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Abstract This paper proposes an ensemble of multi-layer perceptron (MLP) networks for
side information (SI) generation in distributed video coding (DVC). In the proposed scheme,
both three-layer and four-layer MLP structures are used to form the ensemble model. The
proposed model includes four sub-modules. The first sub-module involves the training of
the individual networks. The second sub-module selects ‘M’ number of trained MLPs based
on the mean square error (MSE) performance metric. Next, the third sub-module involves
the testing phase of each of the selected MLPs. Finally, in the last sub-module, the overall
ensemble SI is generated using a dynamically averaging (DA) method. The primary goal of
this work is to minimize the estimation error between the SI and the corresponding Wyner-
Ziv (WZ) frame so that the overall efficiency of DVC codec can be increased. The proposed
scheme is evaluated with respect to different parameters such as Rate-Distortion (RD), Peak
Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and number of parity
requests made per estimated frame. The evaluation indicates that the proposed ensemble
model shows better generalization capabilities with improved PSNR (in dB) as compared
to each of the individual selected networks. Additionally, the comparative analysis also
exhibits that the proposed SI generation scheme generates better SI frames in comparison
with the contemporary techniques. Further, using a statistical test, namely, ANOVA with sig-
nificance level of 5%, it has been validated that the proposed technique yields a significant
enhancement in the performance as compared to that of the benchmark schemes.
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1 Introduction

Possible customary video coding solutions, particularly those accepted by different stan-
dards, follow either discrete cosine transform (DCT) or differential pulse code modulation
(DPCM). An extensive computation is involved at the encoder to decide the best modes so
as to predict and encode each of the macroblocks. The decoder performs the reverse oper-
ation and reconstructs the video sequence. This kind of framework is also alluded to as the
predictive video coding. Recent digital video coding standards have complex encoder and
a simple decoder. These standards follow a broadcast-oriented model which is mainly suit-
able for applications like video broadcasting, video-on-demand, Blu-Ray discs, and so on.
Here, the video information is coded once but decoded many times.

On the contrary, the increase in the availability of the affordable consumer hand-held
devices like mobile camera phones, low-power surveillance systems, sensor networks,
multi-view image acquisition, and inter-connected camcorders, demands a low complex-
ity encoder and a smart decoder. Again, in a realistic video communication, video encoder
works in a reverse complexity mode as there exists a scarcity in the available battery power
and the computational resources. Since early 21" century, a video coding archetype, usually
termed as distributed video coding (DVC), derived from two important theoretical results
known as Slepian-Wolf (SW) [38] and Wyner-Ziv (WZ) [41] theorems, has drawn a lot of
attention. DVC shows a reverse complexity aiming towards a reduction of computational
complexity from the encoder to the decoder. The SW theorem proclaims that a lossless com-
pression can be obtained in-between two correlated information A and B, by implementing
separate encoding and joint decoding. It also suggests that the minimal rate required by this
scheme is equivalent to that of the technique used in the conventional approach. WZ theo-
rem extends the idea of the lossless case to the lossy case. Here, the compression of source
A is done when B is known to the decoder, with the condition that both are jointly Gaussian
sequences. The source B is called as the side information (SI).

The first feasible DVC solution was developed at Stanford University [1] and is one of
the most endorsed architecture in the literature. Its primary aim is to estimate frames (also
called as SI) from the previous traditionally transmitted frames (also called as odd or key
frames). The estimates are the replica of the remaining frames (also called as even or WZ
frames). The encoding and decoding of the WZ frames can be done either in the pixel
domain (PD) or the transform domain (TD) [17]. In the case of PD, the pixels are directly
quantized and encoded, whereas in the case of TD, a block-based DCT is employed. The
resulting DCT coefficients are then quantized and encoded.

Initially, Aaron et al. proposed the Stanford-based TD framework [3]. This framework
explores the intra-frame statistical reliance and shows better coding efficiency as com-
pared to the Stanford-based PD architecture. Further, Puri et al. proposed a suitable TD
video codec entitled Power-efficient, Robust, hIgh compression Syndrome based Multime-
dia coding (PRISM) [34, 35]. A spatial resolution based reduction technique for the current
coding standards is presented by Mukherjee and group in [30]. Currently, the most accepted
DVC architecture is certainly the Stanford-based framework and its extensions. From the
development of DVC until to date, the DISCOVER video codec [6] provides the most
promising results in terms of the coding efficiency. It is a TD based DVC framework, which
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is an extension of the Stanford-based architecture [1]. A complete assessment of the codec
performance is presented in the DISCOVER project [16].

Regardless of the modern developments in DVC, the Rate-Distortion (RD) performance
is yet to reach the performance offered by the customary video codecs, predominantly for
the videos with acute and non-uniform motion characteristics. It is mainly due to the infe-
rior estimation of the original even (WZ) frame at the decoder. It is also evident that the
estimation quality dominates the coding efficiency and a superior estimation quality signi-
fies a higher correlation and lower bit-rate requirement. So, to enhance the RD behavior, an
ensemble of multi-layer perceptron (MLP) networks for SI creation in a DVC framework
is proposed. The original SI generation module of the Stanford-based transform domain
DVC architecture (see Fig. 1) is replaced by the proposed SI generation module, and the
overall codec performance is then assessed. The ensemble of the neural network is a tech-
nique where the outcomes of a set of individually learned neural networks are integrated to
produce a combined output [45]. The primary advantage of using the ensemble method is
that the individual components tend to make errors, whereas their combined output tends to
reduce the effect of the individual errors.

