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Abstract The MapReduce programming model is widely used to parallelize data pro-
cessing over the large scale of commodity computer clusters. However, on account of
its monotonous data representation, it fails to express graph-parallel algorithms naturally
and execute them efficiently. Alternatively, Pregel and PowerGraph could address these
challenges. But they require users to familiarize another set of programming patterns and
platforms, and at the same time the legacy MapReduce code also becomes incompatible
and useless. In this paper, we proposed the Graph-compatible MapReduce (GMR) as an
extension of Google’s Standard MapReduce (SMR). In this way, graph-parallel algorithm
will be naturally expressed without compromising the efficiency and simplicity, and mean-
while the conventional MapReduce programming pattern be preserved. Also, users could
gain the convenience of “Think like a vertex”. Based on the experimental studying, we ana-
lyzed the ratio of the redundant computation, transmission and data caching introduced in
naive iterative MapReduce platforms (e.g., HaLoop, Twister). Furthermore, we discussed
the difference between GMR and the graph-targeted frameworks. The evaluation experi-
ment results show that GMR outperforms GraphX in a series of real-world graph-parallel
algorithms.
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1 Introduction

Although MapReduce programming model is notorious on processing interdependent data,
80% of all the data in Google is still processed by MapReduce while the remaining 20%
completed by Pregel [16, 17]. Two frameworks imply two sets of programming interfaces,
which not only steepens the learning curve, but also causes incompatible codes.

Meanwhile, an increasing proportion of real-world data is structured as interdependent,
such as the Web graph and various social networks. To benefit users with a unified frame-
work which is compatible with independent and interdependent data, a plethora of solutions
are proposed. Representative frameworks including HaLoop [2] and Twister [6] reuse the
MapReduce model and add build-in support for iterative computation. Beyond that, the
Spark provides the capability of graph computing after extending the component of GraphX
[25].

By recognizing iterative algorithms from chained MapReduce [22] to iterative structures,
users likely obtain a significant speedup. Impressively, it cuts down the overhead of I/O
dramatically. In the example of the improved Hadoop, such as HaLoop and Twister, they
generally achieve 2x–10x speedup [10] over original Hadoop. However, compared with the
100x speedup of GraphX [10], the naive reorganization is less than satisfying. In addition,
after probing into the process of HaLoop and Twister, we have identified lots of redundant
computation, transmission and caching. Experimental evaluation also shows that the ratio
of repeated computation could reach up to 99.9% in some extreme scenarios. For exam-
ple, in solving the problem of single source shortest path algorithm, only few vertices are
active to pass the shortest path which needs all vertices to be processed in each superstep.
Unfortunately, it is challengeable to filter the redundant intermediate results and messages
for them[22] because no directive information is provided for runtime to discriminate the
key/value pairs.

On the other hand, although the existing graph-parallel frameworks, such as Pregel and
GraphX, could express and parallelize the graph algorithms naturally and efficiently, it is
difficult to compose all these abstractions for each framework presents a slightly different
view of graph presentation and relies on separated runtimes.

In order to enable frameworks based on GMR to express and execute graph-parallel
algorithms naturally and efficiently, we extend its type mechanism by introducing a new
distributed data type named as Mutable Distributed Mirror (MDM). MDM is a context-
related data type (vertex’s context means its neighboring vertices and edges). Using MDM,
programmers could naturally express the interdependency of data, such as the relationship
between vertices in graph. On top of that, users could program graph-parallel algorithm with
vertex-centric. The advantage of fine-grained vertex type is that it provides the directive
information for MapReduce engine to filter the redundant computation, transmission and
caching. GMR also adopts the Bulk Synchronous Parallel (BSP) [18] model which interprets
computation into a series of global supersteps to support iterative computation. Therefore,
the MapReduce programmers could not only express graph-parallel algorithm naturally, but
also keep the MapReduce programming patterns and habits.
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We describe and evaluate the design and implementation of GMR on a 32 nodes clus-
ter and adopt the real-world applications on both natural and random datasets. Our key
contributions are:

1) Generalizing the MapReduce Programming Model to make it compatible with graph-
parallel computation;

2) Extending the type mechanism in MapReduce programming model;
3) Implementing a general computing framework which is compatible with unstructured

and graph structured data under MapReduce Programming Model;
4) Proposing the concept of approximate graph partitioning and introducing the LSH-

based approximate graph partitioning approach.

