
CPU-based real-time maximim intensity projection via fast
matrix transposition using parallelization operations
with AVX instruction set

Heewon Kye1 & Se Hee Lee2 & Jeongjin Lee3

Received: 28 March 2017 /Revised: 24 August 2017 /Accepted: 29 August 2017 /
Published online: 11 September 2017
Springer Science+Business Media, LLC 2017

Abstract Rapid visualization is essential for maximum intensity projection (MIP) rendering,
since the acquisition of a perceptual depth can require frequent changes of a viewing direction. In
this paper, we propose a CPU-based real-time MIP method that uses parallelization operations
with the AVX instruction set. We improve shear-warp based MIP rendering by resolving the
bottle-neck problems of the previousmethod of amatrix transposition.We propose a novel matrix
transposition method using the AVX instruction set to minimize bottle-neck problems. Experi-
mental results show that the speed of MIP rendering on general CPU is faster than 20 frame-per-
second (fps) for a 512 × 512 × 552 volume dataset. Our matrix transposition method can be
applied to other image processing algorithms for faster processing.

Keywords Maximum intensity projection .Matrix transposition . Parallelization . AVX
instruction set . Volume rendering

Multimed Tools Appl (2018) 77:15971–15994
DOI 10.1007/s11042-017-5171-2

* Jeongjin Lee
leejeongjin@ssu.ac.kr

Heewon Kye
kuei@hansung.ac.kr

Se Hee Lee
twoh25@naver.com

1 Division of Computer Engineering, Hansung University, 116 Samseongyoro-16Gil Seongbuk-gu,
Seoul 136-792, South Korea

2 Department of Information Systems Engineering, Hansung University, 116 Samseongyoro-16Gil
Seongbuk-gu, Seoul 136-792, South Korea

3 School of Computer Science & Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu,
Seoul 156-743, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-5171-2&domain=pdf
mailto:leejeongjin@ssu.ac.kr

1 Introduction

Maximum intensity projection (MIP) is a volume visualization technique for displaying the
maximum density of 3D volume data for a given viewpoint and direction. The clinical
usability of MIP has been extensively evaluated, and MIP has proved to be useful in the
generation of angiographic images from computed tomography (CT) and magnetic resonance
(MR) imaging data [1]. For MIP rendering, a virtual projection ray is generated and passed
along the viewing direction through volume data, and the maximum intensity is acquired for
the intensities of voxels along this projection ray. This maximum density value is stored for the
corresponding pixel, and displayed on the screen. Figure 1 shows that the maximum density
value, 230 is stored for the corresponding pixel, since this value is the maximum intensity
along the projection ray, which is parallel to the viewing direction.

3D volume data can be acquired from slice images of a human body taken by CT or
MR. Using MIP rendering technique, clinically meaningful images can be acquired for
human tissue, contrast-enhanced vessels, and skeletons. However, since there is no depth
information in the MIP image, a doctor might frequently change the viewing direction to
acquire a depth cue for diagnosis. Therefore, numerous methods have been researched
for the fast generation of MIP imagery. First, a region of a volume data is removed
during the preprocessing stage, when this region has low probability of being rendered in
the MIP image. Schreiner et al. proposed a fast algorithm by projecting the high density
first. All of the data was sorted according to its density value in the preprocessing step
for a few minutes [24]. Mroz et al. proposed a 1%-lossy compression method, which
removed about the half of the unnecessary volume data in the preprocessing stage [19].
Mroz et al. proposed a cell projection method. A cell is a data block that, after the
removal of unnecessary data, is sorted according to the density along the viewing
direction [20].

Object-order MIP rendering methods have been researched to improve the sampling process
and efficiency of cache memory. To minimize the computational cost of trilinear sampling, shear-
warp [5] and bilinear sampling [21] were applied. Mora et al. proposed an object-order MIP ray
casting method with a theoretical analysis [18]. Kiefer et al. proposed an object-order MIP ray
casting method, which improved the cache efficiency by propagating the ray along the inclined
direction [6].

These researches can be summarized in a pipelined flow. First, volume data is
divided into blocks. Unnecessary blocks are removed in the preprocessing step [19].

Fig. 1 Process of MIP rendering. a Generation of a projection ray, and b determination of MIP value

15972 Multimed Tools Appl (2018) 77:15971–15994

Since the result of MIP rendering is independent of the rendering order, data is sorted,
and rendering is performed in this sorted order [20, 21, 24]. The processing is
performed in each block by using block-based ray casting [6, 18], so that the efficiency
of a cache memory is improved. In spite of these efforts, most previous methods
required a long preprocessing step, and the rendering speed was only around 2 frame
per second (fps).

With the recent advances of graphics processing unit (GPU) performance, many
researches into volume data visualization have been conducted. In the past, volume
visualization using 3D texture on GPU was only possible on a workstation [4], and it
then became possible on a general GPU [22]. However, there are a few drawbacks to using
a GPU for volume data visualization. First, the installation and development methodology
of specialized libraries, such as CUDA (compute unified device architecture) [17] and
DirectX [25], are required for the development and application of a visualization algo-
rithm. A proper hardware unit with GPU must be installed for the use of the developed
application in a clinical environment. Finally, since the memory size of a GPU is generally
smaller than that of a CPU, a large dataset such as 4D-CT cannot be installed on a GPU,
and direct volume rendering is impossible [27].

