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Abstract In order to develop an efficient angiosperm-genus classification system,we first collected
petal image of Hibiscus, Orchis, and Prunus, by digital camera, and remove the backgrounds by
region-growing method. Next, we proposed a novel feature-extraction method, which combined
most abundant color index (MACI) and introduced the fractional Fourier entropy (FRFE). Third, we
submitted the 41 features to a single-hidden layer feedforward neural-network (SLFN), with weight
decay (WD) to avoid overfitting. The 10 × 10-fold cross validation showed our method achieved an
overall accuracy of 98.92%. Without weight decay, the overall accuracy decreased to 95.50%. Our
experiments validated that optimal decay factor is 0.1, and optimal number of hidden neurons is 15.
This proposed method is excellent. It performs better than six state-of-the-art approaches and
AlexNet. The weight decay helps to enhance generalization of our classifier.

Keywords Angiosperm genus .Weight decay . Classification . Fractional fourier entropy .

Feature extraction .Most abundant color index . Color histogram . Single-hidden layer feed-
forward neural-network . Petal image . AlexNet

1 Introduction

Angiosperm are flowering plants with 416 families and 295,383 species [29]. Both angio-
sperms and gymnosperms [6] are seed-producing plants, Nevertheless, the former has

Multimed Tools Appl (2018) 77:22671–22688
DOI 10.1007/s11042-017-5146-3

Yu-Dong Zhang and Junding Sun contributed equally to this work.

* Yu-Dong Zhang
yudongzhang@ieee.org

1 School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan 454000,
People’s Republic of China

2 Translational Imaging Division & MRI Unit, Columbia University and New York State Psychiatric
Institute, New York, NY 10032, USA

3 Department of Informatics, University of Leicester, Leicester LE1 7RH, UK

Springer Science+Business Media, LLC 2017

http://orcid.org/0000-0002-4870-1493
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-5146-3&domain=pdf
mailto:yudongzhang@ieee.org


distinctive features [26]: flowering organs, endosperm within the seeds, and producing fruits
covering the seeds.

The flowering organs (i.e., flowers) are the most remarkable feature [3]. It provides the
plant with a more species-specific breeding system [31], which guarantees a ready means into
different species without crossing back into related species. The faster speciation ability make
them adaptive to wider ranges of ecological niches [21].

Most of people cannot identify them due to the enormous species (over 250,000) [13]. They
need to turn to specialists, read flower monographs, or search the internet, in order to identify
the families, genera, and species of the flowers [2]. A feasible means is by computer vision
based on a digital camera either in hand or in a mobile-phone [19]. Scholars have shown
increasing interest in this field.

In the last decade, Saitoh, Aoki and Kaneko [28] focused the blooming flowers and
defocused the background. They selected a route to extract the boundary. Their method is
the combination of normalized cost (NC) and piecewise linear discriminant (PLD). Their aim
is minimize the sum of local cost divided by the route length. Nilsback and Zisserman [22]
developed a visual vocabulary (VV) method. They used the nearest neighbor classifier (NNC).
Nilsback and Zisserman [23] computed three features: (i) hue-saturation-value (HSV), (ii)
Scale-invariant feature transform (SIFT), and (iii) histogram of oriented gradient (HOG).
Afterwards, they used support vector machine (SVM) as the classifier. Guru, Sharath and
Manjunath [14] extracted features from gray-level co-occurrence matrix (GLCM) and Gabor
filter response (GFR). They employed k-nearest neighbors (KNN) algorithm. Guru, Sharath
Kumar and Manjunath [15] improved their methods later. They introduced a new color texture
moment (CTM), and replaced KNN with probabilistic neural network (PNN). Cheng and Tan
[8] combined 100 SIFT features, 40 pyramid histogram of oriented gradient (PHOG) features,
and 64 color histogram features. They used sparse representation-based classifier (SRC). Sari
and Suciati [30] took only a* and b* channel (ABC) in the L*a*b* color space. They also
obtained texture features by segmentation-based fractal texture analysis (SFTA). They used
kNN classifier with cosine distance. Vasudevan, Joshi, Shekokar, Kumar, Kumar and Guru
[35] obtained the flower skeletons, and then used Delaunay triangulation (DT) to extract
features. They used symbolic classifier (SC).