The rest of the paper is structured as follows. Section 2 describes the backgrounds of
the state-of-the-art parallel computing models. Section 3 illustrates GRM abstraction and
implementation. The applications and evaluations are enumerated in Section 4. Finally, we
discuss related work and future directions.

2 Graph-parallel abstraction

2.1 MapReduce abstraction

MapReduce is a distributed programming model for large-scale data processing over mas-
sive commodity computers. Algorithm implemented with MapReduce includes several
fundamental operations, parts of which are implemented by users. The fundamental opera-
tions include Map, Combine, Reduce, Shuffle and Sort. The behaviors of the operations are
summarized as follows briefly.

• “Map”: performs transformations (e.g., filtering, sorting or key/value pair transforma-
tion).

• “Reduce”: performs summary operations (e.g., counting the number of the key/value
pairs sharing the same key).

• “Combine”: performs local aggregation on the intermediate outputs, which helps to cut
down the amount of data transferred from the Mapper to the Reducer.

• “Shuffle”: redistributes key/value pairs so that these key/value pairs with the same key
can be assigned to the same worker processor.

• “Sort”: performs data sorting based on the key field.

The popular frameworks based on MapReduce abstraction mainly aim at the data-
intensive applications and therefore are more focused on optimizing the reliability and
scalability. And because the MapReduce model derives from functional programming, they
were born with three limitations:

1) Unsuitable for iterative computing. Most of the iterative algorithms are organized as
chained MapReduce invocations, which introduce substantial I/O overhead.

2) Inefficient message Passing. To realize message exchange between data items, MapRe-
duce needs to generate, sort and aggregate intermediate key/value pairs according to
the same key.

3) No “state” information in data item to record graph state across iterations. Every
Mapper needs to explicitly convey a portion of graph to the Reducer.
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The graph-parallel algorithms are usually organized as chained MapReduce invocations.
But the chained MapReduce invocations show no benefit on programming with vertex-
centric perspective. Furthermore the user interfaces and data representation are incapable of
formulating the iterative and stateful computing process. Therefore, the original MapReduce
could hardly express the graph algorithm naturally and intuitively, even cumbersomely and
inefficiently.

To illustrate the chained MapReduce invocations, we adopt the example of the second
degree relationship recommendation algorithm. As is shown in Algorithm 1, the example
implementation looks embarrassingly counterintuitive and lengthy. In addition, the string
operations also hinders the high-efficiency execution.

2.2 Pregel

MapReduce programming model naturally evolves from functional programming language,
and the chained MapReduce invocation requires passing the entire graph from one stage
to the next, which in general requires much more communication and serialization. Pregel,
however, is an implementation of another different programming paradigm. It invokes
vertex-program on all the active vertices in a sequence of supersteps. In Pregel, every vertex
in graph takes a state flag. With the state flag, a vertex deactivates itself by voting to halt.
Being inactive means the vertex has no further work to do unless it is triggered externally.
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Fig. 1 Vertex state machine of pregel [17]

Reactivation can be triggered by message. When vertex is reactivated, the Pregel framework
will invoke the vertex-program again. The progress can be expressed as Fig. 1.

Pregel adopts a pure message passing model instead of Remote Procedure Call (RPC)
for performance [17]. A vertex V in superstep S can read messages sent to it in superstep S
− 1, send messages to other vertices which will be received at superstep S + 1, and modify
the state of V according to the execution of user interface compute().

The computation in Pregel consists of a sequence of iterations, which are named as
supersteps. One superstep needs to complete an execution of vertex-programs and a global
synchronization. Writing a Pregel vertex-program involves subclassing the build-in Vertex
class and overriding the virtual method of compute(), which is executed at each of active
vertex in every superstep. Pregel allows compute() method to access the values and edges on
current vertex. What’s more, vertices could also exchange messages with each other through
the message passing APIs (e.g., SendMesssageTo()). Figure 2a shows the implementation
of PageRank algorithm in Pregel.