To overcome the problems of previous researches, Kye proposed a parallel algorithm using
single instruction multiple data (SIMD) functions of CPU [7]. In this method, the parallelism
of CPU was utilized with no preprocessing step. Since intensity comparison operations are
frequently used in MIP to compute the maximum intensity, these operations are interpreted
into branch operations in CPU, resulting in ineffient computations. On the other hand, an
intensity comparison is processed in SIMD by fast arithmetic operations, resulting in a large
improvement in a computation speed. In addition, many comparisons are concurrently proc-
essed, resulting in further gain in the performance improvement. As a result, interactive MIP
rendering was possible using a CPU without the help of a GPU. However, the variations of a
rendering speed were very large, according to the viewing direction.

In this paper, we propose a fast MIP algorithm using advanced vector extensions
(AVX), by improving the method proposed by Kye [7]. In this method, a coordinate
transformation is performed based on a shear-warp decomposition, so that the accesses of
input medical volume data and output MIP image data are sequentially performed. This
technique improves the efficiency of memory access. Intensity comparison operations,
which are most frequently used in MIP, are replaced by fast parallelized arithmetic
operations of AVX, resulting in the improvement of computational efficiency. Compared
with the previous method [7], the visualization speed is much improved, since one
operation handles a dataset four times. In this paper, we propose an efficient method of
a matrix transposition. In the previous method [7], the efficiency of a memory access was
improved, but matrix transformation was required in some viewing directions, such as a
sagittal view. Since a matrix transformation is generally inefficient, MIP rendering time in
a sagittal view was about four times longer than that in other viewing directions. In our
method, we developed a matrix transposition method with 64 operations of a 16 × 16
matrix. In this paper, we prove that a matrix transposition of an n x n matrix using SIMD
requires at least n log2 n operations. Experimental results showed that the speed variations
were minimized by more than two times according to the viewing direction, compared
with the previous method.

Consequently, our method performs real-time MIP visualization of 512 × 512 × 552 med-
ical image data with 20 fps speed using a general and single-core CPU without any

Multimed Tools Appl (2018) 77:15971–15994 15973

preprocessing step. This speed cannot be acquired from any other previous CPU-based MIP
rendering. Our method can be used in clinical practice, without the help of a GPU. Our method
does not require any specialized hardware, and can be used in any kind of general purpose
hardware, such as a desktop personal computer (PC), or notebook PC.

The remainder of this paper is organized as follows. The next section describes SIMD
operations and MIP implementations using SIMD operations. Section 3 presents the proposed
method. Section 4 presents the results of the application of the proposed method to clinical
datasets, along with a comparison with other previous methods. Finally, Section 5 summarizes
the results of our findings, and discusses directions for future work.

2 Related works

In this chapter, Section 2.1 explains the SIMD instruction that is the basis of the proposed
research, while Section 2.2 describes the MIP algorithm that utilizes it.

2.1 SIMD instruction

SIMD is a technology or hardware structure that is capable of simultaneously executing a
single command in parallel on a plurality of data. Intel developed MultiMedia eXtension
(MMX), which is the SIMD extension instruction set for Pentium in 1997. With MMX
technology, 64-bit data can be calculated in parallel by division into the size desired by the
user. For example, four 16-bit integer (short) or eight 8-bit integer (char) values can be
concurrently computed Figs. 2, 3 and 4.

In addition, applying the max instruction in SIMD makes it possible to compare two sets of
values and extract only larger values at once. Therefore, the inefficient conditional branch
instruction is replaced by a simple arithmetic instruction. Applying the SIMD instructions to
the MIP in this way makes it possible to obtain the maximum values efficiently.

However, there are preconditions for efficiently performing the SIMD instruction. First, the
data must be continuously present in memory. In the above example, the data values 6, 8, 2 and
5 must be sequentially present in the memory. If the data is scattered in the memory, large
inefficiency occurs when it is transferred to a SIMD register. Second, parallel computation
should be performed in element units. In the above example, calculating the larger value of 6

Fig. 2 SIMD instruction to input multiple data to one 64-bit variable. a Eight 8-bit data input, and b four 16-bit
data input

Fig. 3 Multi data operation using SIMD

15974 Multimed Tools Appl (2018) 77:15971–15994

and 3 (or 8 and 7), which is called a vertical operation, is efficient. However, getting the largest
value 8 among 8, 6, 2 and 5 belonging to one register, which is called a horizontal operation, is
very inefficient. In Section 2.2, we show a fast MIP implementation that satisfies these two
preconditions.

2.2 Fast MIP using MMX instruction

In this section, we explain a MIP implementation of Kye’s method [7] that can use MMX
instructions because of the transformation of the coordinate system. In advance, it is assumed
that the coordinate axes of the volume data are denoted by X, Y, and Z axes, and the coordinate
axes of the output image are denoted by i, j, and k axes. Therefore, the volume data is stored
sequentially along the X-axis, and the image data is stored along the i-axis in the physical
memory. The viewing direction of the observer is the k-axis. Each voxel (pixel in medical
images) has a 2 byte integer value, which is the standard voxel size of CT or MR images.