Meanwhile, there are some apps to identify flowers on either IOS or android platforms. For
example, the BPlant Snapp^, BLike Thar Garden^, BGarden Answers Plant
Identification^, BFlower Checker^, BPlantifier^, etc. Nevertheless, those apps are
mainly based on color and shape features. For the petals with similar color and
shape, those apps may perform bad.

This study proposed a new color feature – most abundant color index (MACI) and used a
relatively new texture feature—fractional Fourier entropy (FRFE). This combined feature set
showed promising result. In the classification stage, we used the single-hidden layer
feedforward neural-network (SLFN), and used the weight decay technique to avoid overfitting.

The highlights of this study are composed of four points: (i) We proposed a hybrid feature
combining MACI and FRFE, and showed the superiority of combined features than individual
feature. (ii) We used weight decay for generalization, and our experiment showed the
effectiveness of weight decay. (iii) Our method gives better performance than six state-of-
the-art approaches and AlexNet. (iv) Grid searching was used to find the optimal parameters of
our classifier.

The rest of the paper is described as follows: Section 2 contains the angiosperm dataset
containing three genera as Hibiscus, Orchis, and Prunus. Section 3 provides the proposed most
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abundant color index and introduces fractional Fourier entropy. It also gives the background of
classifier and weight decay. Section 4 provides the experiment results and discussions. Final
Section 4.1 gives the concluding remarks.

2 Materials

We collected three genera of flower petals (Hibiscus, Orchis, and Prunus). Each contains 40
images. The flowers are collected in the nature in China. We put them under a glass over a
piece of black cloth, making them spread all the way. The images were captured with a digital
Canon EOS 80D camera. The CMOS image sensors can take 24.2 megapixels with 3:2 aspect
ratio. A 1/8000 s shutter was set. Shutter lag time was 0.06 s.

There are different species within each genus. The scale, pose, and light illumination vary in
each image. Original size of each image is 6000 × 4000. Region-growing method [27] was
carried out to remove the background automatically. Original captured picture is too large and
contains a massive of redundant spatial information. After removing the background, we
placed the petal in the center, and resized the image size of 400 × 400.

Figure 1 shows the samples of the petal images. In the light of improving the generalization
of the classification system, the petal images were captured in different rotations, angles, and
illumination conditions. We did not carry out any scale normalization, pose normalization, or
illumination compensation. The reason is we would like our classifier has the ability to resist
scale change, pose variation, and illumination variation.

3 Methodology

3.1 Most abundant color index

Color histogram (CH) [16] was employed in this study; nevertheless, it contains 64 features
and most of them are close to zero [1]. Therefore, we proposed a new color feature scheme,
which extracts the indexes of several most abundant color channels. This new scheme is
named most abundant color index (MACI).

We firstly discretized the color space from the original 256 × 256 × 256 = 16,777,216 color
space to 4 × 4 × 4 = 64 discrete color bins [36]. We counted pixel number in each of the 64

Fig. 1 Samples of the petal image dataset: a Hibiscus, b Orchis, and c Prunus
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bins. Fig. 2(a) shows an original rose image in RGB space. Figure 2(b) shows the 64 discrete
color bins. Figure 2(c) shows the color histogram of rose image. The y-axis denotes the
number of pixels, and the x-axis denotes the 64 color bin index. Figure 2(d) shows the sorted
color histogram. The x-axis now denotes the index. We can observe the five indexes are 53, 58,
57, 52, and 32, respectively.

The pseudocode of calculating MACI is listed in Algorithm 1. Here we choose five most
abundant indexes by experiences. The advantages of MACI contain two points. First, it can
extracts color information of any type of given color images. Second, it uses less features than
color histogram.

Algorithm 1 Pseudocode of MACI.

Step 1 Import the petal image.

Step 2 Transform it to gray-scale image.

Step 3 Perform 36 different FRFTs with rotation angles shown in Figure 4.

Step 4 Calculate Shannon entropy over the 36 FRFT spectrums.