2.3 GraphLab

GraphLab is an asynchronous distributed shared-memory model. By eliminating message
and providing a high-level data representation of the data graph, it insulates user from the
complexities of synchronization, data consistency, data races and deadlocks. Using the rep-
resentation of graph, vertex-program could access values of the current vertex, adjacent
vertices and adjacent edges directly. In addition, it maintains the data consistency with the
configurable consistency models automatically.

(a) (b) (c)

Fig. 2 The PageRank algorithm implemented in Pregel, GraphLab and PowerGraph
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In GraphLab, the vertex-program is triggered by its neighboring vertex-programs in
the future, which means vertex-program will prevent neighboring programs from running
simultaneously to ensure the serializability of executions of vertex-programs. In Fig. 2b, we
implement PageRank algorithm to demonstrate that vertex-program operates neighboring
vertex values directly.

2.4 PowerGraph

PowerGraph is another graph-parallel computation abstraction concentrating on the graphs
with highly skewed power-law degree distributions.

It adopts the GAS (Gather, Apply, Scatter) model to express vertex program. Com-
putation in the PowerGraph needs implementing the GASVertexProgram interface, and
explicitly decomposing computation into the gather, sum, apply and scatter functions. The
gather function is invoked in parallel on the neighboring edges of vertex, and returns tem-
porary accumulator, which will be combined by using the commutative and associative sum
operation. After the completion of gather phase, the apply function takes the accumulator
and computes the new state of current vertex. Finally, the scatter function is invoked in
parallel on the neighboring edges of current vertex to compute new edge values and write
back to the graph. Three barriers are imposed between the functions to synchronize data.
Figure 2c demonstrates the example code implemented in PowerGraph.

PowerGraph combines the feathers of Pregel and GraphLab. From Pregel, PowerGraph
borrows the associative and communicative gather operation [10]. From GraphLab, Pow-
erGraph takes the data representation view of data graph to eliminate the need for user to
formulate the movement of information.

2.5 GraphX

GraphX is a component of Spark, targeting at graphs and graph-parallel computation. It
extends the Spark RDD by introducing a new Graph abstraction [25]: a directed multigraph
with properties attached to each vertex and edge. In order to simplify graph construction and
transformation, GraphX offers a set of primitive operations (e.g., degrees, subgraph, join-
Vertices and aggregateMessages) and a variant of Pregel. Using these primitives, GraphX
could implement the PowerGraph and Pregel abstractions in less than 20 lines of code [25].
In addition, more and more open source implementations of graph algorithms and builders
are added in GraphX to simplify graph analytics tasks.

3 GMR model

Although plenty of studies have come to a conclusion that the MapReduce is not suitable for
computation with much interdependency. Paradoxically, we find that it does fit for the com-
putation with much interdependency after necessary extending. Therefore, the motivation
of this work is to enhance the MapReduce programming model to support graph-parallel
algorithms naturally and efficiently.

In functional programming, the higher-order function map(f(x), list) is used to generate
and return a new list by applying the f(x) to each list item, and reduce(g(x), list) is used
to aggregate the items in list with aggregation function g(x). SMR borrows the concept of
map/reduce in functional programming, but limits the data type of list elements to key/value
pair.
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After the above simplification, the core role of the MapReduce framework is to provide a
runtime that enables the execution of map/reduce in parallel over the unreliable commodity
PCs. Via this methodology, the parallelization is highly achieved. However, its drawback is
obvious as well, especially the constrain on the type, which brings in considerable overhead
during data exchange.

The frameworks based on SMR require all the data to be presented as key/value pairs,
including the input, intermediate and final results. But the key/value pair is incompetent
to express graph naturally, even damages the structure information of graph. Because of
these constraints, it is hard to exchange the messages between vertices and control state of
vertices. In order to bypass these defects, prior frameworks based on SMR need to intro-
duce lots of redundant global shuffling, sorting, grouping, aggregating, communication and
caching.