The article is organized as follows. Section 2 briefly outlines the operational workflow
of the Stanford-based transform domain DVC architecture. Section 3 elaborates the relevant
literature on SI generation in DVC. The proposed SI generation scheme using an ensemble
of MLP networks is formulated and critically discussed in Section 4. The comprehensive
simulation along with the results are deliberated in Section 5. Finally, Section 6 outlines the
concluding remarks and scope for future work.

2 Stanford based transform domain DVC architecture

The transform domain DVC paradigm (see Fig. 1) followed in this paper is based on
the original Stanford architecture [1], started in the Image group of the Instituto Superior
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Técnico (IST). It is also termed as the IST-TDWZ framework. The operational workflow is
briefly discussed below.

Usually, at the encoder side, the frames in each of the video sequences are represented
either as the odd (Key) frames or the even (WZ) frames. Although the key frames are
encoded using the conventional video coding standards such as H.264/AVC Intra, the even
frames are encoded using the WZ video coding solutions. Initially, upon each WZ frame, a
4 x 4 integer block-based DCT is employed. Then, the resulting coefficients from the cor-
responding locations of each 4 x 4 block are clustered to constitute the DCT coefficient
band. Further, depending on the desired output quality, each of the coefficient bands is uni-
formly quantized using the quantization matrices defined in [12]. After obtaining the symbol
stream, a binarization technique is applied to extract the bit planes. An array of bit planes is
formed starting with the most significant bit (MSB) to the least significant bit (LSB). These
bits planes are then individually SW encoded using an SW encoder consisting of a turbo
encoder (TE) and a parity buffer (PB).

The TE includes two similar recursive systematic convolutional (RSC) encoders and a
pseudo-random interleaver. The pseudo-random interleaver is used to minimize the correla-
tion between the inputs applied to the RSC encoders. Both the RSC encoders are considered
to be of rate half and can be represented by a matrix given in (1). The encoder produces two
outputs: 1) the same input sequence, and 2) a parity bit corresponding to each of the input
bits in the sequence. The resulting input bit stream is rejected and the parity bit stream is
kept in a buffer. Upon request by the decoder, the stored parity bits are transmitted to the
decoder, chunk-by-chunk, based on a pseudo-random puncturing pattern with a span of 48.

3 4
[1 1+D+D +Di| 0

1+ D3+ D*

At the decoder, an estimation of the original WZ frame (also termed as SI) is made from
the adjacent decoded key frames depending on the group of picture (GOP) size. If GOP is
two, the two neighboring key frames will be the immediate past and the immediate next
of the WZ frame. For larger GOP’s, the already estimated and decoded WZ frames will
act as the reference frames for creating and decoding the next frames. Upon the estimated
frame, same steps are followed as done on the encoder side; namely, the PD to TD con-
version, followed by quantization and bit-plane extraction technique. Further, the process
of turbo decoding is employed. The input to the turbo decoder is the conditional bit prob-
abilities of the obtained SI bit plane (also termed as the soft-input), starting with the MSB
to the LSB. In many DVC-based solutions, the soft-input is calculated using a Laplacian
distribution model that explores the interdependence between the original WZ and its corre-
sponding estimated frame (SI) by calculating the estimation error (also called as the noise).
The parameters required by the model can be calculated either in offline or online mode at
different levels [11].

Starting with the MSB to LSB, each of the soft-input associated with the current bit plane
is iteratively decoded using the turbo decoder. The decoder uses a logarithmic maximum a
posteriori (Log-MAP) algorithm and produces the decoded quantized symbol stream with
the help of the received parity bits. Further, the decoder calculates an error probability P, for
the current bit plane. If P, > 1073, requests for the additional amount of party bits is made
to reduce the error, or else, the current bit plane is considered to be successfully decoded.
After obtaining all the decoded streams, the DCT coefficients are regenerated by applying
the method presented by Kubasov et al. [26]. Upon the regenerated coefficients, an inverse
discrete cosine transform (IDCT) is carried out to get the pixel values. These pixel values
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are reorganized to generate the final decoded WZ frame. Lastly, all the decoded (key and
WZ) frames are ordered to build the video sequence.

The overall DVC framework depends on different modules, namely, the SI generation,
intra-frame coding, noise modeling, and so on. Significant efforts have been made to these
modules to improve the performance of the codec. In general, from most of the observations,
it is seen that the overall codec performance mainly relies on the quality of the generated SI
frame. Better the equivalence between the generated SI and the corresponding WZ frame,
the minimum will be the requests for parity bit by the decoder.

3 Related work on SI generation for DVC

Side information generation is considered to be one of the decisive factors that affect the
overall efficiency of DVC codec. In Stanford-based DVC solutions, the estimation of the
original WZ frames is done at the decoder side of the codec using the conventionally
decoded key frames.

Since 2002, in DVC, a significant amount of research has been conducted so as to
improve the accuracy of the estimated SI frame. Among these, Girod et al. at Stanford Uni-
versity, and Ramchandran et al. at the University of California, Berkeley, have formulated
some of the promising SI generation frameworks. In this article, the Stanford-based DVC
architecture is adopted, and some of the relevant literature in the context of SI generation
based on Stanford-based DVC framework is highlighted below.

Aaron et al. presented two approaches which are based on hierarchical frame inter-
dependency [2]. In the first approach, an extrapolation technique is used to generate the SI
either from an odd (key) frame or an even (WZ) frame. In the second approach, an increased
temporal resolution along with a bi-directional interpolation technique is employed. Both
of these techniques fail to create a good quality SI when the video sequences with a longer
group of pictures (GOPs) and intensified motion characteristics are used. Two other tech-
niques, namely, the motion compensated interpolation (MC-I) and motion compensated
extrapolation (MC-E) [3], have also been proposed by the same authors. In MC-I, a bidi-
rectional block matching algorithm is used to create the SI using two previously decoded
key frames at temporal index (t — 1) and (¢ + 1). The major limitation of this scheme is
that it involves a high computational burden for the motion estimation task. In MC-E, the
SI generation depends on the motion vectors obtained using the reconstructed WZ frame at
(t — 2)"™ time instant and the decoded key frame at (t — D™ time instant. The limitation
of this scheme is that the error due to reconstruction process leads to a degradation in the
quality of SI.

