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Abstract The Needleman-Wunsch (NW) is a dynamic programming algorithm used in the
pairwise global alignment of two biological sequences. In this paper, three sets of parallel
implementations of the NW algorithm are presented using a mixture of specialized software
and hardware solutions: POSIX Threads-based, SIMD Extensions-based and a GPU-based
implementations. The three implementations aim at improving the performance of the NW
algorithm on large scale input without affecting its accuracy. Our experiments show that the
GPU-based implementation is the best implementation as it achieves performance 72.5X
faster than the sequential implementation, whereas the best performance achieved by the
POSIX threads and the SIMD techniques are 2X and 18.2X faster than the sequential
implementation, respectively.

Keywords Bioinformatics · Global alignment · Needleman-Wunsch · POSIX threads ·
SIMD (Single Instruction Multiple Data) · Graphics Processing Unit (GPU)

1 Introduction

Bioinformatics is a discipline that applies the principles of computer science, mathematics,
and engineering to answer questions related to Biology [9]. This can be fulfilled by applying
several techniques to formulate and model the targeted biological problems as computa-
tional problems and design algorithms to solve them in an accurate and efficient manner.
Sequence alignment is one of the widely studied problems in bioinformatics. It is concerned
with finding similarities (patterns) in the same sequence or among different sequences.
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Sequences can be composed of nucleotides (forming DNA fragments), amino acids (form-
ing proteins), etc. The basic intuition here is that sequences with similar structure are often
similar in function as well.

The similarity between two sequences or strings taken from the same alphabet can be
measured in several ways. One way is by determining the minimum number of edit opera-
tions performed on one sequence to make it identical to the other. Here, the edit operations
are insertions, deletions, and substitutions. This is known as the pairwise global alignment
problem and it can be generalized to align multiple sequences. If the problem is about align-
ing subsets of the sequences, then it is called local alignment. Existing algorithms for the
alignment problem employ dynamic programming to find the optimal solution in time pro-
portional to the product of the lengths to the sequences to be aligned. This is considered too
much for many applications, especially in bioinformatics, where the sequence lengths can
be very large (millions of elements). Thus, serious efforts have been invested in improving
the performance of alignment algorithms by employing techniques like parallelization or by
resorting to heuristics that sacrifice accuracy for better performance [14, 24]. In this paper,
the focus is on speeding up the performance of the dynamic programming techniques for the
pairwise global alignment problem [8]. More specifically, our goal is to explore improving
the performance of the Needleman-Wunsch (NW) sequence alignment algorithm by using
different parallelization or victorization techniques [19].

The rest of this paper is organized as follows. Section 2 presents the main concepts
that are needed in this paper. Section 3 introduces relevant studies. Section 4 explains the
methodology. Section 5 presents our experiments and the analysis of the results. Finally, we
conclude in Section 6 and discuss our future directions.

2 Background

In this section, we discuss some background information about the NW algorithm that are
necessary to understand this paper. The NW algorithm was introduced by Saul B. Needle-
man and Christian D. Wunsch in 1970 [19]. Its goal is to align two strings of nucleotides
or proteins, considering the probable gaps, and using a representation matrix to represent
scores gained by the comparisons of the possible studied pairs [5, 20]. Figure 1 depicts an
example of global alignment for two strings.

The alignment is performed using dynamic programming. Consider the pairwise align-
ment of two strings of n and m characters, respectively. A weighted grid network of
dimensions (n + 1) × (m + 1) is created where nodes represent intermediate stops (posi-
tions) in the alignment and directed edges represent a match, mismatch or indel1 in the next
position. Note that the edges are directed in a way to allow movement from the upper left
corner (position (0, 0)) to the lower right corner (position (n,m)) of the grid. The weights
are assigned to the edges based on the scoring matrix. In such a grid, each path from position
(0, 0) to position (n,m) represents an alignment and the objective is to select the longest
path [24]. Figure 2 shows an example of the results of this algorithm, where match = 1,
mismatch = −1, and gap = −1.

