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Abstract The amount of content on online music streaming platforms is immense, and
most users only access a tiny fraction of this content. Recommender systems are the appli-
cation of choice to open up the collection to these users. Collaborative filtering has the
disadvantage that it relies on explicit ratings, which are often unavailable, and generally dis-
regards the temporal nature of music consumption. On the other hand, item co-occurrence
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algorithms, such as the recently introduced word2vec-based recommenders, are typically
left without an effective user representation. In this paper, we present a new approach to
model users through recurrent neural networks by sequentially processing consumed items,
represented by any type of embeddings and other context features. This way we obtain
semantically rich user representations, which capture a user’s musical taste over time. Our
experimental analysis on large-scale user data shows that our model can be used to predict
future songs a user will likely listen to, both in the short and long term.

Keywords Recommender systems · Machine learning · Recurrent neural networks · Deep
learning · Word2vec · Music information retrieval · Representation learning

1 Introduction

Online digital content providers, such as media streaming services and e-commerce web-
sites, usually have immense catalogs of items. To prevent users from having to search
manually through the entire catalog, recommender systems help to filter out items users
might like to watch, listen to, buy. . . and are often based on characteristics of both users and
items. One type of recommendation algorithms is collaborative filtering, which is generally
based on ratings for items given by users. However, such explicit ratings are not always
available. For example, in what way does clicking on an item represent how much the user
likes this item? Implicit feedback models are therefore used here, but they require careful
parameter tuning. Next to this, systems that model users based on aggregate historical con-
sumption will often ignore the notion of sequentiality. In the case of music consumption,
for example, it has been investigated that a user’s listening behavior can be described by a
trajectory in time along different artists and genres with periods of fixations and transitions
[11].

Recently, recommenders have also been built on top of item embeddings [3, 25]. Such
embeddings, or vector representations, are generally learned using item co-occurrence
measures inspired by recent advances in language modeling, e.g. word2vec and related algo-
rithms [27]. The problem with this approach is that we are left without an adequate user
representation, and the question remains how to derive such a representation based on the
given item embeddings.

In this work we focus on creating user representations in the context of new music
discovery on online streaming platforms. We start from given latent embeddings of the
items in the catalog and we represent users as a function of their item consumption. For
this, we propose that a user’s listening behavior is a sequential process and is therefore
governed by an underlying time-based model. For example, think of a user listening to
an artist’s album for some time and then transitioning to the next album, or to a com-
pilation playlist of the same musical genre. To model the dynamics of a user’s listening
pattern we use recurrent neural networks, which are currently among the state-of-the-art
in many data series processing tasks, such as natural language [2, 34] and speech pro-
cessing [13]. We do not presuppose any of the item embedding properties, such that our
model is generally applicable to any type of item representation. In the next section we
will explain the problem setting and highlight related work regarding music recommen-
dation and deep learning. In Section 3 we will describe our methodology, after which
we perform an initial data analysis in Section 4. We conclude with the results of our
experiments in Section 5. A complete table with the used symbols in this article is given
in the Appendix.
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2 Motivation and related work

Ever since the launch of the Netflix Prize competition in 2006 [4], research in recommender
systems, and a particular subset called collaborative filtering, has spiked. The basis of mod-
ern collaborative filtering lies in latent-factor models, such as matrix factorization [23].
Herein, a low-dimensional latent vector is learned for each item and user based on rating
similarities, and in the most basic scheme the dot product between a user vector vu and item
vector vi is learned to represent the rating rui of item i by user u:

rui = vT
u vi . (1)

This setting is based on the entire user and item history, and does not take into account that
a user’s taste might shift over time. Koren et al. [23] mention that such temporal effects can
easily be brought into the model by adding time-dependent biases for each item and user:

rui(t) = μ + bu(t) + bi(t) + vT
u vi (t). (2)

Dror et al. [10] extend on this work by introducing additional biases for albums, artists, gen-
res and user sessions, but these biases now represent a global rather than a temporal effect of
a user’s preference toward an item. This way we can for example model to what extent the
average rating for a specific album is higher or lower compared to other albums. Although
the models of Koren et al. and Dror et al. are capable of representing a user’s overall pref-
erence toward an item and how this preference shifts in time, it cannot immediately explain
why a user would rate item w higher or lower after having consumed items x, y and z.
That is, a user’s preference can depend on what he or she has consumed in the immediate
past. Basic collaborative filtering techniques do not explicitly model this sequential aspect
of item consumption and the effect on what future items will be chosen.

Next to this, standard collaborative filtering and matrix factorization techniques are
mostly fit for explicit feedback settings, i.e. they are based on positive as well as neg-
ative item ratings provided by the users. In more general cases where we deal with
views, purchases, clicks. . . we only have positive feedback signals, which are binary, non-
discriminative, sparse, and are inherently noisy [18]. Standard and tested techniques to
factorize a sparse matrix of user-item interactions are singular value decomposition (SVD)
and non-negative matrix factorization (NMF) [24, 31]. In the context of implicit feedback,
however, missing values do not necessarily imply negative samples. Pan et al. [30] therefore
formulate this as a so-called one class classification problem, in which observed interac-
tions are attributed higher importance than non-observed ones through different weighting
schemes, or through careful negative sampling. Hu et al. [18] on the other hand construct
an implicit matrix factorization algorithm, based on the singular value decomposition of
the user-item matrix, which differs from the standard algorithm by attaching higher confi-
dence on items with a large number of interactions during optimization. Johnson [20] uses
the ideas from Hu et al. and devises a probabilistic framework to model the probability of a
user consuming an item using logistic functions.

The implicit-feedback models calculate global recommendations and do not exploit tem-
poral information to decide which items the user might be interested in. Recently, Figueiredo
et al. [11] have shown that users on online music streaming services follow a trajectory
through the catalog, thereby focusing their attention to a particular artist for a certain time
span before continuing to the next artist. For this they use a combination of different Markov
models to describe the inter- (‘switch’) and intra-artist (‘fixation’) transitions. In other work,
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Moore et al. [28] learn user and song embeddings in a latent vector space and model playlists
using a first-order Markov model, for which they allow the user and song vectors to drift
over time in the latent space.