Meanwhile, Aaron et al. proposed two other schemes, namely, previous extrapolation
(Prev-E) and average interpolation (AV-I) [3], to address low complexity video codecs.
Brites et al. presented a frame interpolation scheme which is based on motion vectors (MVs)
estimation. The MVs are estimated in two steps, 1) the forward, and 2) the bi-directional
(forward and backward). This scheme also introduces the smoothing of MVs in spatial
domain [7]. Further, a useful SI refinement methodology has also been proposed by the
same authors in [12]. It is also referred to as Instituto Superior Técnico Transform Domain
Wyner - Ziv IST-TDWZ) codec and is adopted and extended by many DVC researchers.
The same group also presented an SI generation framework in a European Project named
as DIStributed COding for Video sERvices (DISCOVER) codec [16]. Both IST-TDWZ
and DISCOVER codec shows similar performance, but in DISCOVER, it employs a lower
density parity check (LDPC) code, whereas the IST-TDWZ implements a turbo code.
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Adikari et al. proposed a multiple SI stream method for DVC [5]. Here, two SI streams
are used which are generated using the motion extrapolation and compensation (ME-C)
technique. Ye et al. [43] proposed an SI generation technique that exploits the spatio-
temporal dependencies between the video frames. Choi et al. [15] presented an advanced
motion compensated interpolation scheme which results in an enhancement of the tempo-
ral resolution. This method overcomes the issues of traditionally overlapped block-based
motion compensation. Cheng et al. proposed a classification based motion estimation
scheme [14], which attempts to compute the accurate motion vectors in each block of
two key frames. Further, a multiple block motion interpolation technique is also proposed
which uses various motion vectors for efficient generation of SI. Ascenso et al. presented a
two-mode block level based flexible structure for generating SI [8].

Ko et al. [24] proposed a WZ coding technique where the quality of SI can be enhanced
using a side matching feature in frame interpolation. This matching feature helps in reduc-
ing the errors present in the SI, and hence, increases the codec efficiency. Hinsel et al.
proposed two global motion guided adaptive interpolation or extrapolation techniques [19]
which include fast camera motion characteristics with the help of a global motion estima-
tion and refinement method. Tagliasacchi et al. focused on the effect of motion modeling
for generating SI. In the proposed scheme, a Kalman filter [40] is used to improve the
SI quality at the decoder. Rup et al. proposed an SI generation method [37] using multi-
layer perceptron (MLP) where the WZ frames are predicted from two decoded key frames
adjacent to it.

From all the above discussions, it can be noticed that SI generation is one of the most
crucial tasks in DVC framework. It is due to the fact that the compression efficiency of DVC
strongly depends on the correlation between SI frame and the corresponding original WZ
frame. It may also be noted that the video sequences constitute non-linear motion patterns
and very limited focus has been paid towards the use of soft computing based techniques
like artificial neural networks (ANNs) and its variant for SI generation in DVC. With this
in mind, this article proposes an ensemble of multi-layer perceptron (MLP) networks for SI
frame generation in DVC.

4 Proposed SI generation methodology

As discussed in Section 3, several methods have been proposed to estimate the WZ frame
at the decoder of the DVC framework. However, artificial neural network (ANN) based
techniques have been poorly explored for the problem under consideration. Using ANNSs,
different kinds of non-linearity issues that are tough using conventional methods can be
solved. Most of the video sequences exhibit intra-/inter- frame variations and are subject to
the effects of non-linearity [37]. Furthermore, for better clarification, the motion behavior
analysis between the backward ( f;_1) and the present ( f;) frame, and between the present
(fi) and the forward (f;4+1) frame for different video sequences are studied. Figures 2
and 3 show the inter-frame pixel movements in terms of the motion vectors for Foreman
and Carphone video sequences (See Table 2), respectively.

Additionally, the variation in the motion vector components for Foreman sequence is
exhibited in Table 1. It may be noted that the difference between the motion vectors across
the frames of a video sequence manifests non-linearity. Similar findings are observed with
Carphone and other video sequences as well. So, it becomes apparent that the problem of
estimating feasible WZ frames (so-called SI) can be efficiently handled using ANNs. Fur-
ther, the two primary benefits of an ANN are its autodidactism capability, and the ability to
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Fig. 2 Motion vector plot for Foreman: (a) between 103" and 104" frame; (b) between 104" and 105"
frame; and (c) difference between (a) and (b)

estimate the non-linear relationship between the input and the output of a complex network.
There exist several configurations of ANN, out of which, the most popular feed-forward
neural network (FFNN) [31] configuration is the MLP network. The MLP network is trained
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Fig. 3 Motion vector plot for Carphone: (a) between 117" and 118" frame; (b) between 118" and 119"

frame; and (c) difference between (a) and (b)
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Table 1 Variation in motion vectors in three consecutive frames of Foreman

Location of Motion Motion Vector Component (U,V)

Vector (X,Y) Previous Frame (( f,-_l)’h) to Cur- Current Frame (( f})’h) to Next
rent Frame ((f;)"") Frame ((fi41)")

(52.8,—86.8) (0.748, 1) (0.707, 0.734)

(62.6, —78) (0.77, 1.02) (0.902, 0.76)

(97.8, —100) (4.81,0.773) (4.24,0.29)

(111, —118) (3.34, 1.37) (3.05, 1.27)

