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Abstract Copy-move forgery is a common way of image tampering. Matching algorithm
is the key step in copy-move forgery detection. Usually, the classical block-based matching
algorithm (CBMA) can’t find all matched sub-blocks. In this paper, we propose an improved
block-based matching algorithm (IBMA) to solve the problem. Firstly, we put the sum of
feature vectors in the first column to get a new matrix. Secondly, the matrix is sorted by
first column. Finally, every row of the matrix will search the following rows until the differ-
ence in the first column is larger than the threshold value. Experiment results show that the
improved block-based matching algorithm is better than the classical block-based match-
ing algorithm when an image was distorted by Gaussian noise, salt-pepper noise, or JPEG
compression. The reason is that improved block-based matching algorithm can look for all
matched sub-blocks, which makes copy-move forgery detection methods more robust.

Keywords Digital image forensics · Copy-move forgery · Region duplication detection

1 Introduction

Today, owing to powerful computers, advanced photo-editing software packages and high
resolution capturing devices, digital images can be easily manipulated and edited [1, 15].

The original version of this article was revised: Reference citations in Fig. 4 were incorrectly written
as [5], [6], [7], [10] and [11]. It should be written as [14], [9], [11], [7] and [6].
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(a) original image (b) forgery image

Fig. 1 An example of copy-move forgery from CASIA database

An image maybe changed inadvertently or intentionally when it spread through the Internet.
Digital image forensics aims to verify their authenticity. Image authentication solution is
classified into two types: active methods and passive methods [1]. In contrast with the active
methods, the passive methods needn’t additional information and used more widely.

There are many ways to falsify an image. Copy-move forgery is a common and no per-
ceptible method of image tampering. As shown in Fig. 1, it means that parts of an image
are copied and pasted another part of the same image [5]. As a result, some information of
the image will be appended or hidden. Copy-move forgery detection is one of the passive
methods.

Various methods have been proposed to detect copy-move forgery. Most of them fol-
low a common pipeline [4], as shown in Fig. 2. Copy-move forgery detection methods are
categorized either keypoint-based methods or block-based methods [4], which have their
respective pros and cons. For feature extraction, block-based methods used different fea-
ture vectors to represent the sub-blocks, like images’ brightness [14], Polar Sine Transform
(PST) [9], Zernike moments [11], Discrete Cosine Transform (DCT) [2] and so on. How-
ever, for matching, the block-based matching algorithm often fixed (e.g., [2, 9–11, 14]). The
step of algorithm as follows:

Step1. Lexicographically sort the matrix that is formed by feature vectors.
Step2. Calculate the Euclidean distance between adjacent feature vectors in the matrix.

If the results are less than a preset threshold value Veur , two sub-blocks represented by the
adjacent feature vectors will classify the matching sub-blocks.

Fig. 2 General pipeline of copy-move detection methods [4]
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Fig. 3 An example of classical block-based matching algorithm

We call above-mentioned algorithm the classical block-based matching algorithm
(CBMA). Figure 3 is an example of CBMA. S is the matrix that is formed by feature vec-
tors. After lexicographically sorting matrix S, we can get S′. For S1 (the first row of matrix
S), we respectively compute the Euclidean distance between S1 and S2, S1 and S3, S1 and
S4. The Euclidean distance between S1 and S2 is the smallest. But S1 and S2 isn’t adjoining
in the matrix S ′. As a result, CBMA will most probably miss many matching sub-blocks.

In order to solve this problem, we devise an improved block-based matching algorithm
(IBMA). IBMA can pick out all matched sub-blocks. Either CBMA or IBMA is one step
of copy-move forgery detection methods. Compared with CBMA, IBMA is able to detect
more matched sub-blocks. Hence, IBMA let copy-move forgery detection methods more
robust. Besides, the threshold Veur is very important, because it determines whether two
sub-blocks are matched. We put forward a scheme to get the threshold Veur .