From a fresh perspective, GMR extends MapReduce on two aspects. One is the type
system; the other is the execution engine. With such extensions, GMR could support user to
program graph-parallel algorithms with vertex-centric perspective and meanwhile keep the
familiar programming pattern of MapReduce.

3.1 “Think-like-a-vertex”

Using vertex-centric programming model, user could express graph algorithm with “Think-
like-a-vertex”. Vertex-program describes graph algorithm from a single vertex’s perspective
and applys on each vertex of graph for a loosely coupled execution in parallel [17]. The
execution of vertex-program frequently needs collecting/scattering messages among peer
vertices. Existing frameworks provide the following ways to implement that.

Pregel, GraphLab and PowerGraph all provide the interfaces of defining a vertex-
centric program but in slightly different ways. In Pregel, vertex-program is implemented in
compute(). Message passing API enables compute() to gather and scatter with other ver-
tices between supersteps. PowerGraph requires implementing three interfaces to express
vertex-program actions, which include gather, computation and scatter.

To leverage vertex-centric programming model, GMR also provides the “Think-like-
a-vertex” philosophy for user. But with slightly different interface, the operation of
vertex-program is implemented in map/reduce. Direct data accessing between neighbors is
provided like in GraphLab and PowerGraph. In addition, more fundamental functions are
provided to control the structures of vertex and message in GMR.

3.2 Graph presentation

The vertex-centric approach needs users to focus on processing each vertex independently.
Then system composes these independent executions to lift computation to a graph. How-
ever, the computation applied on each vertex usually needs obtaining information from
others. For example, a broad set of graph algorithms require gathering information from
predecessors and scattering messages to successors. Pregel provides message passing API
to achieve that. And PowerGraph factors user user-program into three phases, in which
gather() and scatter() appear.

In GMR, the manner of data accessing is closely analogous to GraphLab. The vertex-
program (i.e., map/reduce) could not only operate the values on current vertex passed by
parameters, but also could access the values on adjacent edges and adjacent vertices directly.
GMR stores the values on a new designed distributed data structure, which is described in
the following part of this section in detail.
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3.2.1 Type extension of graph representation

To realize direct data accessing between neighbors, GMR caches vertex’s adjacent vertices
residing on different processors. To minimize the memory footprint of data cache, user is
enabled to customize which part of vertex can be cached, accessed and available by whom
(predecessor or successor). To describe these functions and operations formally, we abstract
and encapsulate a new data type, Mutable Distributed Mirror (MDM). MDM owns the
following three properties:

• Data is distributed over different processors/machines;
• Data mirror is adopted to facilitate direct accessing between neighbors residing on

different machines;
• Data structure of mirror is mutable, and can be tailored from its master record by user;

With the concept of MDM, we design the Vertex class. The Vertex class is a new build-
in system class, which derives from key/value pair. It contains several basic properties to
describe a graph vertex but not limited to vertex. The UML diagram of KeyValue class and
Vertex class is shown in Fig. 3.

Implementing a graph algorithm in GMR, user first needs to define a new class which
inherits from Vertex class, declares fields and then customizes the accessibility of these
fields with annotations provided by the system. If field is annotated as accessible from
predecessor (resp. successor), it can be accessed by all its predecessors (resp. successors).
The annotations are similar to that of Java. If fields are annotated, it will be sent to and
cached in corresponding machines when its value is updated.

Fig. 3 The class hierarchy of
KeyValue class and vertex class,
vertex inherits from KeyValue
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For ease of use, three member variables are introduced in Vertex class to reference values
of its neighbors, i.e., predecessor, successor and nbrs, which denote predecessors, successors
and all neighbors respectively. Annotations and their corresponding referencing variables
are shown in Table 1.

Therefore, fields annotated as:

@accessible(value = predecessor / successor)
DataType fieldname;

could be accessed in vertex-program as:

v.successor[i].filedname or
v.predecessor[i].fieldname or
v.nbrs[i].fieldname

The i in the above expressions indicates the index of its predecessor or successor.
With the new data type, GMR simplifies the programming of graph-parallel algorithms

significantly, such as the single source shortest path (SSSP) [4] and second degree relation-
ship recommendation algorithm. For SSSP, each vertex could directly read the shortest path
from its all predecessors. As to the second degree relationship recommendation algorithm,
vertex-program needs to gather values from both predecessors and successors simultane-
ously, it can read directly now. More real-world applications of Vertex class are presented
in Section 3.3.

