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Abstract This paper mainly proposes K-harmonic means (KHM) clustering algorithms
using feature weighting for color image segmentation. In view of the contribution of fea-
tures to clustering, feature weights which can be updated automatically during the clustering
procedure are introduced to calculate the distance between each pair of data points, hence
the improved versions of KHM and fuzzy KHM are proposed. Furthermore, the Lab color
space, local homogeneity and texture are utilized to establish the feature vector to be more
applicable for color image segmentation. The feature group weighting strategy is introduced
to identify the importance of different types of features. Experimental results demonstrate
the proposed feature group weighted KHM-type algorithms can achieve better segmenta-
tion performances, and they can effectively distinguish the importance of different features
to clustering.
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1 Introduction

Image segmentation is a process of dividing an image into several non-overlapping, con-
sistent regions which are homogeneous with respect to some characteristics. It plays an
important role in image processing and pattern recognition. Results of image segmentation
are very useful in applications such as object recognition, medical image processing, face
recognition, content based image retrieval as well as other computer vision applications.
In the past decades, many methods have been proposed for image segmentation which can
be categorized into four groups: threshold-based, clustering-based, edge-based and region-
based methods [18]. Among them, clustering is the method of creating groups of objects
based on the similarity of relevant features, which has been widely used for image segmen-
tation. Fuzzy C-means (FCM) algorithm has been a popular image segmentation method
due to its simplicity of implementation and clustering validity. In order to resolve the out-
lier or noise sensitivity problem, many improved methods of FCM were proposed in the
literature, the ones integrated with local spatial information were widely researched [1, 4,
9]. However, the FCM-type algorithms are usually sensitive to the selection of the initial
cluster centers. Hence some study has been carried out and the K-harmonic means (KHM)
[23] algorithms is a very effective method to cope with the problem mentioned above,
which is also researched for image segmentation [15]. Many improved algorithms based on
KHM have been proposed. The most popular methods are the combination of KHM with
other swam intelligence algorithms, which can take full advantage of global search ability
of heuristic optimization and local search ability of KHM. Such as combining KHM with
Particle Swarm Optimization (PSO) [21], Ant Colony Optimization (ACO) [13], Variable
neighborhood search (VNS) [2, 5], Candidate groups search (CGS) [10], firefly algorithm
(FA) [24], simple swarm optimization (SSO) [22]. However, these swarm intelligence based
clustering algorithms are usually time-consuming and the improvements of performance are
insignificant for many data sets.

For the above-mentioned KHM and its improved version, it is assumed that all fea-
tures make equal contributions during the cluster processing, which can be a limitation
in practical clustering situations. Because some features can have higher relevance in the
clustering information than others. Recently the feature weighting strategy has gained
much attention and been used to improve different kinds of clustering algorithms. The
W-K-means algorithm [11] utilizes the feature weight to measure the importance of
features and introduces the parameter β to further control its compact. But the appro-
priate value of β is hardly determined for different datasets due to the need of some
prior knowledge. Then the E-W-K-means [12] was proposed to overcome the draw-
back of W-K-means, it uses the between-cluster information as the denominator of the
dissimilarity measure. Xing [20] proposed an improved FCM method called IFWFCM,
which was based on feature weighted distance and the feature weights were adaptively
updated during the clustering process. But there is no relevant work with respect to KHM
algorithm.

In this paper, we propose novel KHM-type clustering algorithms using adaptive fea-
ture weighting to identify the importance of different features. Some elements including
Lab color space, local homogeneity and texture of the color image are extracted to
constitute a more comprehensive feature vector. Moreover, the feature group weight-
ing strategy is introduced to new clustering algorithm for color image segmentation.
Experiments on some benchmark datasets from the UCI Repository and Berkeley segmen-
tation datasets [3] demonstrate that the proposed feature weighting methods outperform
others.
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The rest of the paper is organized as follows: Section 2 will present KHM algorithm
and feature weighting method. Section 3 will describe the proposed methods. Section 4 will
analyze the experimental results on benchmark datasets and color images. Section 5 will
conclude the work in this paper.

2 Preliminaries

2.1 K-harmonic means clustering

The KHM algorithm, similar to K-means and FCM, is a center based partitional clustering
algorithm, but the most obvious difference is that the harmonic means (HM) of the distances
from each data point to the centers as components to its object function, allowing KHM to
be less sensitive to the initial centers and achieve better clustering performance. Assuming
that a data set X = (x1, x2, . . . , xn), xi = (xi1, . . . , xid ), which has n data points and
each contains d features, is partitioned into k clusters with the centers denoted as cj (j =
1, 2, . . . , k). The objective function of KHM is expressed as follows.