2 Methods

Flow diagrams of the proposed algorithm can be seen from Fig. 4. First, if the tested image is
a RGB color image, we can turn it to grayscale. Second, the input image is divided into sub-
blocks. Third, each sub-block will become a feature vector. The means of feature extraction
are brightness [14], PST [9], Zernike moments [11], DCT [7] and Hu moments [6]. Fourth,
we respectively apply CBMA and IBMA to matching. Finally, the filtering method proposed
by [8] is used to remove wrong matched sub-blocks. The whole algorithm aims to compare
the different results between CBMA and IBMA.

Zernike 

moments [11]

PST [9]

DCT [7]

brightness [14]

Hu 

moments [6]

Fig. 4 The algorithm framework of our method
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2.1 Feature extraction

If the input image is a RGB color image, we can turn it to grayscale by (1).

I = 0.228R + 0.587G + 0.114B (1)

We assume the size of tested image is M × N pixels. Then we divide it into overlapped
sub-blocks of b × b pixels. The number of sub-blocks is Nall .

Nall = (M − b + 1) × (N − b + 1) (2)

To better compare CBMA and IBMA, we take five feature vectors: brightness [14], PST
[9], Zernike moments [11], DCT [7] and Hu moments [6]. We extract each feature separately
rather than concatenate five different existing features. For every feature, we use CBMA
and IBMA to make experiments. It must be added that the quantization table of [7] become
improper because the size of sub-blocks is changed. We use the quantization table of [5],
and the quantization factor is 80.

2.2 Matching

2.2.1 Classical block-based matching algorithm

The purpose of matching algorithm is to select matched sub-blocks. If a pair of sub-blocks is
matching, perhaps they are the blocks in either copy region or move region. After extracting
feature vectors of dimension n, we can obtain the matrix M of Nall × (n + 2). For the
matrix M , the n-dimensional column vector at the head is the feature vectors and the 2-
dimensional column vector at the end is the sub-blocks’ coordinate of top left corner. In
the chapter Sections 2.2.1 and 2.2.2 of this article, we define the top right corner of matrix
notation represents the column of the matrix and the lower right corner represents the row
of the matrix. For example, M2

1 means the first row and the second column of matrix M .
The steps of CBMA are shown as follows. First, lexicographically sort the matrix M that

is formed by feature vectors and position coordinates of sub-blocks. Then we can obtain the
matrix Q. By this way, similar feature vectors will be adjacent as far as possible. Second,
we calculate the Euclidean distance between adjoining two feature vectors in the matrix
Q like (3). If the results are less than the threshold Veur , we calculate the distance of the
corresponding sub-blocks’ position coordinates like (4). If the results are more than the
threshold Vdis , the position coordinates of sub-blocks will be persisted to matrix T . The
threshold Veur ensures that the two sub-blocks are resembled. On account of the copy region
and move region have a certain distance, we set the threshold Vdis .

We assume Q1 = [
I 1, I 2, . . . , I n

]
and Q2 = [

L1, L2, . . . , Ln
]
. The Euclidean distance

between Q1 and Q2 can be calculated as (3).

SIM(Q1, Q2) =
√√
√√

n∑

r=1

(I r − Lr)2 (3)

We assume Q3 = [x, y] and Q4 = [
x′, y′]. The distance between Q3 and Q4 can be

calculated as (4).

DIS(Q3, Q4) =
√

(x − x′)2 + (y − y′)2 (4)
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2.2.2 Improved block-based matching algorithm

The signs of many feature vectors (e.g., DCT [7] and Hu moments [6]) are positive and
negative. We deem that only the signs of the feature vectors are the same can the sub-blocks
probably become matched sub-blocks. In other words, if not all values of the feature vectors
is either more than zero or less than zero, we firstly classify the matrix M based on the signs
of the feature vectors. Then we continue the follow steps of IBMA. Furthermore, for each
sub-block, if the number of matching is more than Max , we abandon them. We set Max to
10. Namely, if a sub-block matches lots of other sub-blocks, the sub-block is unqualified.