The NW algorithm relies on filling up a two-dimensional array. Thus, its space complex-
ity is basically the dimensions of the array, i.e., (m + 1) × (n + 1) = O(mn). As for the
time complexity, each array entry takes a constant number of operations to be computed

1Indel is a term used for both the insertion and deletion operations in biological sequences.
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Fig. 1 Global alignment of two strings [14]

(one “minimum of three” operation and three summation operations). Thus, the time com-
plexity is also O(mn). Let the two sequences be represented by two strings x and y over an
alphabet �. Let f : � × � → N be a weight function that assigns a score to each possible
pair of residues. The algorithm of NW generates a distance matrix H using the following
inductive formula [13]:

Hi,j = min

⎧
⎨

⎩

Hi−1,j−1 + f (x[i], y[j ])
Ei,j

Fi,j

(1)

where

Fi,j = min

{
Hi−1,j + w1
Fi−1,j + u

(2)

and

Ei,j = min

{
Hi,j−1 + w1
Ei,j−1 + u

(3)

At the beginning of the induction,Hi,0 = wi, H0,j = wj ,Ei,0 = wi+v, and F0,j = wj +v,

for 1 ≤ i ≤ n, and 1 ≤ j ≤ m.

Fig. 2 A path representing a global alignment [18]
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2.1 Parallel implementation techniques

This section describes the parallel techniques used in our implementations of the NW algo-
rithm, which are: the POSIX threads technique, the SIMD extension techniques and, finally,
the GPU technique.

POSIX threads technique POSIX threads (sometimes called Pthreads) is a standard for
building and manipulating multi-threaded applications. It utilizes the hardware resources
effectively. These applications can operate on several operating systems like Microsoft
Windows, Linux and Mac OS with reliability and high performance [4].

SIMD techniques Single Instruction Multiple Data (SIMD) are Intel and AMD x86
instruction set extensions used for designing effective parallel programming applications,
where the parallel tasks are performed at the instruction level using a single instruction at
a time. It is commonly used in many applications such as speech recognition, graphics and
image processing, audio and video processing. SIMD extensions consist of some versions
such as: MultiMedia eXtensions (MMX), Streaming SIMD Extensions (SSE, SSE2, SSE3
and SSE4), Visual Instruction Set (VIS) and Advanced Vector Extensions (AVX and AVX2).
They support manipulation of short vectors with float and integer variables in addition to
supporting 64 bit, 128 bit and 256 bit registers. Following is a discussion of the extensions
we use in this work.2

– SSE Extensions: SSE extensions were presented by Intel in 1999 using the Pentium III
processor with a support of Hyper-Threading technique, then by AMD in 2001 using
the K7 Palomino processor. It uses XMM 128 bit registers to manipulate scalar-packed
single precision floating point data, double precision floating point data and packed
integer data, and data should be aligned on 16 Byte boundaries when it is saved in the
memory.

– AVX Extensions: AVX instructions were introduced by Intel in 2008 and it got the first
support in 2011 also by Intel using the Sandy Bridge processor, and then by AMD using
the Bulldozer processor. It promotes the XMM 128 bit integer registers to YMM 256
bit registers, in addition to promoting the mechanism of dealing with variables, where
it supports conducting operations between two variables and saving the value in a third
variable (such as X = Y + Z). Unlike what happens in the SSE extensions, where the
output is overwritten on the source variable (such as X = X + Y ) [17].

GPU technique Graphics Processor Unit (GPU), sometimes called visual processor unit
(VPU), is an electronic circuit used for accelerating the manipulation of graphics and image
processing, by adopting parallelization techniques to process large amount of data at the
same time. For many tasks, it outperforms the general-purpose CPUs because general-
purpose CPUs can support only 8, 12, or 16 threads, while GPU supports thousand of
threads working concurrently. Physically, a GPU may exist either in a form of an external
video card connected to the computer or embedded on the computer main board [6]. The
first GPU was produced in 1999 by NVIDIA (who introduced the term GPU) and was called
(GeForce 256). Then, in 2002, ATI introduced the term VPU and produced the (Radeon
9700) graphic card. Both GPUs and VPUs are widely used in workstations, embedded sys-
tems, personal computers, game consoles and cell phones [22]. Compute Unified Device

2https://software.intel.com/en-us/articles/intel-sdm
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Architecture (CUDA) is a software platform introduced in 2006 by Intel to operate the GPU
(only NVIDIA’s GPUs) resources in order to perform general purpose parallel processing
tasks (GPGPU) in a more efficient way than CPUs, using a high level language such as C,
C++, OpenACC and FORTRAN [1, 12, 25].