JKHM(X,C) =
n∑

i=1

k
∑k

j=1
1

d
p
ij

,∀i = 1,2, . . . , n. (1)

where dij is the Euclidian distance between data point xi and cluster center cj , p is an input
parameter and can affect the performance of clustering, typically set as p ≥ 2 [22].

During the clustering process, the objective function is minimized and keeps steady until
the end. Then xi is assigned to cluster j with the largest membership value. The new cluster
center can be calculated according to (2).

cnew
j =

∑n
i=1 mKHM(cj

/
xi ) × wKHM(xi ) × xi∑n

i=1 mKHM(cj

/
xi ) × wKHM(xi )

(2)

where mKHM(cj

/
xi ) is the membership function.

mKHM(cj

/
xi ) = d

−p−2
ij

∑k
j=1 d

−p−2
ij

(3)

wKHM(xi ) is the weighting function.

wKHM(xi ) =
∑k

j=1 d
−p−2
ij

(∑k
j=1 d

−p
ij

)2 (4)

In [16, 19], some study was carried out on the fuzzy version of KHM that was sim-
ilar to FCM, fuzzy K-harmonic means (FKHM), where the fuzzy membership uij (i =
1, 2, . . . , n, j = 1, 2, . . . , k) was added in the dissimilarity computation that can replace
mKHM(cj

/
xi ) to calculate the assignment of the dataset. The objective function of FKHM

is expressed as follows.

JFKHM(X,C) =
n∑

i=1

k
∑k

j=1
1

um
ij d

p
ij

,∀i = 1,2, . . . , n. (5)

where m is the fuzzy parameter that is set as 2 here.
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2.2 Feature weighting clustering algorithm

Certain features of datasets may exhibit higher relevance than others. Feature weighting
clustering methods have been proposed in recent years. To over come the problem that
the elements in a feature weight vector cannot be adaptively updated during the clustering
process. In [20], an improved FCM method called IFWFCM was proposed, the updated
equation can be derived from the revised object function based on the weighted distance.
The objective function of IFWFCM is shown as (6).

F(U ,V , w; D) =
K∑

j=1

n∑

i=1

um
ij

d∑

q=1

[wq(xiq − cjq)]2 (6)

where uij ∈ [0, 1],
k∑

j=1
uij = 1, wq ∈ [0, 1],

d∑
q=1

wq = 1, and m is the fuzzy parameter that

is usually set as 2.

3 The proposed algorithms

3.1 Feature weighted K-harmonic means

As described above, all features make equal contributions in the traditional KHM algorithm
that maybe a limitation to the clustering performance, the importance of certain features
to the dynamic cluster information cannot be appropriately manifested. But the updated
feature weights can more accurately reflect the relevance of each feature in the clustering
process. Hence, the feature weighting strategy like that of W-K-means and IFWFCM can be
introduced into KHM to alleviate this problem. An input parameter β of W-K-means should
be set in advance and the appropriate value β is hardly determined for different datasets. In
view of the parameter p that is included in KHM, the feature weighted Euclidian distance
d

(w)
ij with no parameter can be utilized to calculate the dissimilarity between each pair of
the data point and the center. Hence the feature weighted K-harmonic means (WKHM) is
proposed and thereby its objective function is defined as (7).

JWKHM(X,C) =
n∑

i=1

k
∑k

j=1
1[

d
(w)
ij

]p

,∀i = 1, 2, . . . , n. (7)

where d
(w)
ij = ∥∥diag(w)(xi − cj )

∥∥ =
√∑d

q=1 w2
q(xiq − cjq)2 with the feature weight

vector w = (w1, w2, . . . , wd)T and diag(w) =

⎡

⎢⎢⎣

w1 0 · · · 0
0 w2 · · · 0

· · ·
0 0 · · ·wd

⎤

⎥⎥⎦, wq ∈ [0, 1],
d∑

q=1
wq = 1.

The clustering procedure of WKHM is carried out by minimizing the objective function,
hence it can be regarded as an optimization problem. In terms of the constraint of fea-
ture weights, we can utilize the Lagrange multiplier technology to achieve an unconstraint
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optimization problem and formulate the function L expressed as (8), where λ is the
Lagrange multiplier.

L =
n∑

i=1

k
∑k

j=1
1[

d
(w)
ij

]p

− λ

⎛

⎝
d∑

q=1

wq − 1

⎞

⎠ (8)

For each iteration, the update equations of cluster centers cj (j = 1, 2, . . . , k) and
feature weights wq(q = 1, 2, . . . , d) can be obtained by taking the derivatives of the func-
tion L with respect to each of them. The detailed theoretical derivations are provided in
Appendix A and B.

The update equation of wq(q = 1, 2, . . . , d) is shown as (9). Appendix A provides the
detailed theoretical derivations of (9).

wnew
q =

(
d∑

l=1

∑n
i=1 Diq∑n
i=1 Dil

)−1

(9)

where Diq =
∑k

j=1

([
d

(w)
ij

]−p−2·(xiq−cjq )2
)

(∑k
j=1

[
d

(w)
ij

]−p
)2 .