Now we provide the approach of IBMA. Firstly, we can count the sum of the feature
vectors in the matrix M and put them in the column vector D. Then we can have a new
matrix P by combining M with D. Secondly, we gain Q after sorting the matrix P based on
the first column. Thirdly, every row of the matrix Q will search the following rows until the
difference in the first column is larger than a threshold value

√
n × Veur . If the Euclidean

distance (calculate by (3)) of the two rows is less than Veur and the distance (calculate by
(4)) is more than Vdis , the position coordinates of sub-blocks will keep in matrix T .

The key of IBMA is the stopping condition of searching. Without the stopping condition,
every row of the matrix Q will search the following rows until the end. Moreover, the
threshold

√
n × Veur is based on the threshold Veur .

We suppose Q1 = [
I 1, I 2, . . . , I n

]
and Q2 = [

L1, L2, . . . , Ln
]
. The threshold Veur is

a constant and more than zero.
Condition A : ∣∣(I 1 + I 2 + . . . + In

) − (
L1 + L2 + . . . + Ln

)∣∣ >
√

n × Veur .
Condition B : SIM (Q1,Q2) > Veur .
We have proved that condition A can deduce condition B. The details of proof procedure

are in Appendix. The proof mainly used average inequality. For two feature vectors, Q1
and Q2, if the difference value between the sum of Q1 and the sum of Q2 is more than√

n × Veur , we can deduce that the Euclidean distance between Q1 and Q2 is more than
Veur . So the condition A can turn into stopping condition of searching.
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2.2.3 The calculation method of the threshold Veur

The threshold Veur is important because it determines whether two sub-blocks are matched
or not. The value of the threshold Veur must be suitable. Most of copy-move forgery detec-
tion methods of block-based obtain the threshold Veur through experience. In view of this
problem, we put forward a scheme to compute the threshold Veur . After a tampering image
was distorted by Gaussian noise, salt-pepper noise, or JPEG compression, the correspond-
ing sub-blocks in copy region and move region may be changed. Our method gains the
threshold Veur by calculating the change.

If we should detect an image database, the details of our scheme are as follows. First, 10
images are randomly picked out from the database. For each image, we copy a region (size
is 70 × 70) of the image and paste the region to another part of the same image. At the same
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time, we record the locations of the two regions. Second, we respectively add Gaussian
noise (variance is 0.001), salt-pepper noise (parameter is 0.003), and JPEG compression
(quality factor is 80) to the 10 images. Then we can get 30 images. Third, we take 10 images
of JPEG compression as an example. For every JPEG tampered image, we randomly select
100 sub-blocks (size is b × b) from the middle part of copy region. The size of the middle
part is 60 × 60. After that, we calculate the Euclidean distance between the corresponding
sub-blocks of copy region and move region. And ei(i = 1,2,...,100) represent the results of
Euclidean distance. Then we sort ei(i = 1,2,...,100) in ascending order. The front 50 ei(i =
1,2,...,50) is remained to compute their average value. And Ej (j = 1,2,...,10) represent the
results of average values from 10 JPEG images. We can sort Ej (j = 1,2,...,10) in ascending
order. The front 5 Ej (j = 1,2,...,5) is remained to get their average value. We can receive the
final result V 1

eur from the 10 JPEG tampered images. By the same way, we can obtain the
result V 2

eur of 10 tampered images with Gaussian noise and the result V 3
eur of 10 tampered

images with salt-pepper noise. Finally, we can get the threshold Veur through reckoning the
average value of V 1

eur , V 2
eur and V 3

eur .

2.3 Filtering

The aim of filtering algorithm is to reduce the probability of false matches. Our method of
filtering is based on the filtering algorithm of [8].

As shown in Fig. 5, for every matched sub-blocks (e.g., a and a′), we can achieve the
number of adjacent matched sub-blocks (e.g., b and b′, c and c′). Take a pair of matched
sub-blocks, a and a′, as an example. If a sub-block is located in the circular area whose
center is a and the matched sub-block is situated in the circular area that the center is a′,
we define the pair of matched sub-blocks is an adjacent matched sub-block of a and a′. We
set the radius to Rre. The threshold of the number of adjacent matched sub-blocks is Nre.
For a pair of matched sub-blocks (e.g., a and a′), when the number of adjacent matched
sub-blocks is bigger than Nre, we keep the pair of matched sub-blocks (a and a′).