If the viewing direction (k-axis) is exactly parallel to the Z-axis, it is simple to implement
MIP using MMX. First, coordinate transformation is organized. Since the Z-axis corresponds
to the k-axis, the X-axis of the volume can correspond to the i-axis of the image, and the Y-axis
of the volume corresponds to the j-axis of the image.

Then, the four voxels sequentially existing in the X-axis correspond to four pixels in the i-
axis on a one-to-one basis. Now, if we read four consecutive voxel data at once in a 8-byte
MMX register and use the max instruction with four consecutive pixels in the image and update
it, the process of the four voxels is completed at once without the branch instruction. When this
process is repeated in each Y-axis and Z-axis direction, one output image is generated.

Algorithm 1. MIP algorithm for viewing along the Z-axis using MMX.

Similarly, when we observe the volume data in parallel with the Y-axis, the coordinate
system is transformed as follows. Since the Y-axis corresponds to the k-axis, which is the

Fig. 4 Max operation using
SIMD

Multimed Tools Appl (2018) 77:15971–15994 15975

viewing direction, the X-axis can correspond to the i-axis. MIP can be efficiently performed, as
described above. For reference, the Z-axis automatically corresponds to the j-axis.

However, observation in the X-axis usually causes inefficiency. Four consecutive values in
the X-axis of the volume data correspond to the k-axis, and they cannot be stored on the
efficient i-axis. On the other hand, if we apply the ray casting method [23], it is also inefficient
to parallelize the calculation of maximum value along the X-axis, because this is the horizontal
operation described in Section 2.1.

To reduce the inefficiency, a related research [7] performed a matrix transposition operation
on a 4 × 4 sized voxel unit (a tile or matrix). A tile in the X and Y-axis directions is stored in four
MMX registers, and the X-axis and Y-axis are exchanged by the transposition. As a result, the
X-axis corresponds to the i-axis, and it is possible to efficiently apply the SIMD instructions.

Since at this time the transposition takes a considerable portion of the total computation time,
more improvements are needed. In this research, we propose a new method to transpose on a
16 × 16 sized tile using AVX2. The transposition on a 8 × 8 sized tile was studied in existing
research [16], but the transposition on a 16 × 16 sized tile is first studied in this research.

3 The proposed method

Figure 5 shows the overall process of this research. Acceleration is performed using the CPU-
based SIMD instructions (Section 3.1), and our coordinate system applies the shear-warp
factorization (Section 3.2). In this process, different coordinate transformations are performed
according to the observation direction (Section 3.3). When the observation direction is the X-
axis, the fast transposition method is applied (Section 3.4).

Fig. 5 A flowchart of the proposed MIP method

15976 Multimed Tools Appl (2018) 77:15971–15994

3.1 SIMD technologies of CPU and AVX2

In 1996, the first SIMD for PC was announced as the MMX technology of 8 bytes
capacity. Since Pentium 3 was released in 1999, Streaming SIMD Extensions (SSE) has
become available. SSE enables parallel execution of floating point instructions of 16 bytes.
Integer data processing became possible in 2001 when the SSE2 was developed. Advanced
Vector Extensions (AVX), introduced in 2008, can handle 32 bytes at once, and can handle
floating point instructions. AVX2, which is available from Intel’s Sandy Bridge CPU released in
2011, can process integer data in parallel in units of 32 bytes.

In this research, the AVX2 instruction set is used to take care of 2-byte integer voxels. Since
it can be used on CPUs after 2011, this research can be applied on most existing computers,
without requiring additional equipment.

3.2 Shear-warp factorization

The user usually observes patient data in an oblique direction. In this research, shear-warp
factorization [8, 9] is used for accelerated visualization. Shear-warp factorization divides the
transformation of coordinate system into two stages: shearing and warping. We denote Mview

as the matrix that converts a point (Volx, Voly, Volz) in the volume coordinate to a point (Imgx,
Imgy, Imgz) in the image coordinate.

Imgx
Imgy
Imgz
1

2
664

3
775 ¼ Mview

2
664

3
775

Volx
Voly
Volz
1

2
64

3
75 ð1Þ

Then, shearing transformation is applied, so that the viewing direction becomes
parallel to the Z-axis. As a result, the volume data is skewed in the sheared
coordinate, as shown in Fig. 6. The matrix Mshear transforms each point in volume
coordinate to the sheared coordinate (see Eq. (2)). Each patient image constituting the
volume data (each colored bar) can be projected onto the base plane. We calculate the
position on the base plane for each image, and project the image in the same way as
in Section 2.2.

Fig. 6 Shearing transformation along the viewing direction

Multimed Tools Appl (2018) 77:15971–15994 15977

Shearx
Sheary
Shearz

1

2
64

3
75 ¼ Mshear

2
664

3
775

Volx
Voly
Volz
1

2
64

3
75 ð2Þ

The projected image in the sheared coordinate should be transformed to the output
coordinate. We apply two-dimensional image processing as shown in Eq. (3) to generate the
final output image. Since we have computed Mview and Mshear, we can calculate Mwarp, the
product of Mview and Mshear

−1. We can obtain the final output image by applying the warping
transformation to the base plane.