What’s more, user could set the execution state of vertex by an identifier in Vertex class.
The state identifier is also used by runtime to determine whether to execute vertex-program
on current vertex or not. If state appears active, runtime will apply the vertex-program on
current vertex; otherwise, runtime will ignore the current vertex until it is reactivated again.
To demonstrate the predefined subclass of Vertex class, Fig. 4 shows some basic exam-
ple classes. In Fig. 4a, the KMeansType is used to represent the input, intermediate and
result data type. Because the KMeans clustering algorithm is not a graph-parallel algorithm,
KMeansType inherits from the KeyValue class and no field is annotated. In Fig. 4b, the
PRVertex is used to represent the webpage in PageRank algorithm, which inherits from
Vertex class. The SSSPVertex in Fig. 4c stands for the graph vertex in SSSP algorithm.

To deliver these mechanisms efficiently, we design and extend the underlying graph
storage and partitioning algorithm, which will be described in the following two sections.

3.2.2 The underlying representation of graph and message

GMRmainly employs two measures to minimize the in-memory presentations of graph and
message to support a larger scale of computation.

Table 1 Annotations and
corresponding access interfaces Annotation Access interface

@accessible(value=predecessor) vertex.predecessor/nbrs

@accessible(value=successor) vertex.successor/nbs
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(a)

(b)

(c)

Fig. 4 Example of user defined data types in GMR

One is that GMR adopts Compressed Sparse Row (CSR) [3] to store graph in memory.
CSR represents a matrix M with three arrays (one-dimensional), i.e., nonzero values, the
extents of rows, and column indices. According to our design of data accessing model, we
add three fields to CSR structure, i.e., predecessor, successor and nbrs.

The other is partial mirror. Partial mirror is used to cache adjacent vertices, which reside
on different processors, to support direct data access as well as minimize mirror and message
to a reasonable size. The implementation of partial mirror is simple and intuitive, if field is
annotated as @accessible(value = predecessor / successor) then the value of this field will
be passed to and cached in corresponding predecessor[i] or successors[i]. The non-annotated
fields will not be delivered or cached. So the mirror in GMR is termed as a partial mirror
instead of a full copy of adjacent vertex. When no field is annotated, the referencing arrays
(predecessor, successor, nbrs) will be set to empty. The data consistency between mirror and
its master is ensured by the BSP model. Figure 5 demonstrates memory images of GMR
model and PowerGraph model. In Fig. 5a, the dented pizzas imply they are partial mirrors.

With the supports of annotationmechanism and partial mirror, GMR could drastically reduce
the volume of communication and cached data, as well as simplify the data operations.

3.2.3 Graph partition

In mathematics, the Graph partition problem is to partition vertices of a graph into multiple
approximately equal-sized sets so that the number of cut-edge between subgraphs is mini-
mum. It is an important NP-complete problem with applications on VLSI CAD, processor
allocation, and many other areas [5, 8, 9, 14, 15, 19–21, 23, 27–29]. Although there has
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(a) (b)

Fig. 5 Memory image of vertex in GMR and PowerGraph, the mirror in PowerGraph is a full copy of its
master vertex, but in GMR it is a partial copy of its master vertex

been a lot of graph partitioning algorithms, the dominant graph computing frameworks still
adopt random partitioning category, such as in Pregel and GraphLab.

The major shortcomings of existing algorithms are their high complexity and lack of
distributedness. In this part, we present a new approximate partitioning algorithm, Locality-
sensitive Hashing based graph partitioning (LSHGP).