Copy region

Move region

Fig. 5 Adjacent matched sub-blocks
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As shown in Fig. 6, for a and a′, we define angle βk (k = 1, . . . , Nre) as the included
angle between a and the adjacent sub-block of a. The value of βk is range from −π to π .
And we define βk

′ (k = 1, . . . , Nre) as the included angle between a′ and the adjacent sub-
block of a′. The value of βk

′ is range from −π to π . Then we define:θk = (
βk − βk

′) mod
(2π) (k = 1, . . . , Nre). Ideally, θk equal to the rotating angle α of move region. We calculate
the variance of the assemblage

[
θ1, θ2, . . . , θNre

]
. If the variance is less than ϕre, we remain

the pair of matched sub-blocks (a and a′).
In summary, for a pair of matched sub-blocks, if the number of adjacent matched sub-

blocks is bigger than Nre and the variance of the assemblage
[
θ1, θ2, . . . , θNre

]
is less than

ϕre, we hold it.

3 Experimental results and analysis

The experiments were performed on a computer with Intel core i5 CPU (3.20 GHz) and 4
GB RAM. The software environment of tests is Matlab R2012a. The images that we used
in the experiments were formed by two parts. The one was 100 images from UCID [13].
The size of the images are 512 × 384. In real life, most people tamper with the images
deliberately by Photoshop. In order to simulate the situation, we make use of Photoshop
CS3 to tamper images. The other was 100 images of CASIA V2.0 [3]. The size of the
images range from 384 × 256 to 528 × 318. All the images of CASIA V2.0 are formed
by authentic images and tampered images. The tampered ways of CASIA V2.0 are splicing
and copy-move. We randomly chose 100 images that the tampered method was copy-move.

3.1 Thresholds setting

The thresholds of our experiments were shown as Table 1. The threshold Veur of UCID and
CASIA V2.0 were obtained by the method of chapter Section 2.2.3.

β
β

β

β

rotate
degree

Copy region
Move region

(rotate     degree)

θ β β= −

θ β β= −

α

α

Fig. 6 The angle of adjacent matched sub-blocks
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Table 1 Thresholds setting

Method Blocksize b × b Feature length (n) Matching Filtering

UCID’s Veur CASIA’s Veur Vdis Rre Nre ϕre

brightness [14] 25 × 25 4 0.0019 0.002 36 6 4 0.01

DCT [7] 24 × 24 8 0.93 0.9

Hu moments [6] 24 × 24 7 0.069 0.091

PST [9] 24 × 24 9 0.089 0.081

Zernike 24 × 24 12 116.9 109.5

moments [11]

3.2 UCID data

For the 100 images of UCID, we randomly copied an area which size is 70 × 70 from an
image and pasted it to another part of the same image. Moreover, the tampered images were
added with Gaussian noise, salt-pepper noise, and JPEG compression. We detected these
images by CBMA and IBMA to compare the results.

In order to display the results objectively, we adopted the True Positive Rate (T PR) and
False Positive Rate (FPR) of [12].

T PR = |T P |
|Rclone| (5)

FPR = |FP |
|Rnomal | (6)

In (5), |T P | represents the number of pixels correctly classified as tampered in the copy
region and the move region. And |Rclone| represents the number of real tampered pixels in
the copy regions and the move regions. In (6), |FP | represents the number of pixels wrongly
classified as tampered in the normal region that isn’t tampered. And |Rnormal | represents the
number of real normal pixels in the region that do not belong to the copy regions or move
regions. In general, the higher are the T PR and the lower are the FPR, the better are the
copy-move detection methods.