Imgx
Imgy
Imgz
1

2
64

3
75 ¼ Mview

2
664

3
775

Mshear

2
664

3
775

−1

Mshear

2
664

3
775

Volx
Voly
Volz
1

2
64

3
75

¼ Mview

2
664

3
775

Mshear

2
664

3
775

−1
Shearx
Sheary
Shearz

1

2
64

3
75 ¼ Mwarp

2
664

3
775

Shearx
Sheary
Shearz

1

2
64

3
75

ð3Þ

3.3 Rendering method for viewing directions

In this section, similar to Section 2.2, it is assumed that the coordinate axes of the volume data
are denoted by X, Y, and Z axes, and the coordinate axes of the output image are denoted by i,
j, and k axes. Even though the volume can be observed in the axial (Z-axis), coronal (Y-axis),
or sagittal (X-axis) directions. it is efficient to make the X-axis correspond to the i-axis,
because the SIMD can handle sequential data in the memory.

In observing along the Y-axis, the Y-axis corresponds to the k-axis. Therefore, the X, Y,
and Z axes correspond to the i, k, and j axes, respectively. Images parallel to the X-Z plane
are projected to the base plane, while increasing by 1 in the Y-axis (see Fig. 7b).

In observing along the X-axis, the X-axis corresponds to the k-axis, and cannot correspond
to the i-axis (see Fig. 7c). In order to solve this inefficiency problem, we transpose all images
parallel to the X-Y plane. As the result, the X, Y, and Z axes can correspond to the i, k, and j
axes, respectively (see Fig. 7d).

Fig. 7 Transfomation of coordinate system and accessing order of volume data (red arrow). Observation in the a
Z-axis, b Y-axis, c X-axis, and d X-axis after transposition

15978 Multimed Tools Appl (2018) 77:15971–15994

Since voxels along the X-axis and pixels along the i-axis correspond one-to-one, the
calculation of the coordinates becomes simple, as shown in Eq. (4). The position of the
sheared coordinate when volx = 0 is calculated once, and the X vol is added to obtain the
exact coordinates on the base plane. Coordinate calculation is completed with one addition
operation, instead of a matrix multiplication operation.

Shearx
Sheary
Shearz

1

2
64

3
75 ¼ Mshear

2
664

3
775

Volx
Voly
Volz
1

2
64

3
75

¼ Mshear

2
664

3
775

0
Voly
Volz
1

2
64

3
75þ Mshear

2
664

3
775

Volx
0
0
0

2
64

3
75 ¼

Shearx Volx ¼ 0j
Sheary
Shearz

1

2
64

3
75þ

Volx
0
0
0

2
64

3
75

ð4Þ

We summarize it in Algorithms 2 and 3. When observing along the Y-axis, the calculation is
performed in units of 32 bytes along the X-axis. If one scanline along the X-axis is projected to the
end, it proceeds along the Z-axis. If a plane along the X-Z plane is projected to the end, it proceeds
along the Y-axis. When observing along the X-axis, a X-Yplane consists of several 16 × 16 tiles.
Each tile is projected onto the base plane after transposition. If all tiles in a X-Yplane are projected
to the end, it proceeds along the Z-axis.

Algorithm 2. MIP algorithm for viewing along the Y-axis using AVX2.

Algorithm 3. MIP algorithm for viewing along the X-axis using AVX2.

Multimed Tools Appl (2018) 77:15971–15994 15979

3.4 Fast matrix transposition

The transposition is needed only when observing on the X-axis, so that the observer feels that
it unnaturally slows down. This problem can be solved by improving the efficiency of the
transposition. In this section, we show a method of performing a 16 × 16 sized matrix
transposition with 16 × log 2 16 = 64 instructions. It is proven below that this method uses
the minimum number of instructions.

For example, one 8-byte MMX register can store four voxels, so a 4 × 4 matrix is stored in
four registers, as shown in Fig. 8. If the input values for the four registers are {1, 2, 3, 4}, {5, 6,
7, 8}, {9, 10, 11, 12}, and {13, 14, 15, 16}, respectively, {1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11,
15}, and {4, 8, 12, 16} must be obtained through transposition.

The data exchanging operation of SIMD fills one output register by various combinations
with two input registers. Because 1, 5, 9, and 13 are scattered in each of four different registers,
it is impossible to obtain the result by one instruction. Therefore, at least two instructions are
required. As shown in Fig. 8, {1, 5, 3, 7} and {9, 13, 11, 15}, which are intermediate values,
are generated, then {1, 5, 9, 13} is obtained. The total number of instructions is three, but the
intermediate results can be reused. The total number of instructions is 8, and two instructions
are needed to generate each output register.

We need to gather the scattered values in the eight registers to transpose an 8 × 8 matrix.
Since one more instruction to bind two registers gathered from the four input registers is
required, at least three instructions for each output register are needed. Likewise, four
instructions are necessary for a 16 × 16 matix, and at least log2 n operation is required to
gather the scattered values in n registers for an n x n matrix. Therefore, at least n log2 n
instructions are necessary to transpose the n x n matrix.

Since n log2 n instructions are required for n2 elements, the overhead for each element is

ov nð Þ ¼ nlog2n
n2 ¼ nlog2n

n2 . This function is monotonically decreasing for n, and becomes lim
n→∞

Fig. 8 An example of 4 × 4 sized matrix transposition using SIMD [7]

15980 Multimed Tools Appl (2018) 77:15971–15994

ov nð Þ ¼ lim
n→∞

log2n
n

¼ 0. Therefore, as larger registers are used, n increases and overhead de-

creases, and the relative overhead to transpose a matrix converges to zero.
In related work [7], 4 × 4 voxels were considered as a tile. The transposition was implemented

using themacro function provided by Intel. In this research,we developed a newmethod to transpose
a 16 × 16 tile with 16 × log 2 16 = 64 instructions using AVX2, which supports 64-byte register.