The overall procedure of WKHM is summarized as Algorithm 1. It should be noted
that during the initialization step, the values of the elements in feature weight vector w are
initialized with the same value.

Algorithm 1 WKHM

Input: The dataset X (x1, x2, . . . , xn);
Output: The cluster labels.
Step1 Initialize the parameters of the algorithm: feature weight vector , number of clusters
k, number of iterations, randomly choose the initial cluster centers.
Step2 Compute the objective function according to (7).
Step3 Compute the new cluster centers according to (2) by replacing the di j with d( )

i j in
the membership function mKH M (c j xi ) and weight function KH M (xi ).
Step4 Update the feature weights according to (9).
Step5 Go to Step6 if the predefined number of iterations is reached or the value of the
objective function does not change obviously, otherwise go back to Step2.
Step6 Assign the data point x i to cluster j by the maximum of membership function.

3.2 Feature weighted fuzzy K-harmonic means

In this section, d
(w)
ij is also introduced into FKHM to form the feature weighted fuzzy K-

harmonic means (WFKHM) algorithm, whose objective function is defined as (10).

JWFKHM(X,C) =
n∑

i=1

k
∑k

j=1
1

um
ij

[
d

(w)
ij

]p

,∀i = 1, 2, . . . , n. (10)
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where fuzzy membership uij ∈ [0, 1],
k∑

j=1
uij = 1 and feature weight wq ∈

[0, 1],
d∑

q=1
wq = 1, m is the fuzzy parameter that is set as 2 here.

Similar to WKHM, the update formulas of fuzzy membership, cluster center and feature
weight are respectively expressed as (11)–(13) by utilizing the Lagrange multiplier. In view
of the same principle to derive these variables of WFKHM with respect to WKHM, we do
not provide the detailed analysis here.

uij =

⎡

⎢⎢⎣
k∑

s=1

⎛

⎜⎝

[
d

(w)
ij

]p

[
d

(w)
is

]p

⎞

⎟⎠

1
m+1

⎤

⎥⎥⎦

−1

(11)

cnew
j =

∑n
i=1

uij
−m

[
d

(w)
ij

]−p−2

(∑k
j=1

(
uij

−m
[
d

(w)
ij

]−p
))2 xi

∑n
i=1

uij
−m

[
d

(w)
ij

]−p−2

(∑k
j=1

(
uij

−m
[
d

(w)
ij

]−p
))2

(12)

wnew
q =

(
d∑

l=1

∑n
i=1 Diq∑n
i=1 Dil

)−1

(13)

where Diq =
∑k

j=1

(
uij

−m
[
d

(w)
ij

]−p−2·(xiq−cjq )2
)

(∑k
j=1

(
uij

−m
[
d

(w)
ij

]−p
))2 .

The overall procedure of WFKHM is similar to that of WKHM, which is shown as
Algorithm 2.

Algorithm 2 WFKHM

Input: The dataset X = (x1, x2, . . . , xn );
Output: The cluster labels.
Step1 Initialize the parameters of the algorithm: feature weight vector , number of clusters
k, number of iterations, fuzzy membership u, randomly choose the initial cluster centers.
Step2 Compute the objective function according to (10).
Step3 Calculate the new fuzzy memberships according to the (11).
Step4 Calculate the new cluster centers according to the (12)
Step5Update the feature weights according to (13).
Step6 Go to Step7 if the predefined number of iterations is met or the value of the objective
function does not change obviously, else go back to Step2.
Step7 Assign the data point x i to cluster j by the maximum of ui j .

3.3 Feature extraction of color image

To deal with color image segmentation, the IFWFCM algorithm [20] has confirmed the
effectiveness of adaptive feature weighting strategy. However, the overall segmentation per-
formance of IFWFCM on color images is not superior to that of FCM according to the
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experimental results, and even become worse in some cases. Moreover, IFWFCM only
chose Lab color space, so the feature weighting strategy cannot be fully taken advantage
of. In this study, the feature vector comprised of color space, local homogeneity and tex-
ture is used, where eight elements are included. Generally, there are different types of color
spaces in the literature such as RGB, Lab, HSV color spaces, and the second one is cho-
sen to describe the pixels in our method due to its popularity and effectiveness. The local
homogeneity that quantifies the uniformity of a region in the image is calculated in the HSV
color space [7, 14, 17]. Two efficient methods: Singular Value Decomposition (SVD) and
QR factorization in the RGB color space are utilized to calculate the texture components
of the image, where the the spacing parameter is Ns = 8, the size of the window is 32,
and the theta angles to rotate the window are θ = [0, 22.5, 45, 67.5]. Then, the homogene-
ity feature (HF) with 3 elements, 3 feature components in Lab color space and the texture
feature (TF) with 2 elements are integrated to construct the 8 dimensional feature vector
{HFhue, HFsat , HFval, L, a, b, T FSV D, T FQR}, hence the segmentation process can
be carried out.