Locality-sensitive Hashing (LSH) is widely used in approximate searching in big dataset,
whichmainly depends on the similarities between data items. LSH could hash the similar items
to neighboring regions in hash tables. Our casual experiment results show that adjacent
vertices (and edges) have analogue formal representations. Such as the graph in Fig. 6, the
expressions of the vertices and their similarities are shown in Table 2. Theoretically, higher
similarity vertices should be hashed to closer regions in hash table with greater probability [16].

Fig. 6 Demo graph
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Table 2 Similarities between adjacent vertices

VID Vertex represent Jaccard similarity

A B C D E F G H I J

A 〈A,B,C,D,E, F 〉 1 .37 .37 .33 33 .33 .14 .14 .14 .14

B 〈A,B,C,G,H 〉 .37 1 .42 .16 .16 .16 .4 .4 .16 .16

C 〈A,B,C, I, J 〉 .37 .42 1 .16 .16 .16 .16 .16 .4 .4

D 〈A,D〉 .33 .16 .16 1 .33 .33 0 0 0 0

E 〈A,E〉 .33 .16 .16 .33 1 .33 0 0 0 0

F 〈A,F 〉 .14 .16 .16 .33 .33 1 0 0 0 0

G 〈B,G〉 .14 .4 .16 0 0 0 1 .33 0 0

H 〈B,H 〉 .14 .4 .16 0 0 0 .33 1 0 0

I 〈C, I 〉 .14 .16 .4 0 0 0 0 0 1 .33

J 〈C, J 〉 .14 .16 .4 0 0 0 0 0 .33 1

Depending on the LSH and the similarity between vertices, adjacent vertices can be
hashed to neighboring regions with a certain probability. Then by appropriate segmentation
on hash table, the equal sized blocks of vertices can be regarded as approximately subgraphs
after partition.

Comparedwith existing algorithms, such asMetis [12],Multilevel k-way partitioning scheme
[13], spectral graph partitioning algorithm [11], etc., the outstanding advantage of LSHGP
is the low complexity, which is quite close to that of random graph partitioning algorithm.

Table 3 demonstrates the improvement on the number of cut-edges between partitions
and time compromise. We could generally achieve about 20 to 100% improvement on the
number of cut-edge. But the result is far from our expectation, which we think attributes to
the locality-sensitive algorithm and the structure of our hash table. After this work, we will
do more research on this issue.

3.2.4 More applications of vertex class

As is shown in Fig. 7, when algorithm is implemented by SMR, intermediate results need to be
shuffled and sorted among all the processors regardless of data structure and content, such
as in Hadoop, HaLoop, Twister, etc. This could impose considerably overhead on local I/O,
network communication and processing speed, particularly to these iterative algorithms.

Table 3 Comparison between
random graph partition and
LSH-base graph partition

(#vertices, #edges) Random GP LSH-based GP

#cut-edge time #cut-edge time

G4elt(766, 1314) 1,787 0.1s 533 0.3s

GMesh(258k, 513k) 361,083 1.5s 229,106 3.9s

GSOC(4.8m, 68m) 6,092,367 138s 5,197,754 229s
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Fig. 7 SMR execution procedures

Actually, lots of intermediate results do not need to be migrated, such as the vertices in
graph computing. Researchers have explored and tried to address this challenge. A. Elgo-
hary proposed the Stateful MapReduce [7], which contains an additional state identifier to
conduct runtime to distinguish the expired and fresh data. Its data exchange is inherently
based on shuffling and sorting, so the redundant task still exists. Y. Zhang and Q. Gao etc.
put forward the iMapReduce [30] providing two different sets of API to operate and manage
different types of data (i.e., static data and state data). In GMR, we address these problems
by extending the type mechanism and introducing new programming model. Besides the
graph computing, we have found the new type mechanism and programming model can be
used in more fields and applications.

The direct use of Vertex class is to express the vertex in graph. Surprisingly, it could
be used to express much more complicated objects, such as the type of catalyst [24]
and enzyme [1] in the simulation of biochemical reactions. Both catalyst and enzyme
keep unchanged and transform other inputs into other forms concurrently during reactions.
Figure 8a displays the execution process of PageRank algorithm, in which the balls inherit
from Vertex class and represent webpages, and the coins indicate the key/value pairs deliv-
ering the shared PageRank values. During the execution of PageRank, instance of PRVertex
keeps still on the original processor, emits and receives key/value pairs. Figure 8b demon-
strates that the Vertex class is used to represent catalytic in biochemical reactions. Besides
the webpage and catalytic mentioned above, we could imagine that more entities could be
abstracted as Vertex, such as planet in astrophysics and so on.