Compared to Markov models, which inherently obey the Markov property, recent work
has shown that recurrent neural networks (RNNs) are able to learn long-term data depen-
dencies, can process variable-length time series, have great representational power, and can
be learned through gradient-based optimization. They can effectively model the non-linear
temporal dynamics of text, speech and audio [21, 33, 37], so they are ideal candidates for
sequential item recommendation. In a general RNN, at each time step t a new input sample
xt is taken to update the hidden state ht :

ht = F (Uxt + Wht−1), (3)

in which F (·) is a non-linear function, e.g. sigmoid σ(·), tanh or a rectifier (ReLU and
variants) [26]. To counter vanishing gradients during backpropagation and to be able to learn
long-term dependencies, recurrent architectures such as long short-term memories (LSTMs)
and gated recurrent units (GRUs) have been proposed, both with comparable performances
[6, 14, 17]. These models use a gating mechanism, e.g. an LSTM introduces input (it ) and
forget (ft ) gates that calculate how much of the input is taken in and to what extent the
hidden state should be updated, and an output gate (ot ) that leaks bits of the internal cell
state (ct ) to the output:

it = σ (Uixt + Wiht−1 + wi � ct−1 + bi) ,

ft = σ
(
Uf xt + Wf ht−1 + wf � ct−1 + bf

)
,

ct = ft � ct−1 + it � tanh (Ucxt + Wcht−1 + bc) ,

ot = σ (Uoxt + Woht−1 + wo � ct−1 + bo) ,

ht = ot � tanh (ct ) , (4)

in which � is the element-wise vector multiplication. GRUs only have a reset (rt ) and update
(ut ) gate, get rid of the cell state, and have less parameters overall:

rt = σ (Urxt + Wrht−1 + br) ,

ut = σ (Uuxt + Wuht−1 + bu) ,

gt = tanh
(
Ugxt + rt � Wght−1 + bg

)
,

ht = (1 − ut ) � ht−1 + ut � gt . (5)

Very recently there have been research efforts in using RNNs for item recommendation.
Hidasi et al. [15] use RNNs to recommend items by predicting the next item interaction.
The authors use one-hot item encodings as input and produce scores for every item in the
catalog, on which a ranking loss is defined. The task can thus be compared to a classification
problem. For millions of items, this quickly leads to scalability issues, and the authors resort
to popularity-based sampling schemes to resolve this. Such models typically take a long
time to converge, and special care needs to be taken not to introduce a popularity bias, since
popular items will occur more frequently in the training data. The work by Tan et al. [35]
is closely related to the previous approach, and they also state that making a prediction for
each item in the catalog is slow and intractable for many items. Instead, low-dimensional
item embeddings can be predicted at the output in a regression task, a notion we will extend
on in Section 3.
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A popular method to learn item embeddings is the word2vec suite by Mikolov et al. [27]
with both Continuous Bag-of-Words and Skip-Gram variants. In this, a corpus of item lists
is fed into the model, which learns distributed, low-dimensional vector embeddings for each
item in the corpus. Word2vec and variants have already been applied to item recommen-
dation, e.g. Barkan et al. [3] formulate a word2vec variant to learn item vectors in a set
consumed by a user, Liang [25] devise a word2vec-based CoFactor model that unifies both
matrix factorization and item embedding learning, and Ozsoy [29] learns embeddings for
places visited by users on Foursquare to recommend new sites to visit. These works show
that a word2vec-based recommender system can outperform traditional matrix factorization
and collaborative filtering techniques on a variety of tasks. In the work by Tan et al. item
embeddings are predicted and at the same time learned by the model itself, a practice that
generally deteriorates the embedding quality: in the limit, the embeddings will all collapse
to a degenerate, non-informative solution, since in this case the loss will be minimal. Also,
they minimize the cosine distance during training, which we found to decrease performance
a lot.

In the coming sections, we will train RNNs to predict songs a user might listen to in
the future as a tool to model users on online music streaming platforms. For this, we will
predict preexisting item embeddings—about which we will not make any assumptions in
the model—and our task is therefore a regression rather than a classification problem. This
approach is closely related to the work by van den Oord et al. [36] in which collabora-
tive latent vectors are predicted based on raw audio signals, and also related to the work
by Hill et al. [16] who learn to project dictionary definition representations onto existing
word embeddings. Regarding sequential item recommendation, the related works by Hidasi
et al. and Tan et al. mentioned above both perform item recommendation within user ses-
sions, i.e. uninterrupted and coherent sequences of item interactions, which can last from
ca. 10 minutes to over an hour. Here, the prediction time scale is very short-term, and since
consumed items within a user session are usually more similar than across user sessions, it
is generally easier perform item recommendation on this short time scale. In this work we
will explore recommending songs for short-term as well as long-term consumption. To rec-
ommend songs on the long term, we will need to be able to model a user’s behavior across
session boundaries.

3 RNNs for music discovery

In this section we will explain the details of our approach to use RNNs as a means to
model users on online music streaming platforms and to recommend new songs in a music
discovery context. Since we aim toward models that can be used efficiently in large-scale
recommendation pipelines, we require the models to be trained within a reasonable time
frame. Furthermore, sampling from the model should be efficient. Small models with little
parameters are typically wanted to satisfy both requirements.