Table 2 shows the tampered images’ T PR and FPR of CBMA and IBMA. The tam-
pered images without post-processing are from UCID. From Table 2, we can see that the
T PR of CBMA is slightly higher than IBMA and the FPR of CBMA is slightly lower
than IBMA. In short, CBMA performs slightly better than IBMA. IBMA can detect all
matched sub-blocks that contain false matches and right matches. Because more false

Table 2 The T PR and FPR of UCID images without post-processing

Method brightness [14] DCT [7] Hu moments [6] PST [9] Zernike moments [11]

CBMA IBMA CBMA IBMA CBMA IBMA CBMA IBMA CBMA IBMA

T PR 0.9963 0.9310 0.9684 0.8983 0.9717 0.9619 0.9694 0.8701 0.9953 0.9216

FPR 0.0096 0.1201 0.0035 0.0082 0.0015 0.0105 0.0019 0.0347 0.0053 0.0192
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Table 3 The T PR of UCID images with JPEG compression

60 70 80 90

Brightness [14] CBMA 0.0422 0.0393 0.0719 0.2479

IBMA 0.8237 0.8729 0.9170 0.9252

DCT [7] CBMA 0.0265 0.0361 0.0670 0.1833

IBMA 0.8113 0.9093 0.9096 0.9005

Hu moments [6] CBMA 0.0220 0.0278 0.0355 0.1078

IBMA 0.7129 0.7830 0.8858 0.9316

PST [9] CBMA 0.0201 0.0216 0.0241 0.0380

IBMA 0.5766 0.7025 0.8559 0.8658

Zernike CBMA 0.0264 0.0374 0.0521 0.1202

moments [11] IBMA 0.8694 0.9400 0.9296 0.9319

matches are detected, a part of right matches are deleted through filtering algorithm in
chapter Section 2.3.

Table 3 is the tampered images’ T PR of CBMA and IBMA. The tampered images had
been handled by JPEG compression. The JPEG quality factors (QF ) are 60, 70, 80 and 90.
When the QF s are less than 90, CBMA almost can’t detect the tampered regions. But the
change of QF has influenced IBMA not too much. Table 4 shows the JPEG images’ FPR

of CBMA and IBMA. On the whole, the FPR of CBMA is slightly lower than IBMA. If
we consider the T PR, it’s acceptable.

Table 5 is the tampered images’ T PR of CBMA and IBMA. The tampered images
were added with Gaussian noise. The variances (Var ) of Gaussian noise are 0.0001, 0.0003,
0.0005 and 0.0007. With different variances, the most T PR of CBMA close to zero. How-
ever, the most T PR of IBMA are higher than 0.8. Table 6 shows the FPR of CBMA and
IBMA. In general, the FPR of CBMA is slightly lower than IBMA. From the T PR and
FPR, we can see that IBMA is more robust than CBMA when the tampered images are
distorted by Gaussian noise.

After the tampered images were added with salt-pepper noise, we calculated their T PR

of CBMA and IBMA, as shown in Table 7. The noise densities (d) of salt-pepper noise are

Table 4 The FPR of UCID images with JPEG compression

60 70 80 90

Brightness [14] CBMA 0.0176 0.0143 0.0065 0.0023

IBMA 0.1296 0.1263 0.1258 0.1214

DCT [7] CBMA 0.0061 0.0033 0.0031 0.0023

IBMA 0.0087 0.0084 0.0086 0.0078

Hu moments [6] CBMA 0.0070 0.0039 0.0020 0.0004

IBMA 0.0177 0.0145 0.0132 0.0110

PST [9] CBMA 0.0052 0.0028 0.0021 0.0011

IBMA 0.0370 0.0383 0.0359 0.0344

Zernike CBMA 0.0044 0.0034 0.0025 0.0021

moments [11] IBMA 0.0182 0.0173 0.0202 0.0193
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Table 5 The T PR of UCID images with Gaussian noise