3.3 Case study

GMR enables users to programwith vertex-centric. Compared with Pregel and PowerGraph,
the map/reduce function is reused to implement vertex-program rather than introducing
another new set of user interfaces.

When writing GMR vertex-program, user needs to override the methods of map() and
reduce(). In these methods, user could access relevant values directly through the inter-
faces defined in Vertex class. A comparison among PageRank implementations by Pregel,
GraphLab, PowerGraph and GMR is shown in Figs. 9a and 2a, b, c.
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(a)

(b)

Fig. 8 Diagram of Vertex usages. a Vertex class used in PageRank algorithm, b Enzyme class used in
simulation of biochemical reaction

Similar to SMR, map() is mainly responsible for transformation operations and reduce()
primarily performs summary operations. In the example of PageRank, map() generates the
shared value messages, while reduce() aggregates and sums up the messages.

3.4 Iterative MapReduce engine

To cut down the redundant I/O operation, GMR adopts the BSP model to support iterative
computation. Using BSP model, the intermediate results will no longer be shifted back and
forth between disk and memory. The movement direction of intermediate results are shown
in Fig. 10.

Meanwhile, to support multiple types running in one runtime simultaneously, we adopt
the polymorphism mechanism of language to provide interfaces for user-defined types. User
could customize actions of map, combine, shuffle and reduce. The system also provides
default actions for superclass of Vertex class. For example instances of Vertex class will
keep still on shuffle stage. During executing, the engine will invoke different actions upon
different types. For instance, in shuffle stage, GMR moves key/value pairs with the same
way of vertex distribution, and at the same time keeps vertices still. Figure 10 illustrates the
different execution processes corresponding to different types.

To describe the execution process in detail, we sketch the flowchart of runtime in Fig. 10.
At input stage, map() accepts input from both file reader module and reduce output module.
After processing of map(), multiple types of output may be generated, such as Vertex and
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(a) (b) (c)

Fig. 9 The PageRank, SSSP and KMeans algorithms implemented in GMR

simple key/value pair. Then, shuffle module will move the intermediate results to different
destinations according to their types. The default destination of vertex is their current positions.
After reduce(), all the verticeswill be checkedwhether they have become convergent. If any non-
convergent vertex exists, the engine will start another superstep until all vertices become
convergent or reach other external precondition, such as reaching specified number of iterations.

4 Applications and evaluation

GraphX is an open source implementation of Pregel on Spark, and famous for its high
efficiency and vertex-centric programming. The following contrast tests will take it as
benchmark. We tested and compared the performances of Spark, GraphX and GMR on
several algorithms with both natural and random graphs.

These tests are conducted on a cluster of 32 8-core commodity Servers with 46GB RAM.
Three datasets are used. The first one consists of 100,000,000 32-demensional random vec-
tors; the second one is a mesh graph with 258,569 vertices and 1,026,264 edges and the
last is a social network graph (SOC) [26] published by Stanford Network Analysis Project,
which contains 3,997,962 vertices and 34,681,189 edges. To demonstrate the highly skewed
degree distributions of the SOC dataset, we plot the fan-in and fan-out degree distribution
in log scale in Fig. 11.

4.1 Single source shortest path (SSSP)

The SSSP problem requires finding the shortest paths from a source vertex to all the other
vertices in graph. The quantity of iteration is the max distance to the source vertex. For
simplicity and conciseness, we assume that all the distance between the adjacent vertices is
1.0. As is shown in Fig. 4c, SSSPVertex is subclass of Vertex and used to present the vertex
in SSSP problem. The value in SSSPVertex indicates the shortest path value from source to
the current vertex and is annotated as accessible from its successors (@accessible(value =
successor)).
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Fig. 10 Execution order of GMR with graph data and simple key/value pair

The vertex-program is shown as Fig. 9b. In map() method, it enumerates one’s all prede-
cessors to calculate and output the intermediate vertices and intermediate key/value pairs:
{key, value}, where the key and value are current vertex id and predecessor’s shortest path
plus the weight of the edge between them, respectively. In reduce() method, it selects the
pair with minimum value by group.