(129, —60.4) (0.845, —0.226) (1.25, —0.557)

for a particular task with the help of a learning algorithm, namely, the back-propagation
(BP) algorithm [20]. Moreover, once the network is trained, it can be used to produce the
desired outputs. For better understanding, details of an MLP network is discussed in [9, 21].

th
Kt—l
Key Frame
. MLP BASED
8 x 8 Non-overlapping Blocks NEURAL
NETWORK
th
Kiv1
Key Frame
(a)
Input Layer Hidden Layer 1 Hidden Layer M
T
1
7@‘ Output Layer
2
Da
e
__ha
(b)

Fig. 4 Architecture of MLP network as SI frame estimator: (a) Generalized; (b) Internal structure
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The basic block diagram of a generalized MLP network as SI frame estimator is shown
in Fig. 4a. Figure 4b depicts the complete internal structure of the MLP network for the
problem under consideration. It consists of 1) an input layer with 128 neurons represent-
ing the inputs from 8 x 8 block of both the key frames; 2)‘M’ number of hidden layers
with hy,,, hp,, ..., hy,, be the number of hidden neurons in each layer, respectively; and 3)
an output layer with 64 neurons which represents the predicted output for the original WZ
frame under consideration. Here, in this article, an ensemble of MLPs for SI generation in a
DVC framework is proposed. An ensemble is a training model wherein various neural net-
works (NNs) trained for a particular task are grouped together, and the output of each NN
is combined to generate the final ensemble output [28]. The works in [44, 45] have shown
that ensemble of NN can produce a substantial enhancement in the generalization capa-
bility. Additionally, different weight initialization techniques [23, 27, 45] can be exploited
to produce better accuracy as compared to the individual networks. With all the properties
mentioned above, the ensemble technique becomes a new and emerging topic of interest
for researchers working in many research domains like traffic flow prediction [29], pattern
recognition [42], time series prediction [4], and so on.

Both theoretical and experimental analyses [18, 25, 32, 33] have exhibited that the
efficacy of an ensemble firmly relies on both heterogeneity and accuracy of the dis-
tinct networks. Hansen et al. [18] showed that ensembling of a limited number of NNs
could remarkably improve the generalization capability of the overall NN structure. Islam
et al. [22] proposed that a group of diversified networks with lesser accuracy can be merged
into an ENN with better accuracy. Hence, these properties are explored for the SI estimation
problem under consideration. Figure 5 represents the proposed ensemble of MLP networks
for SI generation. The proposed model is partitioned into four sub-modules. The first sub-
module involves the learning phase of each of the ‘N’ learners. In second sub-module, based
on a mean square error (MSE) metric, ‘M’ number of trained NN are selected (M <= N).
Here, in this work, M < N is considered. Next, the third sub-module involves the testing
phase of each of the selected learners. Finally, in the last sub-module, the SI generated by the
individual NNs are merged to produce the eventual SI of the overall ensemble model. The
merging process is based on the principle of Dynamically Averaging (DA) [28] as shown in (2).

N
(SDp =Y [Bn(SHin] )

m=1

Trained MLP
Based
Structure 1

MLP Based
Structure 1

Training Sequences
(Input Video
Frames)

Trained MLP
Based
Structure 2

MLP Based
Structure 2

Sl Estimation

Trained MLP
Based
Structure M

MLP Based
Structure N J

Testing Sequences
(Input Video

Frames)

Fig. 5 Proposed ensemble model using MLP networks
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where f,,’s represents the weight assigned to each of the selected networks, and are
computed using (3).

1
( (RMSE) g (m) )

N 1
§:n=1<aaﬁffﬁ$ﬁﬁ)

Bm = 3

The detailed procedure involved in the training and testing phase of the proposed SI
generation scheme is presented in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Training Phase of the Proposed Scheme

Input : Epochs : Total number of epochs; p : Learning Parameter; Np : Total
number of training blocks;
Ny : Total number of MLP networks; P B : Previous Block; N B: Next
Block; T B: Target Block;

Output: Ner : Individual Trained Networks; RM SE,,; : Root Mean Square
Error (1:Ny);

// Function GenNet() generates the MLP network;

// Function Wgtlni() initializes random weights for the
created network;

// Function GenTrainPat() generates the training pattern;

// Function FwdPass() calculates the output of the created
network;

// Function BwdPassErr() calculates the error of the
created network;

// Function WgtUpdt() updates the weights of the network
based on the calculated error;

// Function CalRMSE() computes the Root Mean Square
Error.

// Function FuncSelectNet() returns the final selected
networks to form the ensemble network.

1 fori < 1to Ny do

2 Net(i) < GenNet(i);

3 (Net)wg (i) < WgtIni(Net);

4 for j < 1to Epochs do

5 fork < 1to Np do

6 Bp < Read(PB)y; By < Read(NB)y; Br < Read(T B)y;
7 TrainPatterns < GenTrainPat(Bp, By, Br);

8 NetOut < FwdPass(Net, TrainPatterns);

9 RMSE| < CalRMSE(NetOut, Br);

10 BwdPassErr(TrainPatterns, NetOut, Net),
11 WgtUpdt(TrainPatterns, NetOut, Net, , (Net)wg (i));
12 L RMSE, < mean(RMSE/);

B3| RMSE,,; < mean(RMSE>);
14 FuncSelectNet(Ny, MSE);
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Algorithm 2 Testing Phase of the Proposed Scheme

input : BS : Block Size; f; : Starting frame index; N B : Total number of blocks;
N : Total number of testing frames; Tpp : Total number of pixels in a block;
Net : Individual Trained Networks; RM SE,,; : Obtained Root Mean
Square Error from Algorithm 1; Ny, : Total number of MLP networks;

output: (EstSI)y : Ensembled estimated SI frame;
(EstSI)1 : Network output for each block;

// Function CalcNetOut() calculates the output from the
trained network;

// Function FuncMerge() performs the merging operation of
each network output to obtain the ensembled output.