3.2 Fractional fourier entropy

Suppose x(t) denotes a signal in time or spatial domain, then the corresponding fractional
Fourier transform (abbreviated as FRFT) [7] is defined below:

Fa uð Þ ¼ ∫∞−∞x tð Þℒ t; ujað Þdt ð1Þ

(a) Rose Image (b) 64 Discrete Bins (c) Color Histogram

(d) Sorted Color Histogram
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Fig. 2 Sorted color histogram of a rose image
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here u represents the frequency domain [4] a the angle of FRFT ℒ is the transform kernel as:

ℒ t; ujað Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− jcota
p

� exp jπ t2cota−2utcscaþ u2cota
� �� � ð2Þ

Here j represents the imaginary unit, and exp.(.) represents the exponential function. From
basic mathematical knowledge, we know that if a is set the value of a multiple of π, then both
Bcsc^ and Bcot^ operators will diverge to infinity [10]. Using knowledge of limitation, we can
transform Eq. (2) to

ℒ t; ujað Þ ¼
C t−uð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− jcota
p
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where k represents an arbitrary integer, and C is the Dirac delta function.
An illustration of FRFT over the rectangular function is plotted in Fig. 3. The rectangular

function r(t) is defined with
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0
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Here |.| represents the absolute value. The FRFT results of r(t) with angles a of 0/10, 2/10,
4/10, 6/10, 8/10, and 10/10 are shown in Fig. 3(a-f), respectively.

When FRFT extends to the two-dimensional situation, we have two angles: a for
x-axis and denoted by b for y-axis. This combined angle vector (a, b) serve as the
rotation angle for 2D–FRFT. In this study, we chose by experiences in total 36
different 2D–FRFTs as shown in Fig. 4. That means, we chose 36 angle vectors, i.e., (0, 0),
(0, 0.2), …, (0, 1), (0.2, 0), (0.2, 0.2),…, (0.2, 1), …, (1, 0), (1, 0.2), …, (1,1).

(c)(b)(a)

(f)(e)(d)

Fig. 3 FRFT curve of r(t): a a = 0/10; b a = 2/10; c a = 4/10; d a = 6/10; e a = 8/10; f a = 10/10. (The red and
blue lines denote the real and imaginary parts, respectively)
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Yang, Sun, Dong, Liu and Yuan [37] proposed a novel image feature dubbed fractional
Fourier entropy (FRFE), which is a combination of fractional Fourier transform with Shannon
entropy. Sun [34] applied FRFE in creating an intelligent pathological brain detection system.
Cattani and Rao [5] applied FRFE in tea category identification. Those literature all obtained
promising results. In this study, we also employed FRFE by calculating Shannon entropy over
the 36 FRFT spectrums. The pseudocode of FRFE is presented in Algorithm 2.

Algorithm 2 Fractional Fourier entropy.

Step 1 Import the petal image with RGB color channels.

Step 2 Divide the color space into 64 discrete color bins.

Step 3 Count the pixel numbers in each bin and Calculate the color histogram.

Step 4 Sort the color histogram.

Step 5 Record the five most abundant color indexes.

3.3 Classifier

The 5 MACIs and 36 FRFEs are combined, and then submitted to a single-hidden layer feed-
forward neural-network (SLFN). The number of hidden neuron is set to 15 by grid-searching
method (See Section 4.9). Thus, a 41–15-3 SLFN was initialized with random weights and
biases as shown in Fig. 5.

The SLFN is trained in supervised learning scheme [32]. Suppose the loss function is E(ω),
where ω represents the weights and biases. The backpropagation (BP) learning algorithm [12]
can be divided into two phases: (i) propagation and (ii) weight update.

In the propagation stage, we first forward propagated an input through the network and
generated an output [25]. Afterwards, we generated the gradient descent by backward prop-
agation [33]. In the weight update stage, the gradient is multiplied with a learning rate η, and
the term is subtracted from current weight [11]. In mathematics, the BP can be written as

ωk←ωk−η
∂E
∂ωk

ð5Þ

a
0 0.2 0.4 0.6 0.8 1

b

0

0.2

0.4

0.6

0.8

1

Fig. 4 36 different combinations
with their angle vector (a, b) from
0 to 1 with step of 0.2
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The above procedure repeats until the performance of SLFN meets our termination
requirement.

3.4 Weight decay

The BWeight Decay (WD)^ [24] is a powerful regularization method that can reduce the test
error and resist overfitting, at the expense of increasing training error. Aweight decay factor λ
was introduced, and the first term of Eq. (5) was multiplied with (1 - λ) as

ωk← 1−λð Þωk−η
∂E
∂ωk

ð6Þ

where η represents the learning rate, E is the loss function, λ is the weight decay
factor, and ωk represents the weights and biases at k-th step.