The entire recommendation pipeline for one specific user is given in Fig. 1. The
basic building blocks of the pipeline are song vectors, which have been learned using
the songs in the catalog. The general idea is then to capture and predict a taste vector
for each user. These taste vectors are the output of an RNN that sequentially aggre-
gates song vectors from the user’s listening history, and can therefore be regarded as a
representation of the user’s musical taste. The taste vector can subsequently be used to
generate song recommendations by querying a tree data structure for the nearby song
vectors.
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Fig. 1 The entire song recommendation pipeline for a specific user; we start with the user’s listening history
of N songs, and we end the pipeline with k song recommendations

Since we construct real-valued taste vectors, the RNN solves a regression task rather
than a classification task, as argued in Section 2. Directly predicting item embeddings is a
regression problem that requires predicting a limited set of real-valued outputs, as opposed
to a classifier with as many outputs as the number of items. The computational footprint of
these models is typically smaller than the classifiers. They are usually learned faster, and
are not per se biased toward popular items. One of the main advantages is that any type of
item embeddings and embedding combinations, along with other features, can be used to
learn the regression model.

We break the recommendation pipeline into three separate stages which we will cover
below. First, we learn low-dimensional embeddings for each song in the streaming catalog
using word2vec (Section 3.1). Then, we use an RNN to generate taste vectors for all users
in the song embedding space (Section 3.2). Finally, we use the taste vector to query songs
in the nearby space to generate recommendations for all users (Section 3.3).

3.1 Learning song embeddings

In the first stage of the recommendation pipeline we learn latent vector representations for
the top N most popular songs in the catalog. For this, we use Google’s word2vec suite as
explained in Section 2; more specifically we use the Continuous Bag-of-Words (CBoW)
algorithm with negative sampling. As input to the word2vec algorithm we take user-created
playlists of songs. In this, each playlist is considered as an ordered ‘document’ of songs.
By scanning all playlists in a windowed fashion, word2vec will learn a distributed vector
representation s with dimensionality D for every song s. Details regarding the training data
for word2vec will be highlighted in Section 4.

3.2 Learning user taste vectors

In the second pipeline stage we use RNNs to produce user taste vectors based on song
listening history. The network takes a sequence of song vectors of dimensionality D as input
and produces a single taste vector with the same dimensionality D. Let’s denote the set of
all users by U , the ordered sequence of song vectors user u listened to by (su), and the
predicted taste vector by tu. The RNN then produces:

∀u ∈ U : tu = R
((

su
) ;W)

, (6)

in which R(· ;W) represents the function the RNN computes with parameters W.
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To learn a semantically rich user taste vector that is able to generate adequate recommen-
dations, ideally this taste vector should be able to capture how a user’s listening behavior is
evolving over time. We therefore train the RNN to predict a song the user is going to listen
to in the future. More specifically, for a particular user u, we take the first n consecutive
songs su

1:n this user has listened to, and we try to predict a future song vector su
n+�, for some

strictly positive value of �. As a loss function, we use the L2 distance between the predicted
taste vector and the true future song vector:

L
(
su
n+�,R

(
su

1:n;W
)) = ∥

∥su
n+� − R

(
su

1:n;W
)∥∥

2 . (7)

We experimented with other distance functions, such as cosine distance and a weighted
mixture of cosine and L2 distance. The cosine distance Lcos(·) between two vectors x and
y is given by:

Lcos (x, y) = 1 − x · y
‖x‖2 ‖y‖2

. (8)

The L2 distance, nevertheless, gave the best results in the experiments.
To determine the best value of the prediction offset � we consider two separate prediction

tasks: short-term and long-term prediction. The idea is that it is generally easier to predict
a song a user is going to listen to next—e.g. think of a user shuffling an artist album, or
listening to a rock playlist—than it is to predict the 50th song he is going to listen to in
the future. The underlying dynamics of a short-term and long-term prediction model will
therefore be different. For example, the short-term model will intuitively be more focused
on the last few tracks that were played, while the long-term model will generally look at a
bigger timeframe. During training we sample a value of � for every input sequence from a
discrete uniform distribution. More specifically, for the short-term model, � is sampled from
unif{1, 10}, and � is sampled from unif{25, 50} for the long-term model. Random sampling
of the prediction offset for every new input sequence reduces chances of overfitting and
also increases model generalization. The entire training procedure is sketched in Algorithm
1. In here, we use a stochastic minibatch version of the gradient-based Adam algorithm to
update the RNN weights [22]. We have also experimented with setting � fixed to 1 for the
short-term model, but this leads to very near-sighted models that make predictions almost
solely based on the last played song. For example, first listening to 100 classical songs and
then to 1 pop song would lead to pop song predictions by the RNN.



15392 Multimed Tools Appl (2018) 77:15385–15407

3.3 Recommending songs

The output of the RNN is a user taste vector that resides in the same vector space as all
songs in the catalog. Since we trained the RNN to produce these taste vectors to lie close
to future songs a user might play—in terms of L2 distance—we can query for nearby
songs in that vector space to generate new song recommendations. To scale the search for
nearby songs in practice, we construct an Annoy1 tree datastructure with all song vectors.
The Annoy tree will iteratively divide the vector space in regions using a locality-sensitive
hashing random projection technique [5], which facilitates approximate nearest neighbor
querying. To generate suggested recommendations for a particular user, we query the Annoy
tree using the user’s taste vector to find the top k closest catalog songs in the vector
space.

3.4 Incorporating play context

In general we do not only know the order in which a user plays particular songs, but we
also know the context in which the songs have been played. By context we mean a playlist,
an album page, whether the user deliberately clicked on the song, etc. This additional infor-
mation can be very useful, e.g. we can imagine that a user clicking on a song is a stronger
indicator of the user’s taste than when the song is played automatically in an album or
playlist after the previous song has finished playing. Since the RNN can process any com-
bination of arbitrary embeddings and features, we can supply a context vector cu as extra
input. The context vector is in this case concatenated with the song vector at each time step
to produce the user taste vector:

∀u ∈ U : tu = R
((

su ⊕ cu
) ;W)

, (9)

in which we use the symbol ⊕ to denote vector concatenation. To construct a context vector
we consider the ordered set C = (album, playlist, artist, click, . . . ) of all possible contexts,
denote Ci as the i’th context in C, and c(s) as the play context for a particular song s,
e.g. c(s) = {playlist, click}. The context vector for a song s is then constructed using a
one-hot encoding scheme:

c =
|C|∑

i=1

onehot(i, |C|) · 1c(s)(Ci), (10)

in which onehot(i, |C|) is a one-hot vector of length |C| with a single 1 at position i, and
in which 1A(x) is the indicator function that evaluates to 1 if x ∈ A and to 0 otherwise. We
also include the time difference between playing the current song and the last played song.
The final context vector cu

j for the j ’th song su
j played by user u then becomes:

cu
j = �(su

j , su
j−1) ⊕

|C|∑

i=1

onehot(i, |C|) · 1
c
(
su
j

)(Ci), (11)

in which �(sj , sj−1) is the time difference in seconds between playing song sj and sj−1,
evaluating to 0 if sj−1 does not exist.

