 13 14
Naïve 303.581 632.475 1472.686 2645.335 5467.968
SEQUENTIAL 201.768 395.394 885.712 1556.377 3425.484
Z-SPAMINE 37.235 48.001 62.173 76.86 96.486
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slot iii) number of items iv) threshold v) reference sequence. A provision is also made
available to choose any available and existing time stamped temporal dataset.

Figure 24 shows various algorithms that may be chosen for visualizing and understanding
temporal trends of patterns to a given user reference sequence pattern.

Figures 25 and 26 depicts the number of true support computations and number of retained
itemsets over a time stamped temporal data having 100 time slots, 1000 transactions/timeslot,
14 items for a chosen threshold equal to 0.2.

Figures 27 and 28 depicts the number of true support computations and retained itemsets
required on a time stamped temporal data consisting of 100 time slots, 500 transactions/
timeslot, 12 items for a chosen threshold equal to 0.25 for naïve approach. It can be seen that
both the number of true support computations and retained itemsets are equal for all levels for
naïve approach and the graphs are bell-shape curve.

Figures 29 and 30 depicts the number of true support computations and retained itemsets
required on a time stamped temporal data consisting of 100 time slots, 500 transactions/
timeslot, 12 items for a chosen threshold equal to 0.25 with proposed z-spamine approach. It
can be seen that, both the number of true support computations and retained itemsets are
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reduced compared to the naïve approach. It is also visually clear that the true supports and
retained itemsets after level-4 for z-spamine is almost zero, whereas for naïve approach it
keeps increasing till level-6 and then starts decreasing till level-12. Similarly, the seasonal
pattern trends may also be visualized by selecting the trend visualization option. This provides
the seasonal temporal trends that are hidden in the dataset w.r.t reference.

The following section gives details of the probability distribution chart used for design of
similarity measure.

Fig. 23 Visualization – data selection screen

Fig. 24 Visualization – algorithm selection screen
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7 Normal distribution chart

Figure 31 shows the normal curve standard deviation graph and Fig. 32 shows the normal
distribution probability chart using which the probailities for z-score value are obtained. To
compute z-score value between temporal pattern and reference, we apply Eqs. (11) and (12).
The probability value for this z-score is obtained using the distribution chart (http://www.
westbrookstevens.com/continuous.htm), [35] in Fig. 32.

The probability sequence of temporal associations obtained from these z-score sequences
are used to compute the dissimilarity between patterns. For example, the minimum value of z-
score considered is 0 and the maximum possible value considered is 3.09 as shown in the
distribution chart in Fig. 32. The normal probability for z = 0 is equal to 0 and for z = 3.09 it is

Fig. 25 Visualization – true support computations

Fig. 26 Visualization – retained itemsets
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equal to 0.5. The normal probability value, hence lies between 0 and 0.5. In this research, the
similarity measure is designed by considering the probability distribution chart of Fig. 32. The
following is the procedure to use the z-chart

i) Find the z-value between temporal pattern support and reference support using standard
normal value formula.

ii) After finding the z-value, use the distribution chart to find the probability value.
iii) Locate the z-value number from the left side of the chart by going vertically down. Once

the first part of the number is found then locate the second part of the number by moving
horizontally across the probability chart.

Fig. 27 visualization – retained itemsets

Fig. 28 visualization – retained itemsets
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iv) The value obtained by the defining cell is the probability of z-score.

8 Conclusions

Similarity-based temporal associating mining was initially coined by Yoo and Sashi Sekhar.
Yoo and Sashi Sekhar applied the Euclidean distance and support estimation approaches to
reduce computational complexity. Following the initial research of Yoo, subsequent works
were restricted to the use of Euclidean distance. To the best of our knowledge, there are no
known research studies, that have proposed novel dissimilarity measures, that apply standard

Fig. 29 Visualization – retained itemsets

Fig. 30 Visualization – retained itemsets
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score and probability distribution for time profiled temporal association mining and retain
monotonicity property. Our research is pioneering work in this direction. In this research, we
apply standard score and probability distribution concept to discover similarity-based time
profiled temporal associations. This research introduces a novel dissimilarity measure, SRIHASS
that is based on standard score computation for discovering time profiled temporal associations.

Fig. 31 Normal curve standard deviation

Fig. 32 Normal distribution probability chart
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Our similarity measure facilitates to understand hidden seasonal and emerging temporal trends
among temporal patterns. We also proposed an approach for estimation of prevalence values of
association patterns which helps to know the limits of support values and fits proposed measure.
Estimating support limits helps to perform early pruning of invalid temporal associations by
applying proposed dissimilarity measure. It is also analytically proved that the proposed measure
holds closure property which can be used to prune temporal patterns. Several experiments have
been carried under various test cases and the computational performance of Z-Spamine using
proposed similarity measure is compared to the naïve, sequential and spamine approaches that
apply the Euclidean distance. Experiment results and analysis prove that our approach is
computationally more efficient and is substantially scalable compared to other approaches.
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