The weight decay term modified the learning rate [38], so the new algorithm
shrinks the weight vector at each step, before performing the usual weight update
in standard BP [20]. In this study, we chose the weight decay factor fixed, namely,
unchanged during the training procedure. In addition, we found λ = 0.1 performed the
best for our task.

3.5 Experiment design

We did not divide the dataset into training, validation, and test sets. The reason is that our
dataset is small, so dividing will yield a smaller training dataset, which is not suitable for
training. To get test error without reducing the size of training dataset [18], this study employed
a ten-fold cross validation method.

We divide the dataset into ten folds. Each fold contains 4 Hibiscus images, 4 Orchis images,
and 4 Prunus images. Then, we used nine folds for training, and the other fold for test. The

1

2

15 3

2

11

2

41

Hidden Neuron Output NeuronInput Nodes

Fig. 5 Structure of SLFN in petal classification
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performance of trained SLFN over test set was recorded. The above procedure repeated 10
times as shown in Fig. 6. In each time, different sets were chosen as test set [17]. Finally, the
performance over each test set was combined and a final overall test performance was
presented. To further reduce the variance on test set, we run the 10-fold cross validation 10
times.

The flowchart of our method is provided in Fig. 7. In addition, its pseudocode was
described in Algorithm 3.

Algorithm 3 Pseudocode of our proposed system.

Step 1 Import the petal image dataset. Segment the dataset into 10 folds.

Step 2 Extract the most abundant color index features and fractional Fourier entropy features.

Step 3 Initiate a classifier based on single-hidden-layer feed-forward neural network, and use weight decay as the 

regularization method.

Step 4 Cross Validation, let k = 1.

Step 4.1 Choose k-th fold as test fold, and the other as training folds.

Step 4.2 Train the classifier using the sum of nine training folds.

Step 4.3 Record the result on the test fold.

Step 4.3 k = k+1, jump to Step 4.1.

Step 5 Summarize the results on all test folds, and report the performance.

4 Results and discussions

4.1 Feature extraction

A petal image was used to extract both color feature and texture feature. Figure 8(a)
shows the original petal image. Figure 8(b) shows the color histogram of this petal
image. Figure 8(c) offers the five MACIs. Obviously, the color vector here is [0, 54,
58, 53, 59].

Then, the texture feature was obtained. The FRFT of the petal image is shown
below in Fig. 9. Here the arrangement is coherent with that in Fig. 4. That is, the
left-upper subgraph represents the FRFT with (a, b) = (0, 0), and the right-button

Petal Dataset

A B C D E F G H I J
Training

…………………………………………………………………………………………

Run 1

Run 2

Run 9

Run 10

Test

Run 3

A B C D E F G H I JTest 

Performance

Fig. 6 10-fold cross validation (A-J are 10 folds of petal dataset)
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subgraph corresponds to FRFTwith (a, b) = (1, 1). We can deduce that FRFTwill provide more
information than standard Fourier transform.

4.2 Performance without weight decay

In this experiment, we compared the BSLFN with WD model (SLFN + WD)^ with BSLFN
without WD^. The parameters were the same as previous Section: We run a 10 × 10-fold cross
validation. The weight-decay factor λ was set as 0.1. The maximum iteration was 1000. The
learning rate η was set as 0.01. The overall accuracy was used as the measure. The comparison
results are listed in Table 1.

Table 1 shows that merely SLFN model obtains an overall accuracy of 95.50%; neverthe-
less, introducing WD can significantly increase the overall accuracy to 98.92%. The increase
of 3.41% is under strict statistical analysis of 10 × 10-fold cross validation; hence, the
improvement is meaningful. Connor, Hollensen, Krigolson and Trappenberg [9] presented

Most Abundant 

Color Index

Fractional Fourier 

Entropy

Single-hidden-layer feed-

forward neural-network

Weight decay

10-fold Cross Validation

Performance

Fig. 7 Flowchart of this proposed
method

(a) Petal Image (b) Color Histogram (c) Five MACIs

Fig. 8 The MACI features of a petal image
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Bayesian priors can be implemented in gradient descent as a form of weight decay; hence, we
will study their connections in future.