3 Related work

Comparing DNA, RNA and protein strings has been one of the fundamental problems in
the field of bioinformatics for decades. Several studies have been conducted by computer
scientists, mathematicians and biologists to improve the efficiency and accuracy of the algo-
rithms used to solve these problems. Some of these studies focused on the NW algorithm,
while others focused on the Smith-Waterman (SW) algorithm, which is very similar to the
NW algorithm, but it is designed for local alignment. Another important issue is the type of
alignment. Some papers considered only a pair of sequences while others considered multi-
ple pairwise alignments (e.g., of a “query sequence” against a “database of sequences”) or
aligning multiple sequences at the same time.

Siriwardena and Ranasinghe [26] presented a hybrid (CPU-GPU) implementation of NW
algorithm, using a parallel CUDA based heterogeneous architecture. They divided the tasks
between the CPU and the GPU, by assigning the control task to the CPU to manage the
memory size and the number of blocks that will be run on the GPU in each iteration where
the NW algorithm will be actually executed. The experiments were conducted on Linux
operating system running on an Intel Quad Core processor with a speed of 2.4 MHZ and 3
GB of RAM. The CUDA solution was executed on a single NVIDIAGeForce 8800 GTGPU
card with 114 cores, 512 MB of RAM, 16 KB of shared memory/block, and graphics driver
version 2.3. Various thread utilization ways, kernel access methods and various memory
access pattern levels are compared to pick up the best parallelization mode. The suggested
implementation provided a processing speed up of 4.2 times based on the blocking mode,
and up to 2 times speed up based on the non-blocking mode compared with the pure CPU
implementation.

Liu and Shmidt [16] presented GSWABE, a GPU-accelerated pairwise sequence align-
ment algorithm, used to retrieve optimal alignments from a collection of short DNA
sequences. GSWABE supports all-to-all pairwise global, semi-global, and local alignments
using the SW algorithm. GSWABE is implemented on CUDA-enabled GPUs. The algo-
rithm applies dynamic programming for the three types of alignments using the similar
computational patterns. GSWABE uses a general tile-based approach in order to achieve
fast alignments. The authors evaluated their approach on Kepler-based Tesla K40 GPU and
achieved 156 faster execution time than the SSE-based implementation and up to 102.4
faster execution than MSA-CUDA in case of local alignment.

Zhou et al. [29] proposed a hybrid alignment approach based on the SW local alignment
algorithm and the NW global alignment algorithm. They tested their approach on a lower-
end personal computer with GeForce GTX 750 Ti card and a higher-end personal computer
with a GeForce GTX 1070 GPU card. The hybrid parallel implementation provided almost
140 times faster execution when compared to the serial solution.

Rognes and Seeberg [21] implemented the SW based on both MMX and SSE intrinsics.
They used Red Hat Linux 6.1 operating system running on an Intel Pentium III single pro-
cessor with a speed of 500 MHZ and 128 MB of RAM. The authors computed the query
profile only once for each existing character in the studied strings. They also used vectors
of adjacent cells parallel to the query string, rather than using vectors parallel to the minor
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matrix diagonal. This gave a processing speed of more than 150 million cell updates per
second, which can be considered as 6 times faster than the non-vectorized implementation.
This speed was estimated by testing the presented implementation on a collection of 11
various amino acid query strings with a length of 189-567 amino acids for each string.

Rognes [20] introduced a new approach called SWIPE to run the SW algorithm and
implemented it using the SSE3 intrinsics, where characters from one query string are aligned
with characters from 16 various database strings in a parallel manner, which is 2.5 times
faster than the implementation of the alignment with a single thread. This lead to a speed of
106 billion cell updates per second, with a query string of 375 characters length. He used a
Linux 64 bit operating system running on 6 cores Intel processor called dual Xeon X5650,
and concluded that using the SIMD techniques can increase the speed of local alignment,
especially, for the SW database searching.