Fig. 11 In and out degree distributions in log scale
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Fig. 12 Performance of GMR on speedup and memory

To synchronize the value cached in a different processors, runtime needs to synchro-
nize the partial mirror when its master record is updated. In the implementation, we arrange
the annotated fields in sequence. Figure 12a, b, e, f present the processing time and mem-
ory overhead of GraphX and GMR. Numbers show that GMR obtains better speedup than
GraphX, and meanwhile takes up less memory.

4.2 PageRank

PageRank is a link analysis algorithm. It works by summing up the number and quality of
links to a page to determine a rough estimate of how important the page is. A GMR imple-
mentation of a PageRank algorithm is shown in Figs. 4b and 9a. The PageRankVertex class
inherits from Vertex class. The type of value in PageRankVertex is double and annotated as
accessible from successors.

In map() method, it enumerates a vertex’s all predecessors to calculate and output inter-
mediate key/value pair: {key, value}, where the key is the id of current vertex and the value
is the PageRank value shared to its successors. In reduce() method, it sums up the values
with the same key by group with the specified formula. Figure 12c, d, g, h shows the exper-
iment results that GMR could gain 5x-7x speedup than Spark GraphX and meanwhile takes
up less memory.

4.3 KMeans clustering

Besides the above graph-parallel algorithm, we also test and evaluate the frameworks with
non-graph algorithm and dataset. KMeans clustering is used to partition n samples into k
clusters in which each sample belongs to the cluster with the minimum mean.

In this case, the sample data is 100,000,000 32-demensional vectors generated randomly.
The map() method computes the distances of current sample to every center and output an
intermediate key/value pair, where the key is the id of the closest cluster and the value is
the sample data. In reduce() method, it calculates the new cluster centers with the same
key in group. The code is shown in Fig. 9c. The experiment results in Fig. 13a, b show
the GMR is between 100x–300x faster than Spark while taking up less memory. As to the
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Fig. 13 The performance comparison of GMR and spark on KMeans clustering

amazing speedup effect, we think it is mainly owing to the C++ programming language and
small scale of dataset, because the KMeans algorithm could be implemented by MapReduce
without any extension, which is supported in both Spark and GMR.

For the three example algorithms, GMR achieves appreciable speedups. Besides the
contribution of GMR programming model, the improvement partly attributes to the pro-
gramming language of C++ and MPI implementation. Compared with the programming
language of GraphX, C++ generally obtains better performance than Java and Scala.

5 Conclusion

In this work, we generalize the MapReduce programming model, making it capable for pro-
cessing large-scale graph-parallel computation. Consequently, the MapReduce programmer
no longer needs to master another dedicated graph computing technology and meanwhile
the amount of legacy code becomes reusable. The scalability and fault-tolerance of GMR
inherit from SMR, which could run on clusters with large number of commodity PCs and
tolerant machine failures gracefully [22]. Last but not the least, the speedup of GMR has
achieved comparable performance with state-of-the-art computing framework.

Like Pregel, GMR adopts the BSP model to control the data and state synchronization
between supersteps. Using synchronization model means the running time depends on the
quantity of iterations by linear correlation. If it is used in the algorithm with relatively long
iteration path, e.g., shortest path, long running time and low utilization ratio of cluster will
happen. We have started to investigate the solutions for folding iteration path, which in turn
can reduce the runtime and promote cluster’s usage.

When running these tests, we observed that some faster processors always needed to wait
for some slower processors (straggler). Through analysis, we found that there are two major
reasons responsible for this phenomenon. One is that the input workload is not balanced.
The other is that processors provide the imbalanced capabilities. In response to the former
reason, LSHGP will become our next research issue. We believe that the ideas and designs
in GMR could impact more on the design of big data platforms.
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