4.3 Classifier comparison

We compared the proposed single-hidden layer feed-forward neural-network with weight
decay with traditional classifiers, for example, the decision tree (DT), support vector machine
(SVM), and Bayesian classifier (BC). λ was assigned to the value of 0.1, and number of

Fig. 9 FRFT of the petal image

Table 1 With Weight Decay versus W/O Weight Decay

Method Overall Accuracy

With WD (λ = 0.1) 98.92%
W/O WD 95.50%

(W/O = Without)
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hidden neurons was assigned to the value of 15. The comparison results are listed in Table 2
and Fig. 10.

Here DT, SVM, and BC are not combined with WD, since their training algorithms have
already taken overfitting into account. The results in Table 2 and Fig. 10 showed that DT,
SVM, and BC yielded an overall accuracy of 96.67%, 96.92%, and 95.33%, respectively.
Those three traditional classifiers perform worse than our proposed BSLFN + WD^ classifier.
The reason is two folds: First, the universal approximation theory guaranteed SLFN can
approximate to any function. Second, the weight decay shows an excellent ability in resisting
overfitting as in Section 4.2.

4.4 In-depth statistical analysis

Table 3 lists the results over 10 runs of 10-fold cross validation. Here x-y-z represents x, y, and z
instances are classified correctly as Class 1 (Hibiscus), Class 2 (Orchis), and Class 3 (Prunus)
respectively. x(y) represents x instances of all classes are recognized correctly out of y
instances.

The results in Table 3 show the identification result of each fold in each run. As remem-
bered, there are in total 40 petal images of Hibiscus, 40 of Orchis, and 40 of Prunus. Hence, we
have 4 instance of each class in every fold. The 10-fold cross validation was repeated 10 times;
hence, we identify correctly in total 396, 394, and 397 instances of Hibiscus, Orchis, and
Prunus, respectively. The final averaged overall accuracy is 98.92%.

Table 2 Classifier Comparison

Classifier Overall Accuracy

DT 96.67%
SVM 96.92%
BC 95.33%
SLFN + WD (Proposed) 98.92%

Fig. 10 Plot of overall accuracy comparison of four different classifiers
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Remembering that there are different species within each genus, and the photographing
conditions (scale, pose, and light illumination) vary in each image. Therefore, this result
indicates our method is insensitive to changes of scale, pose, and illumination.

4.5 Comparison to state-of-the-art methods

We compared the proposed MACI + FRFE + SLFN-WD with six state-of-the-art methods:
NC + PLD [28], VV + NNC [22], HSV + SIFT + HOG + SVM [23], CTM + GLCM + GFR +
PNN [15], ABC + SFTA + KNN [30], and DT + SC [35]. The detailed results are shown in
Fig. 11.

Here NC + PLD [28] yields an accuracy of 91%, VV + NNC [22] yields an accuracy of
81.3%, HSV + SIFT + HOG + SVM [23] yields an accuracy of 72.8%, CTM + GLCM +
GFR + PNN [15] yields an accuracy of 79%, ABC + SFTA + KNN [30] yields an accuracy of
73.63%, DT + SC [35] yields an accuracy of 93%. In addition, our method outperforms other
six methods with an accuracy of 98.92%. This suggests the effectiveness of our proposed
MACI and FRFE methods.

Feature is also an important indicate, which measures the efficiency of feature extraction.
NC + PLD [28] extracted in total 10 features, ABC + SFTA + KNN [30] extracted 58 features,
and other literature did not report the number of features. In contrary, our method only used in
total 41 features. This shows the size of our features is moderate. It may be reduced in further
studies.

4.6 Comparison to AlexNet

In this experiment, we compared our method with AlexNet [39], which is a well-pretrained 25-
layer neural network in the field of deep learning. The AlexNet model in Matlab is trained on a
subset of ImageNet database, and it can classify 1000 object categories (for instance, pencil,
mouse, keyboard, etc.). We invoked the model by Matlab command of Balexnet^, and

Fig. 11 Comparison to state-of-the-art methods in terms of petal recognition. The accuracies are 91%, 81.3%,
72.8%, 79%, 73.63%, 93%, and 98.92%. (NC = normalized cost, PLD = piecewise linear discriminant;
VV = visual vocabulary, NNC = nearest neighbor classifier, HSV = hue saturation value, SIFT = scale-invariant
feature transform, HOG = histogram of oriented gradient, SVM = support vector machine, CTM = color texture
moment, GLCM = gray level co-occurrence matrix, GFR = Gabor filter response, PNN = probabilistic neural
network, ABC = a* and b* channels, SFTA = segmentation-based fractal texture analysis, KNN = k-nearest
neighbors, DT = Delaunay triangulation, SC = symbolic classifier)
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compared it with our method. The parameter settings were the same as previous experiments.
The comparison results are presented in Table 4.