1 Initialization: Tpp < BS;

2 for j < f; to N step 2 do

3 IP < Read(frame)j_1; IN < Read(frame);ii;

4 [r, ¢c] < size(IP); NB <« (r xc¢)/(Tpp);

5 for k < 1to Ny do

6 for/ < 1to NB do

7 Srp < Read(IP);; Siy < Read(IN);;

8 \\ (EstSI)1(I) < CalcNetOut(Net(k), Sip, Sin);

9 (EstSI)(k) < concatenate((EstSI)y);
1 | (EstSD)y < FuncMerge((EstSI)2, Ny, RMSEou);

5 Discussion and analysis of the results

To exhibit the competency of the proposed SI generation scheme, simulations are carried
out in MATLAB on different standard video sequences [10, 39] as listed in Table 2, with
GOP size as 2, in all cases. During the extensive simulations, the video sequences with
diversified motion characteristics and texture features are considered. To compare the over-
all performance of the proposed scheme, various other benchmark video codecs such as
H.263 (Intra), H.264/AVC (Intra), H.264/AVC (NO MOTION), IST-TDWZ [12], and MLP-
SI [37], are also simulated on the same video sequences. Comparative analyses are done
with different parameters such as convergence characteristic, rate-distortion (RD), peak sig-
nal to noise ratio (PSNR), structural similarity index (SSIM), the number of parity requests
made per estimated frame, and decoding time.

Further, to obtain a better clarity in the performance analysis of the proposed SI genera-
tion scheme, the overall simulation is grouped into eight different experiments. Each of the
experiments is described below in detail.

Experiment 1: Convergence analysis and selection of network components for ensem-
ble model

The primary objective of this article is to analyze the effectiveness of the proposed
ensemble model in terms of the accuracy of SI estimation. An ensemble is a highly robust
technique wherein the results of the independently trained networks are merged to obtain a
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Table 2 Standard test video sequences

Video Sequence Snapshot Resolution Frames per second Format
Foreman 176 x 144 15, 30 QCIF, CIF
Carphone 176 x 144 15 QCIF
Miss America 176 x 144 15 QCIF
Coastguard 176 x 144 15 QCIF
Kristen-Sara 1280 x 720 24 SD
Kimono 1920 x 1080 24 HD

joint prediction. In general, a desirable performance of an ensemble model can be attained
with diversified NNs. Therefore, during the training phase, it becomes crucial to maintain
the heterogeneity among the individuals [13]. The heterogeneity can be attained by employ-
ing any one of the following steps: a) changing the set of initialized network weights; b)
diversifying the network’s internal structure by using different input and/or hidden units; c)
facilitating various NN configurations; d) employing several training algorithms; e) consid-
eration of trained networks based on randomized input sample space. In this work, twelve
different MLP topologies are used by diversifying the internal structure of the MLPs, i.e.,
the number of hidden layers and the number of hidden units in each of the individual layers
are altered, while keeping both the input units and the sample size fixed.

As far as different application scenarios are concerned, the structure of NN is an impor-
tant criterion. So, an experimental procedure is adopted to select the best structure which
fits the particular application. In the proposed model, both three-layer (I, H, O) and four-
layer (I, Hy, Hz, O) structures are used. The tangent-sigmoid and pureline functions are
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used as the activation function for the hidden and the output layer, respectively. To train
the network, scaled conjugate gradient learning algorithm is used. Further, the number of
hidden units (4,) used in the single hidden layer structure are 10, 14, 15, 20, 25, and 30.
Similarly, (10, 5), (14, 5), (15, 5), (20, 5), (25, 5), and (30, 5), are used in the two hidden
layer structure.

For the proposed model, four different topologies, namely, (128, 10, 64), (128, 15, 64),
(128, 14, 5, 64), and (128, 25, 5, 64) are selected. The selection of the topologies is made
based on the MSE values. A comparative MSE-based training convergence behavior for
three-layer and four-layer structures is shown in Fig. 6a-b, respectively. For each of the
training samples, the pixel values from two 8 x 8 blocks of (i — D and (i + 1) frames
(key frames) acts as the input pattern. Similarly, the pixel values from the corresponding
8 x 8 block of the (i)' frame (WZ frame) acts as the target.

To affirm that the training samples represent all possible motion and texture features,
a total of 30,000 training samples are collected at a random from 40 frames of Foreman,
40 frames of Container, 30 frames of Coastguard, 30 frames of News, and 30 frames of
Kimono video sequences. Further, in the testing phase, the remaining frames that are not
included in the training phase along with other video sequences are considered to validate
the performance of the proposed scheme.