Wozniak [28] presented a new SW algorithm implementation, using an SUN Ultra
SPARC device, based on specialized video instructions (VIS), which are similar to the
SIMD instructions in supporting the parallelization manner at the instruction level, in order
to accelerate the implementation of the algorithm. The author used vectors of adjacent cells
parallel to the minor diagonal of the matrix. The advantage of this approach is the dispense
of the conditional part, which is supposed to be used in the inner loop. Thus, the time com-
plexity depends only on both the query and database sequences length. On the other hand,
this approach requires computing the query profile individually for each character in the
used sequences. However, the presented approach has twice the speed of the conventional
implementation.

In [11], Farrar presented an implementation of the SW algorithm for database search-
ing, using a fast approach called Stripped SW based on the SSE2 intrinsics. This author
used a Core 2 Duo Xeon processor with a 2.0 GHZ speed to test the presented approach.
The stripped SW approach reduced the time needed to perform the sequence comparison by
pre-computing the query profile in a stripped reading parallel to the query string for all char-
acters, instead of reading the score of each cell individually, leading to a speed of 3 billion
cell updates per second. This approach outperformed the two other SIMD local alignment
implementations mentioned previously by 2–8 times.

Serrano et al. [23] conducted a GPU acceleration and power consumption analysis of
the SW method, implemented using CUDAlign 4.0 [7], for GPU acceleration on a multi-
GPU environment. CUDAlign 4.0 is a parallel technique to obtain optimal alignments of
huge DNA sequences on multi-GPU platforms using the SW algorithm. CUDAlign 4.0 is
comprised of six execution stages where the first three are accelerated using GPUs. The
analysis of performance (execution time) and energy consumption showed a direct correla-
tion between them in most cases. Improving the performance was at the cost of more energy
consumption even with cases that did not provide great scalability.

Zhu et al. [30] proposed to use GPUs to speed up the performance of the MAFFT mul-
tiple sequence alignment algorithm [15]. In order to overcome the limitations of memory
in GPUs. They implemented a memory allocation and reuse strategy that uses an encoding
scheme to minimize memory consumption. Moreover, they used high performance shared
memory to improve I/O operations. They demonstrated the usefulness of their approach on
three different NVIDIA GPUs where the results showed up to 11.28X performance gain
when compared to the sequential MAFFT implementation.

In recent papers, the authors of [2, 3] presented their effort to improve the perfor-
mance of global sequence alignment algorithms. Instead of focusing on the NW algorithms,
the authors of [2, 3] focused on the Levenshtein and Damerau Edit Distance Algorithms.
The improvement gains achieved were 11X and 12X, respectively. However, when they
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attempted to use the new unified memory feature provided by NVIDIA, the improvement
gains jumped to 61X and 71X, respectively.

4 Methodology

We now describe our parallel implementations of the NW algorithm. However, before we
start, we need to discuss the data dependencies in the NW algorithm since such issues are
crucial for the development of correct and efficient parallel code.

In the NW algorithm, each cell in the representation matrix has a data dependency with
its three upper left adjacent cells (see Fig. 3). Therefore, these cells should be calculated first
in order to be able to calculate the value of the targeted cell. This means that, for maximum
efficiency, filling the matrix could not be done in an arbitrary manner, but rather, it should
be done following a specific order to ensure that there is no violation of the dependencies
between the cells.

The most common methods to fill the matrix are: the sequential traversal method and
the diagonal traversal method [27]. In sequential traversal, the matrix is filled column by
column or row by row. I.e., starting from the cell (0, 0), then (1, 0) until reaching cell (m, 0).
Then, the traversal moves to the next column and so on. See Fig. 4a [27]. For traversing a
matrix of two strings with the lengths m and n respectively, m×n iterations are needed. For

Fig. 3 Data dependencies between cells in the NW algorithm
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Fig. 4 Two different methods to fill the representation matrix [18]

instance, 16 iterations are conducted to fill a 4 × 4 matrix. Note that using parallelization
does not help with this situation.