1github.com/spotify/annoy.

github.com/spotify/annoy
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3.5 User and model updates

The recommendation pipeline we described in this section can be used in both static
and dynamic contexts. In dynamic contexts, the model should be updated frequently so
that recommendations can immediately reflect the user’s current listening behavior. This
is easily done in our model: for every song the user listens to we retrieve its song vec-
tor that we use to update the hidden state of the RNN, after which we calculate a new
taste vector to generate recommendations. This requires that we keep track of the cur-
rent RNN states for every user in the system, which is a small overhead. In more static
contexts, in which recommendations are generated on a regular basis for all users (every
day, week. . . ), there is no need to update the RNN for every song a user listens to.
Here, we retrieve the entire user listening history–or the last n songs–which we feed to a
newly initialized RNN. We therefore do not need to remember the RNN states for every
user.

All recommendation modules that are deployed in practical environments have to be
updated regularly in order to reflect changes in the item catalog and user behavior. This is
no different for the framework we present here. In order to perform a full model update, we
subsequently train word2vec on the playlists in the catalog, retrain the RNN model on the
new song vectors, and populate the Annoy tree with the same song vectors. Only retrain-
ing word2vec is not sufficient since we almost never end up in the same song embedding
space. If we use dynamic user updates, note that we also have to do one static update after
retraining word2vec and the RNN, since the remembered RNN states will have become
invalid.

4 Data gathering and analysis

The first stage in the recommendation pipeline considers the learning of semantically
rich song vectors, for which we use the word2vec algorithm. In this section we explain
how we gather data to train this word2vec model, and we perform a preliminary analy-
sis on the song vectors. Finally we detail the construction of the train and test data for the
RNNs.

4.1 Training word2vec

To create training data for the word2vec model we treat user-created playlists as docu-
ments and songs within these playlists as individual words, as mentioned in Section 3. For
this, we gather all user-created playlists on the Spotify music streaming platform. In these
playlists we only consider the top N most popular tracks; the other tracks are removed. In
our experiments we set N to 6 million, which makes up for most of the streams on the Spo-
tify platform. After filtering out unpopular tracks, we further only consider playlists with a
length larger than 10 and smaller than 5000. We also restrict ourselves to playlists which
contain songs from at least 3 different artists and 3 different albums, to make sure there is
enough variation and diversity in the playlists. After applying the filtering above, we arrive
at a corpus of 276.5 million playlists in total. In the following step, the playlists are fed to the
word2vec suite, where we use the CBoW algorithm with negative sampling. We go through
the entire playlist corpus once during execution of the algorithm in order to produce vectors
with dimensionality D = 40, a number that we empirically determined and produces good
results.
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4.2 Data processing and filtering

In Section 5 we will train different RNN versions, for which we will use both playlist and
user listening data. Playlists are usually more contained regarding artists and musical genres
compared to listening data. Modeling playlist song sequences with RNNs will therefore be
easier, but we can miss out important patterns that appear in actual listening data, especially
if a user listens to a wide variety of genres.

For the playlist data we extract chunks of 110 consecutive songs, i.e. 60 songs to feed
to the RNN and the next 50 songs are used as ground truth for the prediction. Regarding
the user listening, which is captured in the first half of 2016 on the Spotify platform, we
only keep songs which have a song vector associated with them; other songs are removed
from the user’s history. We also save context information for every played song; for this, we
consider the following 13 Spotify-related contexts: collection, library, radio, own playlist,
shared playlist, curated playlist, search, browse, artist, album, chart, track, clicked, and
unknown for missing context information. To extract RNN training sequences we take
chunks of 150 consecutive songs, for which the first 100 songs are again used as input to the
RNN and the last 50 as ground truth. We allow more songs as input to the RNN compared
to the playlist training data since user listening data is generally more diverse than playlist
data, as mentioned before.

Since users often return to the same songs or artists over and over again, we apply addi-
tional filtering to eliminate those songs. This will greatly improve the RNN’s generalization,
and will counter what we call the ‘easy prediction bias’, as it is too easy to predict songs a
user has already listened to. This filtering is not needed for playlist data, since a song only
appears once in a playlist most of the times. The filtering rules we include, are:

1. The last 50 songs should be unique;
2. The last 50 songs should not appear in the first 100 songs;
3. The last 50 artists should be unique;
4. The last 50 artists should not appear in the first 100 artists.

Note that we only remove similar songs and artists from the ground truth labels in the
dataset, and that we leave the first 100 songs in the user’s history intact. That is, the same
song can still appear multiple times in these first 100 songs, thereby steering the user’s
preference toward this particular song and influencing the predictions made by the RNN.
For both playlist and listening data we gather 300,000 train sequences, 5,000 validation
sequences and 5,000 test sequences.

4.3 User data analysis

To analyze the gathered data, we take all 5,000 listening history sequences in the test set,
and we calculate pairwise cosine distances between the song vectors in these sequences. We
measure both the vector distance between all possible song pairs in a listening sequence, as
well as the distance only between subsequent songs. The distances are given as box plots
in Fig. 2, in which the whiskers are drawn at 1.5 times the interquartile range. We see that
the all pairs median distance is larger than the subsequent pairs median distance by around
0.25, indeed confirming the higher correlation between subsequent songs. We also plot the
number of song transitions within each user’s listening history that have a cosine distance
larger than 1, meaning that the next song is more different from the current song than it is
similar to it. The histogram for this is shown in Fig. 3. Most listening histories have little
such song transitions. The median number is seven, which points, on average, to listening
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Fig. 2 Box plots of pairwise distances between songs in all test set listening histories

periods of 21 similar songs before transitioning to a more different region in the song space,
which in turn corresponds to coherent listening sessions of about 1 to 1.5 hours long.