Here we mainly introduce the local homogeneity, it substantially makes use of the local
information from images. Homogeneity is defined as a composition of standard deviation
and discontinuity. For an image with the size M × N , Pij denotes the pixel at the location
(i, j), hence its normalized standard deviation is calculated as follows.

Vij = vij

vmax
and vij =

√√√√√ 1

d2

i+((d−1)/2 )∑

p=i−((d−1)/2 )

j+((d−1)/2 )∑

q=j−((d−1)/2 )

(Ipq − μij )
2 (14)

where vmax = max{vij }, 0 ≤ i, p ≤ M − 1, 0 ≤ j, q ≤ N − 1. Ipq is the color component
of a pixel at the location (p, q).

wij is a size d × d (for example 5 × 5) window centered at (i, j) for the computation
of deviation. μij is the mean color component of a pixel Pij within the window wij , whose
equation is shown as follows.

μij = 1

d2

i+((d−1)/2 )∑

p=i−((d−1)/2 )

j+((d−1)/2 )∑

q=j−((d−1)/2 )

Ipq (15)

The discontinuity of color component at each position (i, j) can be calculated by its
magnitude eij of the gradient that is obtained by Sobel operator within a t × t (for example
3 × 3) window, hence the normalized magnitude of the gradient is calculated as follows.

Eij = eij

emax
and eij =

√
G2

x + G2
y (16)

where emax = max{eij }, Gx and Gy are the gradient of color component in the x and y

directions respectively.
Therefore, the local homogeneity of a pixel Pij in an image is calculated as (17).

Hij = 1 − Eij × Vij (17)

The value of local homogeneity at each location is in the interval [0,1]. The more uniform
the local region around a pixel is, the larger the homogeneity value of the pixel.
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3.4 Feature group weighting based clustering approaches

During the process of color image segmentation, in order to distinguish different types of
features more effectively, the feature group weighting strategy is introduced into WKHM
and WFKHM, the feature group weighted K-harmonic means (GWKHM) and the feature
group weighted fuzzy K-harmonic means (GWFKHM) are further proposed. Note that, in
[6, 8] the feature groups are assigned the weights in each cluster that may not be applicable
for our study, hence we adopt the global feature group weighting approach here. The fea-
tures of local homogeneity, Lab color space and texture are respectively represented as three
groups: G(1) = {HF }, G(2) = {FLab}, G(3) = {T F }, a weight value vt (t = 1, 2, 3) is
assigned to the corresponding feature group. The feature group weighted Euclidian distance
d

(gw)
ij is calculated as (18).

d
(gw)
ij =

√
v1

∑
q∈HF

w2
q(xiq − cjq)2 + v2

∑
q∈FLab

w2
q(xiq − cjq)2 + v3

∑
q∈T F

w2
q(xiq − cjq)2

=
√

T∑
t=1

vt

∑
q∈G(t)

w2
q(xiq − cjq)2

(18)

where
T∑

t=1
vt = 1, T = 3 and

∑
q∈G(t)

wq = 1, wq ∈ [0, 1], 1 ≤ t ≤ T .

For the algorithm GWKHM, the Lagrange function L2 formulated as (19) is similar to
that of WKHM, where λt (t = 1, 2, 3) is the Lagrange multiplier.

L2 =
n∑

i=1

k
∑k

j=1
1[

d
(gw)
ij

]p

−
T∑

t=1

λt

⎛

⎝
∑

q∈G(t)

wq − 1

⎞

⎠ (19)

The update equation of feature weights of G(1) is expressed as (20). The detailed
theoretical derivations of (20) are shown in Appendix B.

wnew
q =

⎛

⎝
∑

l∈G(1)

∑n
i=1 Diq∑n
i=1 Dil

⎞

⎠
−1

(20)

where Diq =
∑k

j=1

([
d

(gw)
ij

]−p−2·(xiq−cjq )2
)

(∑k
j=1

[
d

(gw)
ij

]−p
)2

Similar to the case of q ∈ G(1), the update formulas of feature weights in the case

of q ∈ G(2) and q ∈ G(3) are respectively wnew
q =

(
∑

l∈G(2)

∑n
i=1 Diq∑n
i=1 Dil

)−1

and wnew
q =

(
∑

l∈G(3)

∑n
i=1 Diq∑n
i=1 Dil

)−1

, where Diq is the same as that in (20).