20
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-20 R
g 10 —(128,10,64)
5 -22 —(128,15,64)
s 0 -24 —(128,20,64) | |
o (128,25,64)
S _1o| ~26 —(128,30,64) | |
=3 -28 —(128,14,64)
@ 20 40 60 —
S -20f |
=
-30 ‘ ! .
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Fig. 6 Convergence characteristics for: (a) Three Layer; and (b) Four Layer
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Experiment 2: Performance Analysis of SI estimation with respect to PSNR (in dB)

As discussed in the previous experiment, the primary goal of this work is to generate a
better quality of ST using an ensemble of MLPs. The selected NN components are integrated
to form the ensemble model which is then used to create the SI for the corresponding WZ
frame. In this experiment, the quality of SI frames is measured in terms of PSNR (in dB)
between the estimated SI and the original WZ frame, for different video sequences. Similar
results are computed for IST-TDWZ [12] and MLP-SI [37] schemes as well.
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Fig. 7 PSNR (in dB) plot per estimated SI frame of: (a) Carphone; (b) Kimono; and (¢) Foreman
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Fig. 8 PSNR (in dB) plot per estimated SI frame of: (a) Kristen-Sara; and (b) Coastguard

Table 3 Comparison of PSNR (in dB) between the ensemble model and individual MLPs

Video sequence Network structure
128:10:64 128:15:64 128:14:5:64 128:25:5:64 Ensemble
Carphone 29.9 29.97 30.13 30.01 31.52
Coastguard 30.41 30.2 30.75 30.77 31.32
Foreman 29.95 30.56 30.81 31.02 32.58
Kristen-Sara 38.93 39.03 40.48 41.61 42.25
MissAmerica 41.02 40.86 40.21 41.33 41.85
Table 4 Average SSIM Values -
for different video sequences Video sequence SSIM Values
IST-TDWZ MLP-SI PROPOSED
Coastguard 0.8744 0.9004 0.9314
Foreman 0.8361 0.8522 0.9165
Mother-Daughter 0.9209 0.9759 0.9837
Carphone 0.8856 0.9083 0.9277
Kristen-Sara 0.8151 0.9740 0.9945
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Fig. 10 Edge detected output of Kristen-Sara: (a) Original, (b) MLP-SI, and (¢) Proposed

(a)

Fig. 11 22"¢ frame of Miss America: (a) Original, (b) IST-TDWZ and (c) Proposed
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(a) (b)

Fig. 12 Difference of Miss America between: (a) Original & IST-TDWZ, and (b) Original & Proposed

Figure 7a—c show the PSNR (in dB) comparison among the schemes for Carphone,
Kimono, and Foreman video sequences, respectively. Similarly, Fig. 8a—b represent the plot
for Kristen-Sara, and Coastguard video sequences, respectively. It is observed that in major-
ity number of frames, the PSNR (in dB) with the proposed scheme is notably higher than
that of MLP-SI and IST-TDWZ schemes. The results obtained reflect that the proposed
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Fig. 13 Rate Distortion for Foreman for: (a) QCIF (at 15 fps); (b) CIF (at 30 fps)
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Fig. 14 Rate Distortion for QCIF (at 15 fps) for: (a) Coastguard; (b) MissAmerica; and (¢) Carphone

Table 5 Average PSNR Gain (in -
dB) of the proposed scheme over ~ Video Sequence

MLP-SI scheme

15239

Average PSNR Gain (in dB) (at 15 fps)

Lower Bit Rate Higher Bit Rate
Foreman 0.47 0.66
Coastguard 0.1 0.26
MissAmerica 2.24 2.98
Carphone 0.2 0.35
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Table 6 Average PSNR Gain (in
dB) of the proposed scheme over Video sequence Average PSNR Gain (in dB) (at 15 fps)

IST-TDWZ scheme

Lower Bit Rate Higher Bit Rate
Foreman 0.6 2.52
Coastguard 0.15 0.47
MissAmerica 2.57 4.01
Carphone 0.41 0.65

method can generate qualitative SI for video sequences with different resolution. Further-
more, it is also noticed that the ensemble model has a better generalization capability as
compared to each of the individual MLP networks selected to form the ensemble model.
For better understanding, a PSNR (in dB) comparison between the ensemble model and
individual MLPs is shown in Table 3.

Experiment 3: Study of Perceptive Measure of Side Information

This experiment evaluates the perceptive measure in terms of SSIM for the proposed
and the benchmark schemes. SSIM measures the structural similarity between two images
and determines the degradation in the picture quality caused by some processing techniques
like data compression or transmission. If the images are similar, then the SSIM value lies
close to 1. The average SSIM obtained with the proposed and the benchmark schemes for
different video sequences are listed in Table 4. From the table, it can be observed that the
proposed method shows superior performance as compared to its counterparts.

For visual (subjective) analysis, the original 140" frame of Kristen-Sara and the cor-
responding estimated SI frames with MLP-SI and the proposed technique are shown in
Fig. 9a—c, respectively. Figure 10a—c represent the edge detected output of the respective
frames. It may be noticed that the portion marked with red color indicates the incorrect esti-
mations with MLP-SI scheme (See Fig. 10b), and green color shows the correct estimations,
as in the original frame, with the proposed method (See Fig. 10c). Similarly, Fig. 11a—c rep-
resent the original, estimated SI frame with MLP-SI and proposed. The difference between
the original & IST-TDWZ, and original & proposed scheme, for 22" frame of Miss Amer-
ica sequence, is shown in Fig. 12a-b, respectively. It may be noticed that the proposed
method generates better approximation than IST-TDWZ technique does. Similar findings
are also observed with other video sequences as well.

Table 7 Average PSNR Gain (in

dB) of the proposed scheme over ~ Video Sequence Average PSNR Gain (in dB) (at 15 fps)

H.264/AVC (NO MOTION)

scheme Lower Bit Rate Higher Bit Rate
Foreman 0.61 1.06
Coastguard 0.92 0.98
MissAmerica 241 3.31
Carphone 0.57 0.98
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Fig. 15 Number of Parity Requests (at 15 fps) for: (a) Foreman; (b) Coastguard

Experiment 4:  Study of comprehensive RD characteristics

This experiment measures the RD performance of the proposed DVC codec. For the
computation of RD performance, only the ¥ (Luminance) component of the video frames
is used. Figure 13 shows the RD plot for Foreman (at 15, 30 fps). Similarly, the RD plot for
Coastguard, MissAmerica, and Carphone at 15 fps are exhibited in Fig. 14a—c, respectively.
Additionally, the average PSNR gain (in dB) achieved with the proposed technique over
MLP-SI, IST-TDWZ, and H.264/AVC (NO MOTION) schemes, for lower and higher bit
rates, are shown in Tables 5, 6 and 7, respectively.