5 Experiments

In this section we discuss the results of various experiments and we show examples of song
recommendations produced by different RNN models. In the following we first design the
best RNN architecture by experimentation, after which we explain the baselines against
which the RNN models will be tested. All experiments are run on an Amazon AWS instance,
32-core Intel Xeon 2.60GHz CPU, 64GB RAM and Nvidia GRID K520 GPU with cuDNN
v4. The RNN models are implemented in Lasagne2 and Theano [1].

5.1 Network architecture

The neural network architecture we propose consists of a number of recurrent layers fol-
lowed by a number of dense layers. The number of input dimensions is D = 40, which is
the dimensionality of a single song vector. For the recurrent layers we consider both LSTMs
and GRUs, since such models are state-of-the-art in various NLP applications and can han-
dle long-term dependencies. We use standard implementations of these layers as described
in Section 2, with a hidden state dimensionality of all layers equal to Dhid . We will describe
how the optimal number of recurrent layers and the optimal value of Dhid are chosen.

After the recurrent layers we consider two dense layers. We empirically set the dimen-
sionality of the first dense layer to 4 · Dhid , and we use a leaky ReLU nonlinearity with a
leakiness of 0.01 [26]. Since we are predicting a user taste vector in the same song space,
the output dimensionality of the last dense layer is D = 40, which is the same as the input
dimensionality. In the last layer we use a linear activation function, since we are predicting
raw vector values.

In a first experiment we set Dhid to 50, we switch the recurrent layer type between LSTM
and GRU, and we also vary the number of recurrent layers from 1 up to 3. We record train

2github.com/Lasagne/Lasagne.

github.com/Lasagne/Lasagne
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Fig. 3 Histogram of the number of song transitions with cosine distance larger than 1

loss, validation loss, average gradient update time for a single batch and average prediction
time for a single sequence. For this experiment we use the gathered playlist data, and we
train a short-term model for which we report the best values across 15 epochs of training.
The results are shown in Table 1. We see that both models are very comparable in terms of
validation loss, and that the optimal number of recurrent layers is two. The LSTM model
performs slightly better than the GRU model in this case, but the GRU model predicts more
than 50% faster than the LSTM model, which can be important in large-scale commercial
production environments. We observe comparable results for listening history prediction as
well as long-term prediction. We therefore pick the two-layer GRU model as the optimal
architecture.

Next we perform experiments to determine the optimal hidden state size Dhid . We train
the two-layer GRU architecture from above for a short-term playlist prediction, and we vary
Dhid from 20 to 100 in steps of 10. The results are shown in Table 2. The validation loss is
the highest at 20, and is minimal at Dhid values of 50 and 60. The loss remains more or less
stable if we increasing the hidden state size to 100. Since larger hidden state sizes imply
slower prediction and train times, we choose Dhid = 50 as the optimal hidden state size.
These observations are also valid for long-term prediction and for listening history data.
The final architecture is displayed in Table 3. It turns out that this architecture is also near-
optimal for long-term playlist prediction as well as for user listening data. Since the number

Table 1 Comparing recurrent layer type and number of layers on short-term playlist prediction

Train loss Validation loss Update [ms] Prediction [ms]

LSTM, 1 layer 258.8 271.2 20 4.4

LSTM, 2 layers 257.3 270.2 39 8.7

LSTM, 3 layers 258.1 271.0 58 13.0

GRU, 1 layer 259.0 271.0 16 2.2

GRU, 2 layers 257.3 270.5 30 4.1

GRU, 3 layers 257.5 270.6 45 6.1
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Table 2 Comparing performance with varying hidden layer size Dhid on short-term playlist prediction

Dhid L2 validation loss Cosine validation loss

20 287.3 0.464

30 276.4 0.425

40 271.5 0.408

50 270.5 0.406

60 270.0 0.406

70 270.4 0.406

80 270.5 0.407

90 270.1 0.405

100 270.4 0.406

of network parameters is low and given the large amount of training data, we do not need
additional regularization.

We also train short-term user listening RNNs with additional play context informa-
tion at the input, as described in Section 3.4, and with the same configurations as in
Tables 1 and 2. The optimal configuration is a 2-layer architecture with Dhid equal to
100, but the differences in performance for 50 ≤ Dhid < 100 are minimal. Further-
more, the performance gain compared to the same model without context information
is non-significant. We will therefore disregard play context models in the rest of the
experiments.

5.2 Baselines

We will compare the performance of different RNN models against several baseline mod-
els. The general idea here is again that a user’s listening behavior is governed by underlying
temporal dynamics. We consider three types of baseline models: an exponential discount
model, a weight-based model, and a classification model. The first two types are aggre-
gation models, which means that they take an arbitrary number of song vectors as input
and produce one output vector by mathematically combining the song vectors, e.g. through
summing or taking a maximum across dimensions. Aggregation of distributed vectors is a
popular practice in NLP applications and deep learning in general since it does not require
any training when the vector space changes [7, 9]. In our case however, the danger of aggre-
gation is that sometimes songs from different genres are summed together, so that we can
end up in ‘wrong’ parts of the song space. For example, if we aggregate the song vectors
of a user listening to a mix of classical and pop music, we might arrive in a space where
the majority of songs is jazz, which in turn will lead to bad recommendations. The third
type of baseline is based on the work by Hidasi et al. [15] as mentioned in Section 2. In
this, we will not predict an output vector to query the Annoy LSH tree, but we will output
probability scores for all N items in the catalog. The top k items can then immediately be
recommended.