For the algorithm GWFKHM, we can derive the update equations with the same principle
described above, hence the computations of fuzzy membership and cluster center are the
same forms as (11) and (12), but it needs to be noted that d(w)

ij should be replaced by d
(gw)
ij .
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Table 1 The characters of
experimental datasets Dataset K d n

Iris 3 4 150

Wine 3 13 178

Sonar 2 60 208

Ionosphere 2 33 351

WDBC 2 30 569

Australian 2 14 690

Vehicle 4 18 846

Satellite 6 33 635

The update equation of feature weight is shown as (21) in the cases of q ∈ G(1), q ∈ G(2)
and q ∈ G(3).

wnew
q =

⎛

⎝
∑

l∈G(t)

∑n
i=1 Diq∑n
i=1 Dil

⎞

⎠
−1

, 1 ≤ t ≤ T (21)

where Diq =
∑k

j=1

(
uij

−m
[
d

(w)
ij

]−p−2·(xiq−cjq )2
)

(∑k
j=1

(
uij

−m
[
d

(w)
ij

]−p
))2

The overall procedures of GWKHM and GWFKHM are respectively identical to those
of WKHM and WFKHM, where the major difference lies in the update equations of feature
weights in different groups. That means in the Step4 of Algorithm 1, the (9) is replaced by
(20) with q ∈ G(1), q ∈ G(2), q ∈ G(3), while in the Step5 of Algorithm 2, the (13) is
replaced by (21).

Moreover, the update equation of feature weight of IFWFCM is formulated as (22) if the
d

(gw)
ij is utilized, and the new method is named as GIFWFCM.

wnew
q =

⎛

⎝
∑

l∈G(t)

∑n
i=1

∑k
j=1 um

ij (xiq − vjq)2

∑n
i=1

∑k
j=1 um

ij (xil − vjl)
2

⎞

⎠
−1

, 1 ≤ t ≤ T (22)

3.5 Computational complexity

The time complexity of WKHM and WFKHM are both O(2T nKD1), where T is the num-
ber of iterations, n is the number of data points, K is the number of clusters, and D1 = 3 is
the number of features in the Lab color space. Meanwhile, the time complexity of GWKHM
and GWFKHM are both O(2T nKD2), where D2 = 8 is the number of extracted features.
However, it should be noted that during the preprocessing phase, the time complexity of cal-
culating the local homogeneity is O(2MND3), where M × N is the size of the image, and
D3 = 3 is the number of features in local homogeneity; and the time complexity of calcu-
lating the texture elements is O(4(M/Ns)(N/Ns)), where Ns = 8 that has been described
in the Section 3.3.
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Table 2 The results of Acc and RI of the five algorithms on eight datasets (Mean ± Standard deviation)