0.0001 0.0003 0.0005 0.0007

Brightness [14] CBMA 0.1279 0.0033 0.0013 0

IBMA 0.9170 0.8742 0.8129 0.7544

DCT [7] CBMA 0.0773 0.0172 0.0026 0.0011

IBMA 0.9103 0.8915 0.7579 0.5476

Hu moments [6] CBMA 0.0227 0.0114 0.0036 0

IBMA 0.8796 0.7864 0.6999 0.6221

PST [9] CBMA 0.0112 0.0049 0 0

IBMA 0.8647 0.8811 0.8639 0.7972

Zernike CBMA 0.0480 0.0128 0.0015 0.0017

moments [11] IBMA 0.9367 0.9325 0.8516 0.6407

0.001, 0.002, 0.003 and 0.004. The noise densities (d) mean that the percentage of affected
pixels. When the feature vectors are brightness [14], the T PR of either CBMA or IBMA
are very high. For the other feature vectors, the most T PR of CBMA are close to zero with
different noise densities. But the most T PR of IBMA are higher than 0.7. Table 8 shows the
FPR of CBMA and IBMA. In a word, the FPR of CBMA is slightly lower than IBMA.
When the tampered images are distorted by salt-pepper noise, we can see that IBMA is
more robust than CBMA except for the feature vectors are brightness [14].

For an image, the running time of copy-move forgery detection methods are different
when the matching algorithm is either CBMA or IBMA. As shown in Table 9, the run-
ning time of copy-move forgery detection methods using CBMA is less than using IBMA.
There are two reasons to consider. First, is that the time complexity of IBMA is higher
than CBMA. Second, when the matching algorithm is IBMA, the running time of filtering
algorithm is more than CBMA because IBMA will detect more matched sub-blocks.

In all, although the running time of copy-move forgery detection methods using IBMA
is more than using CBMA, IBMA is more robust than CBMA when the tampered images
are distorted by JPEG compression Gaussian noise or salt-pepper noise.

Table 6 The FPR of UCID images with Gaussian noise

0.0001 0.0003 0.0005 0.0007

brightness [14] CBMA 0.0002 0 0 0.0003

IBMA 0.1038 0.0856 0.0726 0.0626

DCT [7] CBMA 0.0006 0.0003 0 0

IBMA 0.0066 0.0062 0.0043 0.0044

Hu moments [6] CBMA 0 0 0 0

IBMA 0.0099 0.0086 0.0076 0.0065

PST [9] CBMA 0.0003 0.0001 0 0

IBMA 0.0241 0.0168 0.0126 0.0090

Zernike CBMA 0.0007 0.0002 0.0001 0.0001

moments [11] IBMA 0.0174 0.0158 0.0134 0.0096
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Table 7 The T PR of UCID images with salt-pepper noise

0.001 0.002 0.003 0.004

brightness [14] CBMA 0.9829 0.9490 0.9251 0.8510

IBMA 0.9054 0.8697 0.8518 0.7887

DCT [7] CBMA 0.2590 0.0494 0.0164 0.0073

IBMA 0.8709 0.7663 0.6196 0.4421

Hu moments [6] CBMA 0.2277 0.0197 0.0014 0

IBMA 0.8454 0.7237 0.6379 0.5358

PST [9] CBMA 0.2743 0.0240 0.0014 0.0032

IBMA 0.8653 0.8431 0.7783 0.6446

Zernike CBMA 0.5176 0.1320 0.0299 0.0015

moments [11] IBMA 0.9031 0.8515 0.7347 0.5743

3.3 CASIA data

We randomly got 100 images that the tampered way was copy-move. The sizes of the
tampered regions are different and irregular. Some of the tampered images had multiple tam-
pering regions. From CASIA V2.0, we can only extract the information of move regions and
can’t obtain the copy regions. What’s more, the tampered images were added with Gaussian
noise, salt-pepper noise, and JPEG compression. We detected these images by CBMA and
IBMA to contrast their results.

Due to only have the information of move regions, we define Referenced True Positive
Rate (RT PR).

RT PR =
∣∣T P ′∣∣

∣
∣R′

clone

∣
∣ (7)

In (7),
∣∣T P ′∣∣ represents the number of pixels correctly classified as tampered in the move

regions. And
∣∣R′

clone

∣∣ represents the number of real tampered pixels in the move regions.
Thinking from a certain degree, the higher are the RT PR, the better are the copy-move
detection methods.