First of all, this paper describes the transpose for an 8 × 8 tile using SSE2. One 16-byte SSE2
register can store 8 voxels, and 8 registers are used to store a 8 × 8 tile. For each 8 × 8 tile, eight
instructions are used in one phase, and the transposition is completed in three phases, and 24
instructions [2]. Algorithm 4 shows an example of the transposition implemented in SSE2, while
Fig. 9 shows the change of data when each phase is executed. The symbol UNPACK in Algorithm
4 is a kind of data swizzle instruction [8] which combines the parts of two registers into one register.

Algorithm 4. 8 × 8 transposition.

Multimed Tools Appl (2018) 77:15971–15994 15981

In this research, we extended this concept, and developed a new transposition using
AVX2. (For specific details, refer to the Appendix) A 32 byte AVX2 register can store
16 voxels, and 16 registers are used to transpose a 16 × 16 matrix. By executing four
phases of the command, it is possible to perform the transposition of the 16 × 16
matrix with 16 × 4 = 64 instructions.

If the existing MMX technology is used to transpose a 16 × 16 matrix, it is
necessary to transpose 4 × 4 matrices 16 times, so that 8 instructions × 16 times = 128

instructions are required. The proposed method uses only half (ov 16ð Þ
ov 4ð Þ ¼ 0:5) of the

instructions.

3.5 Warping

Figure 5 shows the final stage of this research, which is warping to generate the output image.
Warping is an image processing technique that corresponds to two-dimensional affine

(a) (b)

(c) (d)
Fig. 9 Input data a after phase1, b after phase2, c after phase3; and d the 8 × 8 transposition process using SSE2

Table 1 Volume data set

Name Dimension Pixel Size [mm] Slice thickness [mm] Size (MB)

Chest #1 512 × 512 × 277 0.57 × 0.57 1.00 138.5
Chest #2 512 × 512 × 110 0.63 × 0.63 3.00 55.0
Lung 512 × 512 × 528 0.66 × 0.66 0.75 264.0
Head 512 × 512 × 552 0.42 × 0.42 1.00 276.0
Lower extremity 512 × 512 × 1165 0.78 × 0.78 1.50 582.5

15982 Multimed Tools Appl (2018) 77:15971–15994

T
ab

le
2

R
an
do
m
ly

ge
ne
ra
te
d
vi
ew

in
g
di
re
ct
io
n
ve
ct
or
s

1
2

3
4

5
6

7

x-
di
r

(0
.9
27
,0

.2
61
,0

.2
71
)

(0
.7
22
,−

0.
18
8,
−0

.6
66
)

(−
0.
79
9,
−0

.2
28
,0
.5
56
)

(0
.6
05
,0

.5
87
,−

0.
53
8)

(0
.8
79
,0

.4
60
,−

0.
12
5)

(0
.6
34
,0

.5
42
,
−0

.5
51
)

(0
.9
81
,0

.1
89
,
−0

.0
44
)

y-
di
r

(−
0.
13
2,

0.
95
1,

−0
.2
78
)

(0
.0
48
9,

0.
81
1,

−0
.5
83
)

(0
.2
42
,0

.8
87
,0

.3
93
)

(0
.3
94
,0

.7
77
,0

.4
91
)

(0
.5
30
,0

.8
40
,0

.1
17
)

(−
0.
62
8,
−0

.7
23
,−

0.
28
9)

(0
.3
85
,−

0.
91
3,
−0

.1
34
)

z-
di
r

(−
0.
10
3,

−0
.6
67
,−

0.
73
8)

(0
.6
53
,−

0.
37
5,
−0

.6
58
)

(−
0.
47
0,
0.
26
0,
−0

.8
43
)

(0
.6
96
,−

0.
04
12
,−

0.
71
7)

(0
.6
95
,−

0.
02
0,
−0

.7
18
)

(0
.1
02
,−

0.
01
61
,−

0.
99
5)

(−
0.
11
8,
0.
43
6,
−0

.8
92
)

Multimed Tools Appl (2018) 77:15971–15994 15983

translation, which is the process of correcting the tilted image created in the previous step. The
transformation can be calculated as Eq. (3).

Fig. 10 MIP rendering images of test data sets. a Chest #1, b Chest #2, c Lung, dHead, e Lower extremity, and f
Lower extremity with the other viewing direction

Table 3 MIP rendering time com-
parison with conventional methods
(ms = 10−3 s)

MMX [7] SSE2 [8] Proposed method

37.038 31.273 23.972

15984 Multimed Tools Appl (2018) 77:15971–15994

Since the forward mapping generates holes in image processing, we used the backward
mapping using Mwarp

−1 with bilinear interpolation. In modern hardware environments, two-
dimensional warping takes less than 2 ms, and the influence on overall performance is very
small.