5.2.1 Exponential discount model

In the exponential discount model we make the assumption that a user’s taste is better
reflected by the recent songs he has listened to than by songs he has listened to a while ago.
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Table 3 The final neural
network architecture Layer type (no. of dimensions) and non-linearity

Input (40)

1 GRU (50)

sigmoid (gates); tanh (hidden update)

2 GRU (50)

sigmoid (gates); tanh (hidden update)

3 Fully connected dense (200)

Leaky ReLU, leakiness = 0.01

4 Fully connected dense (40)

Linear activation

We model this type of temporal dynamics by the following exponentially decaying weight
model:

∀u ∈ U : tu =
k∑

j=1

su
j · γ k−j . (12)

In this, we consider the song history of user u which has length k, and we weigh every vector
by a power of γ , the discount factor. Setting γ = 1 results in no discounting and leads to
a simple sum of the song vectors, while setting γ < 1 focuses more attention on recently
played songs. The smaller γ , the more substantial this contribution becomes compared to
songs played a longer time ago. If γ = 0, the user taste vector is essentially the vector of
the last played song.

5.2.2 Weight-based model

This model is based on the weighted word embedding aggregation technique by De Boom
et al. [8]. As in the exponential discount model, we will multiply each song vector sj by a
weight wj :

∀u ∈ U : tu = W
((

su
) ; w

) =
k∑

j=1

su
j · wj , (13)

in which we gather all weights wj in a k-dimensional vector w. Now, instead of fixing
the weights to an exponential regime, we will learn the weights through the same gradient
descent procedure as in Algorithm 1. In this algorithm we replace the RNN loss by the
following weight-based loss:

L
(
su
k+�,W

((
su

) ; w
))

= ∥
∥su

k+� − W
((

su
) ; w

)∥∥
2 + λ ‖w‖2 . (14)

We include the last term as weight regularization, and we empirically set λ to 0.001. Apart
from this regularization term, we do not imply any restrictions on or relations between the
weights. We train a weight-based model on user listening data for both short- and long-term
predictions, and the resulting weights are plotted in Fig. 4. For the short-term prediction
the weights are largest for more recent tracks and decrease the further we go back in the
past. This confirms the hypothesis that current listening behavior is largely dependent on
recent listening history. For the long-term model we largely observe the same trend, but
the weights are noisier and generally larger than the short-term weights. Also, the weights
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Fig. 4 Normalized weight magnitudes for long- and short-term prediction

increase again in magnitude for the first 10 tracks in the sequence. This may signify that a
portion of a user’s long-term listening behavior can be explained by looking at songs, genres
or artists he has listened to in the past and returns to after a while.

5.2.3 Classification model

As mentioned above, we loosely rely on the work by Hidasi et al. [15] to construct a clas-
sification baseline model. In this work, the items are encoded as a one-hot representation,
and the output of the model is a probability score for every item in the catalog. To be able to
fairly compare between all other baselines, and to help scale the model, we slightly adapt it
and use the word2vec vectors as input instead of the one-hot item encodings. We employ the
same neural network model as in Table 3 and at the output we add an additional dense layer
with output dimensionality N = 6,000,000 and softmax activation function. The memory
footprint of this softmax model thus substantially increases by around 938MiB, compared
to the model in Table 3. Given the large output dimensionality, we also experimented with
a two-stage hierarchical softmax layer [12], but the computational improvements were only
marginal and the model performed worse.

We train the softmax classification model with two different loss functions. First, we
consider the categorical cross-entropy loss in the case there is only one target:

L
(
i,R

(
su

1:k;W
)) = −onehot

(
su
k+�, N

) · log
[
softmax

(
R

(
su

1:k;W
))]�

. (15)

In this loss function, i is the RNN output index of the target song to be predicted, and
softmax

(
R

(
su

1:k;W
))

is the output of the RNN after a softmax nonlinearity given the input
vectors su

1:k . The second loss function is a pairwise ranking loss used in the Bayesian Per-
sonalized Ranking (BPR) scheme by Rendle et al. [32]. This loss function evaluates the
score of the positive target against randomly sampled negative targets:

L
(
i,R

(
su

1:k;W
)) = − 1

NS

NS∑

j=1

log
[
σ

(
R

(
su

1:k;W
)
i
− R

(
su

1:k;W
)
j

)]
. (16)



15400 Multimed Tools Appl (2018) 77:15385–15407

In this, NS is the number of negative samples that we set fixed to 100, σ(·) is the sigmoid
function, and i is again the output index of the positive sample. Note that we use a sigmoid
nonlinearity rather than a softmax. In practice we also add an L2 regularization term on the
sum of the positive output value and negative sample values. To generate negative samples,
we sample song IDs from a Zeta or Zipf distribution with parameter z = 1.05, which we
checked empirically on the song unigram distribution:

Zipfz(k) = k−z

ζ(z)
, (17)

in which ζ(·) is the Riemann zeta function. We resample whenever a song appears in a
user’s listening data to make sure the sample is truly negative.

Hidasi et al. reported better stability using BPR loss compared to cross-entropy loss,
but our sampling-based training procedure from Algorithm 1 did not produce any unstable
networks for both loss functions. We trained short-term and long-term networks on the
filtered listening history data using both cross-entropy and BPR, and all models took around
2.5 days to converge. By comparison, training until convergence on the same hardware only
took 1.5 hours for the models presented in this work.

5.3 Results

In this section we will display several performance metrics on the test set of user lis-
tening histories. After all, the music recommendations will be based on what a user has
listened to in the past. We have trained four RNN models: a playlist short-term (rPST)
and long-term (rPLT) RNN, and a user history short-term (rHST) and long-term (rHLT)
RNN. We also report metrics for five baselines: a short-term (bWST) and long-term (bWLT)
weight-based model, and exponential discount models with γ ∈ {1.0, 0.97, 0.85}. In the
following we will perform a forward analysis to evaluate how well a taste vector is related
to future song vectors, which will show the predictive capacity of the different mod-
els. We will also do a backwards analysis to study on what part of the listening history
sequences the different models tend to focus. We conclude with results on a song prediction
task.