Table 8 Average PSNR (in dB)
of all decoded frames for
different quantization matrices
(Q;’s) of Foreman Sequence

Qi PSNR (in dB)
IST-TDWZ MLP-SI Proposed
4 32.04 32.38 32.99
5 32.13 3241 33.04
6 33.38 33.62 34.40
7 35.56 35.84 36.49
8 37.42 37.88 38.54
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Table 9 Average PSNR (in dB) -
of all decoded frames for 0; PSNR (in dB)
different quantization matrices

(0:’s) of Carphone Sequence IST-TDWZ MLP-SI Proposed
4 27.44 27.73 28.01
5 28.72 29.01 29.30
6 30.61 30.92 31.39
7 32.74 33.23 33.80
8 34.71 35.05 35.75

Experiment 5: Assessment of number of Parity Requests per SI frame

As the efficiency of the decoder is critically dependent on the number of parity requests,
it becomes essential to assess the number of additional parity bits required by the decoder to
correct the error that exists between the original WZ and the generated SI frame. Figure 15a-b
represent the number of requests initiated per SI frame with the proposed, IST-TDWZ,
and MLP-SI schemes, for Foreman, and Coastguard sequences, respectively. During the
experimental process, a noiseless channel is considered for transmission of parity bits.

From the experimental result, it is noticed that a maximum of 721 requests is made with
the proposed scheme for the 110" frame of Foreman sequence, whereas a maximum num-
ber of 760, and 782 requests are made with MLP-SI, and IST-TDWZ schemes, respectively.
Similarly, for Coastguard sequence, a maximum of 829 requests is made, in contrast to 832,
and 865 for MLP-SI and IST-TDWZ schemes, respectively. In general, similar improve-
ments are observed with the proposed SI generation method for other video sequences as
well.

Experiment 6: Analysis of temporal evaluation

In DVC, to get the eventual decoded WZ frame, the error between the original WZ and
the estimated SI frame is further corrected using additional number of parity bits . Higher
PSNR (in dB) value reflects superior quality of the decoded WZ frame. So, to investigate the
quality of the decoded WZ frames, PSNR (in dB) is considered as the performance metric.

The average PSNR (in dB) values obtained with the proposed and benchmark techniques
for Foreman, Carphone, Coastguard, and MissAmerica sequences are reported in Tables 8§,
9, 10 and 11, respectively. For temporal evaluation, the quantization matrices Q4 to Qg
are considered [12]. Moreover, for Q; = 8, it is observed that the proposed SI generation
scheme attains an average PSNR gain of 0.66 dB, 0.70 dB, 0.55 dB, and 0.90 dB, over
MLP-SI scheme for Foreman, Carphone, Coastguard, and MissAmerica video sequences,

Table 10 Average PSNR (in dB)

of all decoded frames for i PSNR (in dB)
different quantization matrices
(Qi’s) of Coastguard Sequence IST-TDWZ MLP-SI Proposed
4 29.28 29.57 30.10
5 30.72 31.02 31.31
6 32.24 32.63 32.90
7 34.21 34.68 35.24
8 36.27 36.65 37.20
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Table 11 Average PSNR (in dB)

of all decoded frames for 0; PSNR (in dB)
different quantization matrices
(Q;’s) of MissAmerica Sequence IST-TDWZ MLP-SI Proposed
4 29.44 29.57 30.37
5 29.72 30.01 30.65
6 32.61 32.92 33.57
7 34.74 35.23 35.82
8 36.71 37.05 37.95

respectively. Similarly, it is also to be noted that the proposed scheme exhibits an aver-
age PSNR gain of 1.12 dB, 1.04 dB, 0.93 dB, and 1.24 dB, over IST-TDWZ scheme for
Foreman, Carphone, Coastguard, and MissAmerica video sequences, respectively.

Experiment 7: Assessment of Decoding Time

In DVC, the decoder complexity is considerably higher than that of the encoder. So, to
assess the decoder complexity, the average decoding time requirement (in seconds) with the
proposed and other benchmark schemes for the quantization matrices (Q4, and Qg) [12]
is reported in Table 12. It is observed that the proposed scheme requires considerably less
decoding time as compared to that for other competent schemes. Similar findings are also
observed for other quantization matrices as well.

Experiment 8:  Statistical Analysis

Statistical analysis is a scientific approach employed to make judgments with a mea-
surable confidence. Analysis of variance (ANOVA) is a statistical method used to verify
whether the means of several groups are all equal. Initially, in ANOVA, a null and alterna-
tive hypothesis is defined. The null hypothesis states that there is no significant difference
among the groups against the alternative hypothesis that there is a significant difference.
The rejection or acceptance of the null hypothesis critically depends on the resulting p-value
of the ANOVA test. If p <= 0.05 (considered significance level of 5%), the null hypothe-
sis fails to be accepted. Further, for better understanding, the detailed analysis of ANOVA
is presented in [36].