4 Experimental results

4.1 Experimental environment and visual inspection

The experiments were performed using an Intel i5-4460 desktop system with a 3.2 GHz
processor and 8 GB of main memory. We implemented our method using Visual Studio 2015
C++ on Window7 operating system. Table 1 shows our tests of the proposed method on four
data sets. The number of images per scan ranged from 110 to 1165. Each image had a matrix
size of 512 × 512. Pixel sizes ranged from 0.42 to 0.78 mm. CT (computed tomography) was

Fig. 11 Comparison of MIP rendering time for each axis viewing direction, using MMX [7], SSE2 [8], and the
proposed method

Table 4 Matrix transposition time comparison with the conventional methods (ns = 10−9 s)

MMX [7]
4 × 4 matrix

Zekri et al. [26]
4 × 4 matrix

Proposed method
16 × 16 matrix

Processing time of one operation 4.721 3.6 27.62
Processing time of 16 × 16 matrix transpose 75.536 57.6 27.62
Clock number of 16 × 16 matrix transpose 271.7 126.7 88.4

Multimed Tools Appl (2018) 77:15971–15994 15985

performed with a 16-channel multi-detector row CT scanner (Siemens Somatom 16; Siemens,
Forchheim, Germany) in all the subjects. The scanning parameters were 120 kVp, 200 mA,
0.5-s rotation time, and 512 × 512-pixel matrix with a detector-row configuration of
0.75 × 16.0 mm.

We evaluated MIP rendering speed at various viewing directions, since the rendering
performance varied according to the viewing direction. First, we randomly generated 21
viewing direction vectors, as shown in Table 2. Accordingly, each principal viewing direction
(x-, y-, and z-direction) has 7 randomly generated viewing direction vectors around each
principal viewing direction.

Figure 10 shows the MIP rendering results of test data sets. In addition, we evaluate the
image quality of our MIP rendering methods by subtracting all of the MIP rendering images of
the proposed method from those of MMX [7] and SSE2 [8], while each data set was rotated
from 0 degree to 360 degree with an angle increase of 1 degree around the diagonal axis (1, 1,
1). None of the subtraction images from test data sets with 360 viewing directions had any
non-zero intensity pixel. We concluded that the proposed method showed no loss of image
quality.

4.2 Comparison with the conventional methods

We compared the computational efficiency of the proposed method with those of conventional
methods: MMX [7] and SSE2 [8]. Table 3 shows the average MIP rendering time for these
three algorithms. We measured the average MIP rendering time at 21 viewing directions
(Table 2) using Chest #1 data set. At each viewpoint, we performed 100 times rendering for
accurate measurement. SSE2 [8] was faster than MMX [7], and the proposed method was
faster than SSE2 [8]. Consequently, our method achieved about 1.55 times speedup of MIP
rendering on average, without any loss of image quality, compared with the conventional
method [7].

To analyze the performance according to the viewing direction, Fig. 11 shows the
rendering time of each method according to the viewing direction. Since our method
and conventional methods are based on shear-warp decomposition, the rendering time
varies greatly according to the viewing direction. Our method achieved about 1.1 times
speedup for the y-axis or z-axis viewing direction, since the memory was sequentially
accessed at these axes. For the x-axis viewing direction, our method achieved about 2
times speedup, compared with MMX [7]. MIP rendering of the x-axis viewing direction
was slower than that of the other viewing directions, due to the matrix transposition.
However, the fast transposition of our method enabled the speedup of MIP rendering.
In the previous method [7], the rendering speed for the x-axis viewing direction was
about 3.8 times slower than for the y-axis or z-axis viewing direction. On the other
hand, the rendering speed for the x-axis viewing direction in our method was about 2.1
times slower than for the y-axis or z-axis viewing direction. Our method much
improved the speed difference along the viewing direction in Fig. 11. Furthermore,
the proposed method doesn’t require any time-consuming pre-processing or additional
memory usage.

Next, we compared the processsing time of the matrix transposition of our method
with those of MMX [7] and Zekri et al. [26]. Table 4 shows the average processing
time after one hundred million times of the same computation for each method. This
time does not include the memory copy time. The experimental results of Zekri et al.

15986 Multimed Tools Appl (2018) 77:15971–15994

T
ab

le
5

M
IP

re
nd
er
in
g
tim

e
co
m
pa
ri
so
n
of

te
st
da
ta
se
ts
w
ith

th
e
co
nv
en
tio

na
l
m
et
ho
ds

(μ
s
=
10

−6
s)