Datasets Algorithms Acc RI Running time/s

Iris

K-means 0.856 ± 0.112 0.862 ± 0.049 0.0095

KHM 0.893 ± 0.000 0.880 ± 0.000 0.0081

WKHM 0.953 ± 0.000 0.942 ± 0.000 0.0118

FKHM 0.893 ± 0.000 0.880 ± 0.000 0.0474

WFKHM 0.907 ± 0.000 0.892 ± 0.000 0.0548

Wine

K-means 0.584 ± 0.047 0.615 ± 0.010 0.0195

KHM 0.556 ± 0.000 0.683 ± 0.000 0.0171

WKHM 0.534 ± 0.000 0.593 ± 0.000 0.0174

FKHM 0.697 ± 0.000 0.705 ± 0.000 0.0590

WFKHM 0.534 ± 0.000 0.589 ± 0.000 0.0647

Sonar

K-means 0.543 ± 0.006 0.502 ± 0.001 0.0136

KHM 0.553 ± 0.000 0.503 ± 0.000 0.0185

WKHM 0.530 ± 0.002 0.499 ± 0.001 0.0585

FKHM 0.558 ± 0.000 0.504 ± 0.000 0.0868

WFKHM 0.606 0.000 0.520 ± 0.000 0.0666

Sphere

K-means 0.701 ± 0.021 0.582 ± 0.015 0.0098

KHM 0.687 ± 0.000 0.568 ± 0.000 0.0066

WKHM 0.687 ± 0.000 0.568 ± 0.000 0.0275

FKHM 0.709 ± 0.000 0.587 ± 0.000 0.0787

WFKHM 0.695 ± 0.000 0.575 ± 0.000 0.1031

WDBC

K-means 0.854 ± 0.000 0.750 ± 0.000 0.0163

KHM 0.803 ± 0.000 0.683 ± 0.000 0.0239

WKHM 0.852 ± 0.000 0.748 ± 0.000 0.0436

FKHM 0.837 ± 0.000 0.726 ± 0.000 0.1152

WFKHM 0.856 ± 0.000 0.753 ± 0.000 0.1301

Australian

K-means 0.562 ± 0.000 0.507 ± 0.000 0.0158

KHM 0.559 ± 0.000 0.506 ± 0.000 0.0516

WKHM 0.733 ± 0.000 0.608 ± 0.000 0.0718

FKHM 0.559 ± 0.000 0.506 ± 0.000 0.0871

WFKHM 0.793 ± 0.000 0.671 ± 0.000 0.0896

Vehicle

K-means 0.437 ± 0.015 0.623 ± 0.025 0.1074

KHM 0.396 ± 0.000 0.615 ± 0.000 0.0519

WKHM 0.439 ± 0.029 0.646 ± 0.014 0.0605

FKHM 0.448 ± 0.005 0.630 ± 0.002 0.1519

WFKHM 0.449 ± 0.004 0.648 ± 0.009 0.2432

Satellite

K-means 0.658 ± 0.039 0.842 ± 0.026 1.3746

KHM 0.673 ± 0.007 0.856 ± 0.001 0.0504

WKHM 0.726 ± 0.000 0.858 ± 0.000 2.1792

FKHM 0.634 ± 0.001 0.830 ± 0.001 1.2959

WFKHM 0.705 ± 0.001 0.851 ± 0.001 2.4567
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Table 3 Error rates of different algorithms for color images with the Lab features

Image FCM KHM FKHM IFWFCM WKHM WFKHM

3096 1.7021% 1.7409% 1.5460% 1.9365% 1.9365% 1.9365%

135069 0.7902% 0.7804% 0.7811% 0.6179% 0.6043% 1.1755%

238011 18.3561% 12.0991% 37.4136% 11.2493% 11.0861% 31.4195%

299091 47.4498% 48.1512% 45.2115% 28.3793% 28.3793% 28.2459%

113016 24.7583% 24.5659% 25.4176% 40.2167% 15.3186% 40.6843%

163062 42.2743% 38.0153% 46.6687% 44.3469% 41.3760% 52.1847%

124084 28.4441% 26.9862% 25.3697% 42.5451% 36.6047% 48.0275%

80099 46.0891% 3.7372% 4.3290% 0.3459% 0.3407% 0.3491%

113044 24.5160% 40.5580% 25.1514% 14.8386% 17.1294% 16.8632%

24063 23.4441% 24.9694% 28.8482% 24.4830% 18.4902% 24.6688%

108073 54.4883% 57.2593% 58.5339% 55.8021% 53.0800% 57.0217%

134052 51.5178% 50.3883% 48.9751% 47.8514% 45.2257% 48.1286%

4 Experiment and analysis

4.1 The experiment on benchmark datasets

In this section, the performances of the two proposed methods WKHM and WFKHM
are evaluated by conducting some experiments on several benchmark datasets, which are
also compared with K-means, KHM and FKHM. The five algorithms are applied to eight
common real-life datasets from the UCI Machine Learning Repository, namely Iris, Wine,
Sonar, Ionosphere, WDBC, Australian, Vehicle and Satellite. The characteristics of all
datasets are shown in Table 1, where K is the number of cluster, d is the number of
dimensions and n is the number of data points.

Fig. 1 The segmentation results according to different algorithms on image 299091
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Fig. 2 The segmentation results according to different algorithms on image 163062

The experiments are conducted on a computer with Intel i7-4770, CPU 3.40GHz and
16GB RAM by using MATLAB2014a. To evaluate the performance of all algorithms, two
well-known external cluster validity indexes (CVIs): accuracy (Acc) and rand index (RI) are
adopted here, their values are in the interval [0,1], the larger they are, the better clustering
result. The parameters of the above five algorithms are set as: the total iteration number is
Maxiter = 100, the fuzzy membership index in FKHM and WFKHM is m = 2. Note that,
if the value of the objective function does not change obviously, the algorithm will stop in
advance with the iteration number smaller than Maxiter . The parameter p is set as 3. All
algorithms are repeatedly conducted 20 times independently, then their performances are
compared in terms of the means and the standard deviations ofAcc andRI shown in Table 2.
For each dataset, the best value of each evaluation metric is highlighted in bold type.

Fig. 3 The segmentation results according to different algorithms on image 124084
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Table 4 Error rates of different algorithms for color images with the extracted features