5.3.1 Forward analysis

In the forward analysis we take the first 100 songs of a user’s listening history, which we
use to generate the taste vector. This taste vector is then compared to the next 50 song vec-
tors in the listening history in terms of cosine distance. That is, for each user u in the test

set we calculate the sequence
(
Lcos(t

u, su
100+j )

)
, for j ∈ {1, 2, . . . , 50}. Figure 5 shows

a plot of these sequences averaged over all users in the test set. The overall trend of every
model is that the cosine distance increases if we compare the taste vector to songs fur-
ther in the future. This is not surprising since it is generally easier to predict nearby songs
than it is to predict songs in the far future, because the former are usually more related to
the last played songs. We see that the γ = 0.85 and rPST model have comparable per-
formance. They have low cosine distance for the first few tracks, but this quickly starts to
rise, and they both become the worst performing models for long-term prediction. All other
models, apart from rHST and rHLT, behave similarly, with rPLT being slightly better and
the γ = 0.97 model slightly worse than all others. The two best performing models are
rHST and rHLT. Until future track 20, the rHST model gives the lowest cosine distance,
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Fig. 5 Forward analysis of the taste vector models on filtered listening history data

and rHLT is significantly the best model after that. Since playlists are typically more coher-
ent than listening histories—e.g. they often contain entire albums or sometimes only songs
by the same artist—this can explain why the playlist-trained RNNs, and especially rPST,
perform not that well in this analysis. Another general trend is that ST models typically
perform better than their LT counterparts in the very near future. And at some point the LT
model becomes better than the ST model and is a better predictor on the long term. Finally,
among all baselines, we also observe that bWST is the best performing short-term model,
and bWLT performs best to predict on the long term, which is not surprising since the
weight-based models are a generalization of the discounting models. Note that the classifi-
cation models remain absent, because in this case the output of the RNN is not a user taste
vector.

5.3.2 Backwards analysis

In this analysis we again take the first 100 songs of a user’ listening history, which we use
to generate a taste vector. We then compare this taste vector to these first 100 songs, i.e. the
songs that generated the taste vector. We thus look back in time to gain insights as to what
parts of the listening history contribute most or least to the taste vector. For this we calculate

the sequence
(
Lcos(t

u, su
j )

)
, for j ∈ {1, 2, . . . , 100}, and Fig. 6 plots this sequence for

each model averaged over all users in the test set. We see that the rPST and γ = 0.85
models are very focused on the last songs that were played, and the average cosine distance
increases rapidly the further we go back in history: for songs 1 until 80 they are the worst
performing. These models will typically be very near-sighted in their predictions, that is, the
song recommendations will mostly be based on the last 10 played tracks. This is again due
to the fact that playlists are very coherent, and predicting a near-future track can be done by
looking at the last tracks alone. The rHST and bWST models also show a similar behavior,
but the difference in cosine distance for tracks in the near and far history is not as large
compared to rPST. The listening history RNNs, both rHST and rHLT, produce an overall
high cosine distance. These models are therefore not really tied to or focused on particular
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Fig. 6 Backwards analysis of the taste vector models on filtered listening history data

songs in the user’s history. It is interesting to note that the plot for rHLT and bWLT is a
near-flat line, so that the produced taste vector lies equally far from all songs in terms of
cosine distance. In comparison, the γ = 1.0 taste vector, which is actually just a sum of all
songs, produces a U-shaped plot, which is a behavior similar to the long-term weights in
Fig. 4. If we would attribute more weight to the first and last few tracks, we would end up
with a flatter line. The γ = 0.97 plot also has a U-shape, but the minimum is shifted more
toward the recent listening history. Note again that the classification models are absent in
this analysis for the same reason as specified above.

5.3.3 Precision@k

In this section we calculate the precision of actual song recommendations. We again take
100 songs from a user’s history which we use to generate a taste vector. Then, as described
in Section 3.3, we query the word2vec space for the k nearest songs in the catalog in terms
of cosine distance. We will denote the resulting set as �(tu, k). The precision@k value is
then the fraction of how many songs in �(tu, k) actually appear in the user’s next k tracks:

precision@k = (18)

1

|U |
∑

u∈U

∣∣{s : s ∈ �(tu, k) ∧ s ∈ (su
101:100+k)

}∣∣

k
.

We can also generalize this to precision@[j : k]:

precision@[j : k] = (19)

1

|U |
∑

u∈U

∣
∣∣
{
s : s ∈ �(tu, k − j + 1) ∧ s ∈ (su

100+j :100+k)
}∣
∣∣

k − j + 1
.
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Table 4 Results for the precision@k experiments on filtered listening history data

Precision (%)

@10 @25 @50 @[25 : 50] @[30 : 50]

rPST 1.64 2.39 2.81 1.15 0.94

rPLT 1.27 1.98 2.64 1.30 1.06

rHST 2.03 2.95 3.72 1.85 1.53

rHLT 1.40 2.31 3.25 1.89 1.63

bWST 1.67 2.37 2.94 1.28 1.04

bWLT 1.32 1.95 2.62 1.31 1.06

γ = 0.85 1.94 2.63 3.00 1.20 0.96

γ = 0.97 1.56 2.20 2.77 1.30 1.05

γ = 1.0 1.16 1.78 2.41 1.24 1.02

Classification 0.00 0.00 0.00 0.00 0.00

Here we disregard the user’s first next j − 1 tracks, since it is often easier to predict the
immediate next tracks than it is to predict tracks further in the future. For the next results, we
also slightly alter the definition of �(tu, k): given the fact that no song in (su

101:150) occurs
in (su

1:100) for all users u, as described in Section 4.2, we only regard the k nearest songs
of tu that do not appear in (su

1:100). For the classification models, we simply take the top
k songs with the highest scores, and compare them to the ground truth. If we denote these
top k songs by �

(
R

(
su

1:k;W
)
, k

)
, we can reuse the same definition of precision@k from

above.
The results of the experiments are shown in Table 4. In bold we mark the best performing

model for each task, and the second best model is underlined. The overall precisions are
quite low, but given that we aggressively filtered the listening data (Section 4.2), the task
is rather difficult. The history-based RNNs clearly perform best in all tasks. Generally, for
precision@10, @25 and @50 all short-term models outperform the long-term models.
But once we skip the first 25 songs, which are easier to predict, the long-term models take
over, which shows that listening behavior indeed changes over time. The performance of the
playlist RNNs and weight-based models are comparable to the exponential discount models,
which we already saw in Fig. 5.