X
-a
xi
s
di
re
ct
io
n

Y
-a
xi
s
di
re
ct
io
n

Z
-a
xi
s
di
re
ct
io
n

M
M
X

SS
E
2

O
ur

m
et
ho
d

M
M
X

SS
E
2

O
ur

m
et
ho
d

M
M
X

SS
E
2

O
ur

m
et
ho
d

C
he
st
#1

70
.5
47
34

51
.9
67
90

33
.3
32
80

20
.9
96
11

19
.6
91
06

19
.2
71
56

15
.9
63
61

15
.2
12
91

15
.1
23
45

C
he
st
#2

28
.0
14
30

20
.4
84
83

13
.1
86
79

7.
66
04
7

7.
23
72
9

7.
03
86
8

6.
29
12
6

5.
99
89
5

6.
04
86
3

L
un
g

13
8.
28
92
2

10
0.
87
86
7

68
.4
52
88

45
.8
85
28

41
.3
88
09

39
.9
48
84

31
.3
56
95

29
.9
29
03

29
.8
94
45

H
ea
d

14
4.
15
23
6

10
3.
70
52
6

70
.6
06
09

48
.7
32
87

43
.8
80
85

41
.9
76
02

32
.5
22
42

31
.2
20
59

31
.1
43
76

L
ow

er
ex
tr
em

ity
28
4.
33
34
3

20
3.
81
86
0

13
8.
73
64
0

12
1.
41
24
8

10
8.
11
02
4

10
4.
23
63
9

64
.8
95
49

62
.8
71
85

62
.5
49
59

Multimed Tools Appl (2018) 77:15971–15994 15987

[26] in Table 4 were performed using an Intel i7-2670 desktop system with a 2.2 GHz
processor, and the float operation was performed in 4 × 4 unit. The processing speed
of our method was about two times faster than that of Zekri et al. [26]. With respect
to the clock number, the performance of our method was about 1.5 times faster than
that of Zekri et al. [26].

In addition, we measured the MIP rendering time for various kinds of data sets to
prove the roubustness of our method. Table 5 shows the average rendering time of
each method after 100 times repetition for the x-axis direction (0.926509, 0.260581,
0.271438), y-axis direction (−0.131742, 0.951469, −0.278122), and z-axis direction
(−0.102672, −0.667368, −0.737617), respectively. We found that the MIP rendering
time linearly increased in proportion to the volume data size. For example, the size of
the head data set was two times larger than that of the chest #1 data set, so that MIP
rendering time of the head data set was about two times longer than that of the chest
#1 data set. This characteristic is one feature of the shear-warp based method, which
is impemented on volume data. We can approximately estimate the MIP rendering
time if we use another volume data set. Consequently, our method achieved about 20
fps speed for MIP rendering of the 512 × 512 × 552 head data set using a general
CPU.

5 Conclusion and future Works

In this paper, we proposed a fast MIP algorithm using AVX, by improving the
method proposed by Kye [7]. Our method performed a real-time MIP visualization
of 512 × 512 × 552 medical image data with 20 fps speed, using a general and
single-core CPU without any preprocessing step. In our method, we developed a
matrix transposition method with 64 operations of a 16 × 16 matrix. Experimental
results showed that compared with the previous method, the speed variations were
minimized more than two times according to the viewing direction. Our matrix
transposition method can be applied to other image processing algorithms for faster
processing.

In our method, we used a single-core CPU, and interpolation was not applied. If we use
multi-core CPU techniques, such as openMP technology, real-time MIP rendering might
be possible with an interpolation. In addition, since AVX-512 is planned to be launched to
handle 64 bytes in late 2017, 160 (32 × 5) operations can perform a matrix transposition of
32 × 32 matrix. In future work, our algorithm can be extened into the various kinds of
applications in mobile platform [13, 15]. And our method can be applied into a real-world
dataset [12, 14]. And our method can be utilized in tracking and visual analysis applica-
tions [3, 10, 11].

(The executable file with a sample dataset is provided at the author’s web-site: http://www.
gilab.co.kr).

Acknowledgements This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No.
2017R1A2B3011475).

15988 Multimed Tools Appl (2018) 77:15971–15994

http://www.gilab.co.kr
http://www.gilab.co.kr

Appendix

16 × 16 matrix transposition. AVX2 instructions and the processing examples

Table 6 16 × 16 tile transposition using AVX2

Multimed Tools Appl (2018) 77:15971–15994 15989

(a)

(b)

Fig. 12 The process of 16 × 16 matrix transposition. a Original, b after phase 1, c after phase 2, d after phase 3,
and e after phase 4

15990 Multimed Tools Appl (2018) 77:15971–15994

(c)

(d)
Fig. 12 (continued)

Multimed Tools Appl (2018) 77:15971–15994 15991

References

1. Belina S, Cuk V, Klapan I (2009) Virtual endoscopy and 3D volume rendering in the management of frontal
sinus fractures. Coll Antropol 33:43–51

2. Chen K, Duan Y, Yan L, Sun J, Guo Z (2012) Efficient SIMD optimization of HEVC encoder over X86
processors. Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC),
pp 1–4

3. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low- and high-
dimensional approaches. IEEE Trans Syst Man Cybern Syst 43(4):996–1002

4. Dachille F, Kreeger K, Chen B, Bitter I, Kaufman A (1998) High-quality volume rendering using texture
mapping hardware. SIGGRAPH/Eurographics Workshop on Graphics Hardware’98, pp 69–76

5. Fang L, Wang Y, Qiu B, Qian Y (2002) Fast maximum intensity projection algorithm using shear warp
factorization and reduced resampling. Magn Reson Med 47:696–700

6. Kiefer G, Lehmann H, Weese J (2006) Fast maximum intensity projections of large medical data sets by
exploiting hierarchical memory architectures. IEEE Trans Inf Technol Biomed 10(2):385–394

7. Kye H (2009) Efficient maximum intensity projection using SIMD instruction and streaming memory
transfer. J Korea Multimedia Soc 12(4):512–520

8. Lacroute P (1995) Fast volume rendering using a shear-warp factorization of the viewing transformation.
Technical Report: CSL-TR-95-678