Image FCM KHM FKHM GIFWFCM GWKHM GWFKHM

3096 1.1062% 1.1114% 1.1807% 20.5063% 0.7532% 0.6664%

135069 0.4462% 0.4611% 0.4566% 0.4333% 0.4275% 0.4152%

238011 15.7635% 14.2382% 16.8865% 11.5731% 11.1580% 14.5167%

299091 30.3651% 36.6209% 11.8911% 28.3793% 25.3703% 6.3154%

113016 6.4870% 7.1075% 6.8724% 13.6204% 3.1807% 3.2267%

163062 24.3988% 26.6663% 44.9570% 25.6048% 26.0419% 32.5762%

124084 34.1610% 4.7791% 34.8294% 24.0536% 3.5699% 4.4838%

80099 0.4430% 0.4404% 0.4495% 0.6496% 0.3258% 0.4035%

113044 8.4559% 9.4216% 8.7266% 8.1683% 4.2079% 4.1062%

24063 22.8224% 24.0199% 24.8125% 24.3843% 13.6612% 18.0925%

108073 37.3178% 36.1623% 47.7374% 37.9324% 34.2122% 39.5224%

134052 34.0587% 35.1714% 34.1643% 34.6623% 33.3509% 31.6177%

It can be seen from Table 2 that the performances of two feature weighting approaches
have shown obvious superiority over the K-means, standard KHM and FKHM for most
datasets, which verifies the effectiveness of adaptive feature weighting strategy. Except for
datasets Wine and Sphere, the improvement of Acc on the datasets Iris, Sonar, WDBC,
Australian, Vehicle and Satellite are respectively 6.72%, 7.92%, 22.70%, 41.86%, 0.22%
and 7.88%. For the proposed algorithms, the variances of Acc and RI are 0 in most cases,
which has demonstrated the insensitiveness of the algorithms, it can solve the initialization
problem of K-means.

4.2 The experiment on color images

To verify the performance of proposed methods with feature weight for color image segmen-
tation, we carried out our experiments on the well-known Berkeley Segmentation Dataset.

Fig. 4 The segmentation results according to different algorithms on image 3096
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Fig. 5 The segmentation results according to different algorithms on image 135069

The human segmentation results are provided for the sake of evaluating the segmentation
performance, but it should be noted that they are merely provided for rough analysis because
the completely true segmentation results are not achieved. As the quantitative measure-
ment for segmentation results, the ratio of misclassification Error is adopted here, whose
equation is shown as (23).

Error =
∑K

i=1 ei

M × N
× 100% (23)

where, K is the number of color regions, and ei is the color error of the ith region.

Fig. 6 The segmentation results according to different algorithms on image 238011
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Fig. 7 The segmentation results according to different algorithms on image 299091

4.2.1 Experiments in the Lab color space

In this section, the segmentation performances of FCM, KHM, FKHM, IFWFCM [20],
WKHM andWFKHM in the Lab color space are presented. The parameters of the clustering
algorithms are the same as those in Section 4.1. Table 3 shows the Error results of different
methods on the color images. For the purpose of comparing the performance of algorithms
visually, only a portion of experiments are shown from Figs. 1, 2 and 3.

As we can see from Table 3 the feature weighting clustering algorithms can always
achieve smaller Error values than other methods. It should be noted that the proposed
methods are not sensitive to the initialization, leading to more stable results com-
pared with IFWFCM. For example, WKHM outperforms the other methods for images
135069, 238011, 113016, 80099, 24063, 108073 and 134052. However, the segmentation

Fig. 8 The segmentation results according to different algorithms on image 113016
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Fig. 9 The segmentation results according to different algorithms on image 163062

performances of images 299091, 163062 and 124084 are not desirable as observed from
Figs. 1–3. This may be because the Lab color space is not very sufficient to describe
these images, so the feature group weighting approaches with more types of features (i.e.
Lab color space, local homogeneity, texture of the image) can be more effective and their
segmentation performances are evaluated in the next subsection.

4.2.2 Experiments for feature group weighting based algorithms with the extracted
features

In this section, the segmentation results of FCM, KHM, FKHM, GIFWFCM, GWKHM
and GWFKHM with the distance d

(gw)
ij described in the Section 3.4 are presented and the

Fig. 10 The segmentation results according to different algorithms on image 124084
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Fig. 11 The segmentation results according to different algorithms on image 113044

performances are also evaluated in terms of the ratio of misclassificationError . The param-
eters of the clustering algorithms are also the same as those in Section 4.1. We use traversal
search to find the optimal feature group weights, for each feature group weight, the value
ranges from 0.1 to 0.8, and the step size is set as 0.1. The experimental results demonstrate
the weight of the Lab feature group is larger than that of the other two features for most
images.

The Error results of different methods with 8 features are shown as Table 4. Only a por-
tion of experiments are shown on Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12. For the images 3096,
135069, 238011, 299091, 113016, 124084, 80099, 113044, 24063, 108073 and 134052,
the proposed algorithm GWKHM or GWFKHM outperforms the others, obtaining the best
Error value respectively as 0.6664%, 0.4152%, 11.1580%, 6.3154%, 3.1807%, 3.5699%,

Fig. 12 The segmentation results according to different algorithms on image 24063
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0.3258%, 4.1062%, 13.6612%, 34.2122%, 31.6177%. The three feature group weighting
based methods can achieve smaller Error values than the standard ones in most cases. Note
that, the Error values of the standard clustering algorithms are smaller than the proposed
feature group weighting based methods for images 163062. Their segmentation results
shown in Fig. 9c, d, e are closer to the human segmentation results . But we can observe
from Fig. 9f, g, h that the segmentation results of the algorithms using feature group weight-
ing can represent the detailed information better. To make a comparison between Tables 3
and 4, the results of the later are better than those of the former in most cases, hence we can
conclude that the extracted feature vector with 8 dimensional components is superior to that
merely in the Lab color space.