All four classification models that we trained achieved the same precision score of 0
percent, so we listed them as one entry in Table 4. They were not able to correctly guess
any of the 50 future songs a user might listen to. We can think of many reasons why we
see this result. First, the output dimensionality of 6 million is extremely large, which makes
it difficult to discriminate between different but comparable items. The RecSys Challenge
2015 dataset, used in both the works of Hidasi et al. and Tan et al., only has around 37,500
items to predict, which is 160 times less than 6 million. Second, the number of weights in
the classification model is orders of magnitudes larger than for the regression model, which
causes learning to be much harder. And third, the data in the works by Hidasi et al. and
Tan et al. comes from user sessions, which are mostly contained and coherent sequences of
songs a user listens to within a certain time span, see also Section 2. The listening history
dataset in our work goes across user sessions to be able to recommend on the long term,
which makes it much more difficult to model the temporal dynamics. This is reflected in
the overall low precision accuracies.
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5.3.4 A note on scalability

As indicated in the title of this article, our methodology should allow for scalable music dis-
covery. The training procedure—i.e. training word2vec and the RNN—is not time-critical
and can be trained offline. Despite the fact that these procedures could be parallelized when
needed [19], we will focus on the recommendation part of the system itself, which is more
time-critical.

Since every user can be treated independently, the entire pipeline we have proposed in
Fig. 1 is ‘embarrassingly parallel’ and can therefore be scaled up to as many computational
nodes as available. Retrieving song vectors comes down to a dictionary lookup in constant
time O(1). Calculating user taste vectors through the RNN is linear O(n) in the number of
historical song vectors n we consider. An extensive study of the scalability of Annoy, the
last part in the pipeline, is beyond the scope of this paper, and poses a trade-off between
accuracy and performance: more tree nodes inspected leads generally to more accurate near-
est neighbors, but a slower retrieval time (approximately linear in the number of inspected
nodes).3 Retrieving 1,000 nearest neighbors using 10 trees and 10,000 inspected nodes only
takes on average 2.6ms on our system, which is in same order of magnitude compared to
the RNN prediction times given in Table 1.

Combining all the above, sampling a taste vector from the rHLT RNN and retrieving the
top 50 closest songs from the Annoy LSH tree over 1,000 runs takes on average 58ms on
our system, while retrieving the top 50 songs from the BPR RNN takes on average 754ms,
which is 13 times slower.

6 Conclusions

We modeled users on large-scale online music streaming platforms for the purpose of new
music discovery. We sequentially processed a user’s listening history using recurrent neural
networks in order to predict a song he or she will listen to in the future. For this we treated
the problem as a regression rather than classification task, in which we predict continuous-
valued vectors instead of distinct classes. We designed a short-term and long-term prediction
model, and we trained both versions on playlist data as well as filtered user listening his-
tory data. The best performing models were chosen to be as small and efficient as possible
in order to fit in large-scale production environments. Incorporating extra play context
features did not significantly improve the models. We performed a set of experimental ana-
lyzes for which we conclude that the history-based models outperform the playlist-based
and all baseline models, and we especially pointed out the advantages of using the regres-
sion approach over the classification baseline models. We also saw that there is indeed a
difference between short-term and long-term listening behavior. In this work we modeled
these with different models. One possible line of future work would be to design a single
sequence-to-sequence model that captures both short and long term time dependencies to
predict the entire future listening sequence [34].
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3There is an excellent web article by Radim Rehurek from 2014 which studies this in depth, see http://
rare-technologies.com/performance-shootout-of-nearest-neighbors-querying.
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http://rare-technologies.com/performance-shootout-of-nearest-neighbors-querying
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Appendix: Table of symbols

In order of appearance:

vu(t) User vector for user u at time t

vi (t) Item vector for item i at time t

rui rating of item i by user u

μ Global average rating
bu(t) Rating bias of user u at time t

bi(t) Rating bias of item i at time t

ht Hidden state at time t

ct Cell state at time t

ft Forget gate at time t

ot Output gate at time t

rt Reset gate at time t

ut Update gate at time t

Ux, Wx Weight matrices for gate x

wx Weight vector for gate x

bx Bias for gate x

F (·) Non-linear function
σ(·) Sigmoid function
� Element-wise multiplication operator
N Number of songs in the catalog
D Embedding dimensionality
U Set of all users on the platform
(su) Ordered sequence of song vectors user u listened to
tu Taste vector of user u

R (·;W) RNN function with parameters W
L (·) Loss function
‖·‖2 L2 norm
Lcos(·) Cosine distance
unif {x, y} Uniform distribution between x and y

D Dataset of song sequences
�min, �max Minimum and maximum sampling offsets
η Learning rate
cu Context vector for user u

⊕ Vector concatenation operator
C Ordered set of contexts on the Spotify platform
Ci i’th context in C

c(s) set of contexts for song s

onehot(i, L) One-hot vector of length L with a 1 at position i

1A(x) Indicator function: 1 if x ∈ A, else 0
�(x, y) Time difference between playing songs x and y

Dhid Hidden dimensionality
γ Discount factor
W (·;w) Weight-based model function with weights w
λ Regularization term
ζ(·) Riemann zeta function
Zipfz(·) Zipf probability density function with parameter z

rPST , rPLT Short- and long-term playlist RNN
rHST , rHLT Short- and long-term user listening history RNN
bWST, bWLT Short- and long-term weight-based model
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