Table 8 The FPR of UCID images with salt-pepper noise

0.001 0.002 0.003 0.004

brightness [14] CBMA 0.0072 0.0053 0.0045 0.0032

IBMA 0.1065 0.0974 0.0883 0.0817

DCT [7] CBMA 0.0009 0.0003 0.0001 0.0001

IBMA 0.0084 0.0073 0.0065 0.0049

Hu moments [6] CBMA 0.0004 0.0004 0.0003 0

IBMA 0.0079 0.0086 0.0066 0.0070

PST [9] CBMA 0.0005 0.0003 0 0

IBMA 0.0255 0.0186 0.0132 0.0110

Zernike CBMA 0.0018 0.0009 0.0006 0.0002

moments [11] IBMA 0.0187 0.0165 0.0168 0.0130
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Table 9 The running time of using CBMA and IBMA

Method Brightness [14] DCT [7] Hu moments [6] PST [9] Zernike moments [11]

CBMA IBMA CBMA IBMA CBMA IBMA CBMA IBMA CBMA IBMA

Runtime(S) 4 68 24 48 35 66 8 120 8 127

Table 10 shows the tampered images’ RT PR of CBMA and IBMA. The tampered
images without post-processing are from CASIA V2.0. From Table 10, we can see that the
performances of CBMA and IBMA are almost equal. To compare with CBMA, IBMA has
some advantage when the tampered regions are irregular.

Table 11 is the tampered images’ RT PR of CBMA and IBMA. The tampered images
had been processed by JPEG compression. The JPEG quality factors (QF ) are 60, 70, 80
and 90. CBMA almost can’t detect the tampered regions when the QF s are less than 90.
However, the change of QF has influenced IBMA not too much.

Table 12 is the tampered images’ RT PR of CBMA and IBMA. The tampered images
from CASIA V2.0 were added with Gaussian noise. The variances (Var ) of Gaussian noise
are 0.0001, 0.0003, 0.0005 and 0.0007. With different variances, the most RT PR of CBMA
nearly equal zero. But the most T PR of IBMA are higher than 0.7. From the RT PR, we
can think that IBMA is more robust than CBMA when the tampered images are distorted
by Gaussian noise.

After the tampered images from CASIA V2.0 were added with salt-pepper noise, we
calculated their RT PR of CBMA and IBMA, as shown in Table 13. The noise densities
(d) of salt-pepper noise are 0.001, 0.002, 0.003 and 0.004. When the feature vectors are
brightness [14], the T PR of either CBMA or IBMA are very high. For the other feature
vectors, CBMA almost can’t detect the tampered regions when the noise densities are more
than 0.001. And the change of noise densities has influenced IBMA not too much. When
the tampered images are distorted by salt-pepper noise, we can prefer that IBMA is more
robust than CBMA except for the feature vectors are brightness [14].

In brief, although tampered regions are different and irregular, IBMA is more robust than
CBMA when the tampered images are distorted by JPEG compression, Gaussian noise or
salt-pepper noise.

From all experiments of UCID and CASIA V2.0, we can get the conclusion that IBMA is
more robust than CBMA. For every sub-block, we can search their all matched sub-blocks
by using IBMA. CBMA only search the sub-block represented by adjacent feature vector
after lexicographically sorting the feature vectors’ matrix. When an image was distorted by
Gaussian noise, salt-pepper noise, or JPEG compression, the matched sub-blocks probably
are not adjacent in the feature vectors’ matrix. This leads to CBMA become invalid.

Table 10 The RT PR of CASIA images without post-processing

Method brightness [14] DCT [7] Hu moments [6] PST [9] Zernike moments [11]

CBMA IBMA CBMA IBMA CBMA IBMA CBMA IBMA CBMA IBMA

RT PR 0.9020 0.8753 0.7669 0.8088 0.7780 0.8398 0.7744 0.8166 0.8458 0.8382
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Table 11 The RT PR of CASIA images with JPEG compression