9. Lacroute P, Levoy M (1994) Fast volume rendering using a shear-warp factorization of the viewing
transformation. Proceeding SIGGRAPH ‘94 Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pp 451–458

10. Liu Y, Zhang X, Cui J (2010) Visual analysis of child-adult interactive behaviors in video sequences. 16th
International Conference on Virtual Systems and Multimedia, pp 26–33

11. Liu Y, Cui J, Zhao H, Zha H (2012) Fusion of low-and high-dimensional approaches by trackers sampling
for generic human motion tracking. 21st International Conference on Pattern Recognition, pp 898–901

12. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities from
sensor data. Proceedings of the 24th International Conference on Artificial Intelligence, pp 1617-1623

(e)Fig. 12 (continued)

15992 Multimed Tools Appl (2018) 77:15971–15994

13. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition.
Neurocomputing 181(12):108–115

14. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic
interval-based model. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp 1266–
1272

15. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using
smartphone accelerometers. Multimedia Tools Appl 76(8):10701–10719

16. McFarlin DS, Arbatov V, Franchetti F, Püschel M (2011) Automatic SIMD vectorization of fast fourier
transforms for the larrabee and AVX instruction sets. Proceedings of the international conference on
Supercomputing, pp 265–274, Tucson, Arizona, USA

17. Mensmann J, Ropinski T, Hinrichs KH (2010) An advanced volume raycasting technique using GPU
stream processing. International Conference on Computer Graphics Theory and Applications, pp 190–198

18. Mora B, Ebert DS (2005) Low-complexity maximum intensity projection. ACM Trans Graph 24(4):1392–
1416

19. Mroz L, König A, Gröller E (1999) Real-time maximum intensity projection. Data Visualization ‘99, pp
135–144

20. Mroz L, Hauser H, Gröller E (2000) Interactive high-quality maximum intensity projection. Comput
Graphics Forum 19(3):341–350

21. Pekar V, Hempel D, Kiefer G, Busch M, Weese J (2003) Efficient visualization of large medical image
datasets on standard PC hardware. Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization, pp
135–140

22. Rezk-Salama C, Engel K, Bauer M, Greiner G, Ertl T (2000) Interactive volume rendering on standard PC
graphics hardware using multi-textures and multi-stage-rasterization. Proceedings of SIGGRAPH/
Eurographics Workshop on Graphics Hardware’00, pp 109–118

23. Sabella P (1988) A rendering algorithm for visualizing 3D scalar fields. ACM SIGGRAPH 1988
Proceedings of the 15th annual conference on Computer graphics and interactive techniques, pp 51–58

24. Schreiner S, Galloway RL Jr (1993) A fast maximum-intensity projection algorithm for generating magnetic
resonance angiograms. IEEE Trans Med Imaging 12(1):50–57

25. Vollrath JE, Weiskopf D, Ertl T (2005) A generic software framework for the gpu volume rendering
pipeline. Proceedings of Vision, Modeling, and Visualization, pp 391–398

26. Zekri AS (2014) Enhancing the matrix transpose operation using intel avx instruction set extension. Int J
Comput Sci Inf Technol (IJCSIT) 6(3):67–78

27. Zhao K, Sakamoto N, Koyamada K (2014) Fused visualization for large-scale time-varying volume data
with adaptive particle-based rendering. AsiaSim 2014, 14th International Conference on Systems
Simulation, pp 228–242

Heewon Kye is an associate professor in the Division of Computer Engineering at Hansung University, Korea.
He received the BS (1999), MS (2001) and PhD degree (2005) in Computer Science and Engineering from Seoul
National University, Korea, respectively. His current interests are real-time rendering, volume visualization, and
medical image processing.

Multimed Tools Appl (2018) 77:15971–15994 15993

Se Hee Lee is a MS candidate in the Department of Information Systems Engineering at Hansung University,
Korea. She received the BS degree (2016) in Department of Information Systems Engineering from Hansung
University, Korea, respectively. Her current interests are real-time rendering, volume visualization, and medical
image processing.

Jeongjin Lee is an associate professor in the School of Computer Science and Engineering at Soongsil
University, Korea. He received the B.S. degree in mechanical engineering, and the M.S. and Ph.D. degrees in
computer science and engineering from Seoul National University, Korea in 2002 and 2008, respectively. He
worked as a research professor in Department of Radiology, University of Ulsan, Korea (Seoul Asan Medical
Center) from October 2007 to February 2009. He also worked as a C.T.O. in Clinical Imaging Solution from
January 2008 to May 2010. He worked as an assistant professor in Department of Digital Media, The Catholic
University of Korea from March 2009 to February 2013. His research interests include image registration, image
segmentation, computer-aided diagnosis, computer-aided surgery, volume rendering, and virtual endoscopy.

15994 Multimed Tools Appl (2018) 77:15971–15994

	CPU-based...
	Abstract
	Introduction
	Related works
	SIMD instruction
	Fast MIP using MMX instruction

	The proposed method
	SIMD technologies of CPU and AVX2
	Shear-warp factorization
	Rendering method for viewing directions
	Fast matrix transposition
	Warping

	Experimental results
	Experimental environment and visual inspection
	Comparison with the conventional methods

	Conclusion and future Works
	Appendix
	16 × 16 matrix transposition. AVX2 instructions and the processing examples

	References