5 Conclusions

In this paper, we proposed novel KHM-type clustering algorithms with feature weighting
for color image segmentation. To effectively compute the dissimilarity between differ-
ent pixels and cluster centers, the Lab color space, local homogeneity and texture of
the image are extracted to construct the feature vector. These features are divided into
three groups during the segmentation process and a weight value is assigned to each
group to measure its importance for clustering. Experimental results of both bench-
mark datasets and color images have shown the superiority of proposed methods, and
the feature group weighting based clustering algorithms can achieve better performance
for image segmentation than other related works. Adding more complicated features
for more accurate image segmentation results in the proposed model will be further
researched.
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Appendix A

In this Appendix, the detailed derivations for obtaining the update equation of cj and wq

are provided. At first, the partial derivation by cj of L is calculated as follows.

∂L

∂cj

= −kp

n∑

i=1

[
d

(w)
ij

]−p−2
diag(w2)(xi − cj )

(∑k
j=1

[
d

(w)
ij

]−p
)2

(A.1)

As we can see from the above equation, diag(w2) is not related to variable i and
[
d

(w)
ij

]−p−2

(∑K
j=1

[
d

(w)
ij

]−p
)2 = mWKHM(cj

/
xi ) · wWKHM(xi ), thus the equation of cj is obtained as
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(2) by letting (A.1) be equal to 0. But it should be noted that the Euclidian distance dij is

replaced by d
(w)
ij in mWKHM(cj /xi ) and wWKHM(xi ).

mWKHM(cj

/
xi ) =

[
d

(w)
ij

]−p−2

∑k
j=1

[
d

(w)
ij

]−p−2
(A.2)

wWKHM(xi ) =
∑k

j=1

[
d

(w)
ij

]−p−2

(∑k
j=1

[
d

(w)
ij

]−p
)2

(A.3)

Then, letting the partial deviation by wq of L, which is denoted as (A.4), to be equal to
0, hence the update equation of wq is obtained as (A.5), where the Lagrange multiplier λ

should be eliminated.

∂L

∂wq

= kpwq

n∑

i=1

∑k
j=1

([
d

(w)
ij

]−p−2 · (xiq − cjq)2
)

(∑k
j=1

[
d

(w)
ij

]−p
)2

− λ (A.4)

wq = λ

kp
n∑

i=1

∑k
j=1

([
d

(w)
ij

]−p−2·(xiq−cjq )2
)

(∑k
j=1

[
d

(w)
ij

]−p
)2

(A.5)

In terms of the constraint of feature weights wq ∈ [0, 1],
d∑

q=1
wq = 1, in which the (A.5)

is substituted and the calculation of λ is obtained as follows.

λ =
d∑

l=1

kp

n∑

i=1

∑k
j=1

([
d

(w)
ij

]−p−2 · (xiq − cjq)2
)

(∑k
j=1

[
d

(w)
ij

]−p
)2

(A.6)

Therefore, the (A.6) is substituted in (A.5) to obtain the update equation of wq(q =
1, 2, . . . , d) shown as (9).

Appendix B

In this Appendix, the detailed derivation for obtaining the update equation (20) is provided.
First, the partial derivation by cj (j = 1, 2, . . . , K) of L2 is calculated and the result is set
to be 0, then the update equation of cluster centers can also be obtained with the same form
as (2), where d

(gw)
ij is utilized in mWKHM(cj /xi ) and wWKHM(xi ). For the computation

of feature weights, we firstly analyze the case of q ∈ G(1), the partial deviation by wq of
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L2 is calculated as follows.

∂L2

∂wq

= kpwq

n∑

i=1

v1
∑k

j=1

([
d

(gw)
ij

]−p−2 · (xiq − cjq)2
)

(∑k
j=1

[
d

(gw)
ij

]−p
)2

− λ1 (B.1)

Then, letting the value of (B.1) to be 0 and the equation of wq is obtained as (B.2), which
is substituted in

∑
q∈G(1)

wq = 1, the constraint of feature group G(1), then the calculation

of λ1 is obtained and substituted in (B.2) again, therefore the update equation of feature
weights of G(1) is shown as (20).

wq = λ1

kpv1
n∑

i=1

∑k
j=1

([
d

(gw)
ij

]−p−2·(xiq−cjq )2
)

(∑k
j=1

[
d

(gw)
ij

]−p
)2

(B.2)
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