60 70 80 90

brightness [14] CBMA 0.0479 0.0451 0.1195 0.3785

IBMA 0.7787 0.8052 0.8604 0.8741

DCT [7] CBMA 0.0227 0.0331 0.1067 0.2401

IBMA 0.6459 0.7720 0.8064 0.8093

Hu moments [6] CBMA 0.0239 0.0257 0.0623 0.1791

IBMA 0.6988 0.7327 0.7947 0.8301

PST [9] CBMA 0.0194 0.0159 0.0289 0.0616

IBMA 0.3780 0.4584 0.7733 0.8148

Zernike CBMA 0.0272 0.0334 0.0923 0.2287

moments [11] IBMA 0.7084 0.8208 0.8418 0.8437

Table 12 The RT PR of CASIA images with Gaussian noise

0.0001 0.0003 0.0005 0.0007

brightness [14] CBMA 0.1600 0.0083 0.0029 0

IBMA 0.8517 0.8138 0.7853 0.7273

DCT [7] CBMA 0.0886 0.0102 0.0039 0.0003

IBMA 0.8074 0.7621 0.6330 0.4591

Hu moments [6] CBMA 0.0393 0.0145 0.0025 0.0022

IBMA 0.7955 0.7380 0.6837 0.6495

PST [9] CBMA 0.0219 0.0046 0.0003 0

IBMA 0.8113 0.7996 0.7583 0.6170

Zernike CBMA 0.0904 0.0102 0.0018 0.0003

moments [11] IBMA 0.8500 0.8279 0.7215 0.5025

Table 13 The RT PR of CASIA images with salt-pepper noise

0.001 0.002 0.003 0.004

brightness [14] CBMA 0.8875 0.8587 0.8332 0.8014

IBMA 0.8412 0.8237 0.7973 0.7741

DCT [7] CBMA 0.2262 0.0494 0.0075 0.0024

IBMA 0.7476 0.6493 0.4890 0.3431

Hu moments [6] CBMA 0.1983 0.0277 0.0053 0

IBMA 0.7573 0.6993 0.6264 0.5943

PST [9] CBMA 0.2377 0.0284 0.0047 0.0009

IBMA 0.7997 0.7475 0.6393 0.4751

Zernike CBMA 0.4458 0.1383 0.0306 0.0078

moments [11] IBMA 0.8121 0.7487 0.6151 0.4794
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4 Conclusions

We have two contributions in copy-move forgery detection. Firstly, IBMA can detect all
matched sub-blocks. The reason is that IBMA is based on strict mathematical proofs. In
the step of matching, most existing copy-move forgery detection methods can’t detect all
matched sub-blocks, such as [9, 11, 14] and [2]. Secondly, the method we propose to calcu-
late the threshold Veur is reasonable. For different image databases and feature vectors, we
can obtain relatively high T PR or RT PR.
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Appendix

We assume Q1 = [
I 1, I 2, . . . , I n

]
and Q2 = [

L1, L2, . . . , Ln
]
. Veur is a constant and

more than zero.

Condition A:
∣∣(I 1 + I 2 + . . . + In

) − (
L1 + L2 + . . . + Ln

)∣∣ >
√

n × Veur .
Condition B: SIM (Q1, Q2) > Veur .

∵
∣
∣∣(I 1 + I 2 + ... + In) − (L1 + L2 + ... + Ln)

∣
∣∣ >

√
n × Veur

∴
∣∣(I 1 − L1) + (I 2 − L2) + ... + (In − Ln)

∣∣
√

n
> Veur

∴
(
(I 1 − L1) + (I 2 − L2) + ... + (In − Ln)

)2

n
> (Veur )

2

From average inequality for every real number xi, i = 1, 2, ..., n we can get: x2
1
+x2

2
+ ...+

x2
n

≥ (x1+x2+...+xn)2

n
we define: xi = (I i − Li), i = 1, 2, ..., n, obviously:

(I 1 − L1)
2 + (I 2 − L2)

2 + ... + (In − Ln)
2 ≥

(
(I 1 − L1) + (I 2 − L2) + ... + (In − Ln)

)2

n

∵
(
(I 1 − L1) + (I 2 − L2) + ... + (In − Ln)

)2

n
> (Veur )

2

∴ (I 1 − L1)
2 + (I 2 − L2)

2 + ... + (In − Ln)
2

> (Veur )
2

∴
√

(I 1 − L1)
2 + (I 2 − L2)

2 + ... + (In − Ln)2 > Veur
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