Table 12 Comparison of Total

Decoding Time (in seconds) Sequence Total Decoding Time (in secs)
IST-TDWZ MLP-SI Proposed
Foreman (Q4) 1124 1088 837
Miss America (Q4) 422 337 283
Coastguard (Q4) 717 621 564
Carphone (Q4) 821 788 739
Foreman (Qg) 3698 3565 3498
Miss America (Qg) 1207 1127 882
Coastguard (Qg) 3013 2953 2908
Carphone (Qg) 2805 2709 2623
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Table 13 ANOVA test with respect to PSNR (in dB) for Foreman

Data Summary

Sample Size
X

Mean

X2

Variance

Std. Deviation
Std. Error

Techniques
IST-TDWZ
189
5587.9823
29.566
170426.943
27.7256
5.2655
0.383

Standard Weighted-Means Analysis

ANOVA Summary

Source

Treatments (Between-Groups)
Within-Groups

Total

SS
937.8431
16785.5434
17723.3865

MLP-SI Proposed
189 189
6023.4823 6157.3476
31.8703 32.5786
197343.3709 206797.3185
28.5815 32.9777
5.3462 5.7426
0.3889 0.4177

Independent Techniques (k=3)

df MS

2 468.9215
564 29.7616
566

Total

567
17768.8122
31.3383
574567.6323
31.3134
5.5958
0.235

F=15.76
p-value = 0.0001

In the present work, ANOVA is used to validate that the proposed method produces
statistically significant enhancement as compared to the benchmark schemes with respect
to different parameters like PSNR (in dB), SSIM, and so on. The detailed analysis of the
ANOVA test with respect to PSNR (in dB) for Foreman, and Kristen-Sara sequence is
reported in Tables 13, and 14, respectively. It is noticed that the p-values obtained (.0001
for Foreman, and 0.000331 for Kristen-Sara) is considerably less than the set significance

Table 14 ANOVA test with respect to PSNR (in dB) for Kristen-Sara

Data Summary

Sample Size
X

Mean

X2

Variance

Std. Deviation
Std. Error

Techniques
IST-TDWZ
139
5480.3953
39.4273
221472.007
39.0927
6.2524
0.5303

Standard Weighted-Means Analysis

ANOVA Summary

Source

Treatments (Between-Groups)
Within-Groups

Total

SS
552.5084
13992.5879
14545.0963

MLP-SI Proposed
139 139
5671.1505 5872.2646
40.7996 42.2465
235971.3473 252090.0339
33.264 29.0389
5.7675 5.3888
0.4892 0.4571

Independent Techniques (k=3)

df MS

2 276.2542
414 33.7985
416

Total

417
17023.8103
40.8245
709533.3883
34.9642
5.9131
0.2896

F=8.17
p-value = 0.000331
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Table 15 ANOVA test with respect to SSIM for Carphone

Data Summary

Techniques

IST-TDWZ MLP-SI Proposed Total
Sample Size 180 180 180 540
=X 163.500716 166.086246 159.415972 489.002934
Mean 0.908337 0.922701 0.885644 0.905561
X2 149.203226 153.733416 141.941608 444 87825
Variance 0.003852 0.002712 0.004222 0.003815
Std. Deviation 0.062061 0.052075 0.064978 0.061765
Std. Error 0.004626 0.003881 0.004843 0.002658

Standard Weighted-Means Analysis

ANOVA Summary Independent Techniques (k=3)

Source SS df MS

Treatments (Between-Groups) 0.125672 2 0.062836 F=17.48
Within-Groups 1.930597 537 0.003595 p-value = 0.00001
Total 2.056268 539

level of 5%. Similarly, the analysis with respect to SSIM for Carphone sequence is shown
in Table 15. The obtained p-value of 0.00001 is less than 5% significance level. Moreover,
similar findings have been observed with other parameters as well. Hence, in general, it can
be validated that the proposed technique produces statistically significant improvement as
compared to the benchmark schemes.

6 Conclusion

In this study, an ensemble of MLP networks for SI generation in a DVC framework has
been proposed and assessed employing the Stanford-based TDWZ video codec. It has been
demonstrated that the proposed model is capable of generating efficient SI for DVC. The
proposed scheme estimates SI for the current WZ frame using two adjacently decoded key
frames as input. In the proposed methodology, the training of the individual MLPs is done
in an offline mode using the training (input, target) patterns which are collected across
different video sequences with diversified motion and texture features. The proposed model
selects ‘M’ number of trained networks based on MSE metric to form the ensemble model.

Determining an appropriate number of hidden layers and number of hidden units in each
of the individual layers is one of the essential assignment in ANN architecture. Therefore,
in this study, both (/, H, O) and (I, H;, H, O) structures have been analyzed. The number
of hidden units used in the single hidden layer structure are 10, 14, 15, 20, 25, and 30.
Similarly, for the two hidden layer structure, the number of hidden units considered are
(10, 5), (14, 5), (15, 5), (20, 5), (25, 5), and (30, 5). Out of these, four best topologies,
namely, (128, 10, 64), (128, 15, 64), (128, 14, 5, 64) and (128, 25, 5, 64) are selected. A
dynamically averaging (DA) approach is employed to integrate the SI frames generated from
each of the selected networks. The proposed ensemble model shows better generalization
capabilities as compared to the individual MLPs.
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Comparisons have been made with respect to the existing contemporary video codecs,
and from the exhaustive simulations, it has been observed that the proposed ensemble
scheme exhibits a better performance in terms of both qualitative and quantitative measures.
Additionally, with the help of the statistical test like analysis of variance (ANOVA), it has
been further validated that the proposed methodology produces significant enhancement
(with 5% significance level) over the benchmark techniques. It has also been exhibited that
the proposed scheme is capable of minimizing the estimation error between the generated
SI and the corresponding WZ frame.

In future, some advanced machine learning algorithms, namely, convolutional neural
network, extreme learning machine, and so on, along with ensemble of these non-linear pre-
dictors could be explored to generate a better quality of SI in a DVC framework. Moreover,
creating SI frames simultaneously from each of the individual NNs using a MapReduce
framework could be another possible extension of the proposed work. Further, a hardware
implementation of the proposed framework is also possible.
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