Here we see that AlexNet [39] gives an overall accuracy of only 96.08%, less than our
BMACI + FRFE + SLFN-WD^ method of 98.92%. The reason is three folds. First, AlexNet
[39] can identify 1000 types of objects, but they are not trained particularly for petal
identification. Second, the input size of AlexNet [39] is 227 × 227 × 3, we need to resize
the original image to 227 × 227, and this low-resolution may impair the information contained
in original image. Hence, our method can give better performance than AlexNet.

4.7 Analysis on combined features

The combined features include 5 most abundant color index (MACI) values and 36 fractional
Fourier entropy (FRFE) values. In this experiment, we compared the combined feature vector
(41 features) with two individual feature vectors: (i) 5 MACIs; (ii) 36 FRFEs. We
used SLFN as the classifier and weight decay as the regularization methods. The
statistical analysis described in Section 3.5 was used. The results are listed below in
Table 5.

The comparison results in Table 5 show that the overall accuracy is only 95.25% when we
only used 5 MACIs, and the overall accuracy is 97.33% when we only used 97.33%.
Nevertheless, if we combined the two feature sets, the combined features yield an overall
accuracy of 98.92%. This result validates the effectiveness of our proposed combined feature
vector.

4.8 Optimal weight decay factor

In order to obtain the optimal weight decay factor, here we run a 10 × 10-fold cross validation.
The weight decay factor λ was chosen as [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]. The
maximum iteration was 1000. The learning rate η was set as 0.01. The overall accuracy was
used as the measure. Figure 12 plots the curve between overall accuracy versus the factor λ.

From the curve in Fig. 12, we can observe that the overall accuracy achieves the highest at
the optimal weight decay factor with λ of 0.1. Besides, we see the accuracy has a decreasing
trend when λ increases. The reason is when λ is large, the weight update term, viz., the first

Table 5 Combined feature vector versus individual feature vector

Feature Set Overall Accuracy

5 MACIs 95.25%
36 FRFEs 97.33%
5 MACIs +36 FRFEs (Proposed) 98.92%

Table 4 Comparison to AlexNet

Method Overall Accuracy

AlexNet [39] 96.08
MACI + FRFE + SLFN-WD (Our) 98.92%
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term in Eq. (6), cannot preserve the update rule efficiently. Thus, it will slow down the training
of SLFN.

4.9 Grid searching of number of hidden neurons

In this experiment, we used grid searching method to validate 15 is the optimal number of
hidden neurons. We changed the number of hidden neurons from 5 to 20 with increase of 1,
and keep the settings as the same as previous: use combination of MACIs and FRFEs, and use
SLFN + WD as the classifier. λ is assigned to the value of 0.1. The overall accuracy of
10 × 10-fold cross validation changes with the number of hidden neurons, and Fig. 13 shows
the curve depicting their relationship.

From Fig. 13, we can observe that the optimal number of hidden neurons is 15. Besides, the
overall accuracy will decrease irregularly if the number is less than 15 or more than 15. This
experiment shows the grid-searching method is effective in tuning the neural network
parameters.

Fig. 13 Curve of overall accuracy changing with number of hidden neurons

Fig. 12 Optimal Weight Decay Factor
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5 Conclusion

We proposed a novel angiosperm-genus classification method based on two kinds of features:
most abundant color index and fractional Fourier entropy. Weight decay was used as
regularization method for the single-hidden-layer feed-forward neural network. The
results showed the effectiveness of both the proposed combined feature vector, and
the weight decay strategy.

This preliminary research collects three main genera (Hibiscus, Orchis, and Prunus) with
various species and different photographing conditions. In the future, we will add more petal
images of other angiosperm genera. We shall make tentative experiments based on other
classifiers, for example, twin support vector machine and convolutional neural network.
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