On the other hand, Fig. 4b [27] shows that it is possible to fill all the cells of each
minor diagonal at the same time without violating the dependencies between the calculated
cells. Thus, using paralellization, seven iterations are needed to fill a 4 × 4 matrix instead
of 16 iterations as used in the sequential method. The number of iterations can be simply
computed as m+ n− 1. Similar to the Wozniak implementation [28], the diagonal traversal
method is used in all of our implementations to fill the NW representation matrix, because
it is more compatible with the parallelization techniques used during our work.

4.1 Database and query sequences

The performance of the presented programs is analyzed by measuring the overall time
required to perform the alignment of the two given DNA sequences, where the first sequence
represents the database sequence and the second one represents the query sequence. Both
sequences are generated randomly consisting of characters from the alphabet � = A, C, G,
T with 75% similarity between them, where the global alignment is usually used to align
almost two identical sequences. The tests are conducted on sequences with the length of
10,000, 14,992 and 20,000 characters consecutively. Note that all these values are divisible
by 16 without remainder to facilitate the treatment of the SIMD vectors.

4.2 Parallel implementations

This section illustrates how the NW algorithm can be parallelized using specialized
hardware such as GPUs besides two different CPU approaches: POSIX threads and SIMD.

4.2.1 POSIX threads implementation

Four implementations are conducted, which differ in the number of threads used to deter-
mine the best value that can be used. The numbers of threads that we consider are: 2, 4, 8 and
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Fig. 5 POSIX thread implementation with two threads

16. During the execution, all cells that belong to the same diagonal are grouped into equal
chunks (as much as possible), then each chunk is assigned to a different thread. In order
to increase the efficiency of the implementation, diagonals with lengths less than (n/2) are
ignored since the time spent in creating new threads is greater than the potential benefit of
creating these threads. Figure 5 explains this procedure more clearly.

4.2.2 SIMD extension implementations

Two SIMD implementations are conducted, the first implementation is based on SSE3
extensions while the second one is based on AVX2 extensions. Both implementations follow
the same programming model with some differences as shown in Table 1.

During the execution, scores are pre-computed only once before performing the align-
ment in order to avoid the frequent lookup of δ(xi, yj ) to be added to H(i −1, j −1) values
for each cell in the NW representation matrix. Vectors that consist of adjacent cells in paral-
lel to the matrix minor diagonal are used. The number of vectors used in each diagonal may
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Table 1 Difference between SSE3 and AVX2 implementations

SIMD technique Compilation instruction Registers size Variables size Vector elements

SSE3 -msse3 128 bit 16 Bit 8 Elements

AVX2 -mavx2 256 bit 16 Bit 16 Elements

differ from the number of vectors used in the adjacent diagonals, depending on the num-
ber of elements that should be processed within each diagonal. For example, when using
the SSE3 extensions in the implementation, the size of the vector is 8 elements (according
to that, each single instruction can process 8 cells in parallel), while it is 16 in the AVX2
implementation. Thus, the number of required vectors can be computed using the following
formula:

No(V ectors) = ((L − 1)|(P − 1)) + 1

P
(4)

where P refers to the desired size of the vector and L refers to the number of elements that
should be divided into vectors. The case where the number of elements is not long enough
to fit the resulting vectors, the remaining blanks are filled with garbage entries. See Fig. 6.

4.2.3 GPU implementation

The GPU implementation is done as follows.

1. The number of blocks and worker threads is optimized (re-sized) separately for each
iteration at the CPU side, to avoid wasting time by creating threads more than the
volume of the data being processed.

2. The representation matrix is represented as one-dimensional array instead of two-
dimensional array (memory optimization) in order to facilitate allocating the processed

Fig. 6 NW implementation using SIMD extensions
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data in the GPU memory which positively affects the overall performance of the
program.

3. The NW algorithm is performed at the GPU side only. To ensure getting the desired
improvement of the implementation, all the data are copied from the CPU side in the
initialization step. Moreover, arguments that change in each iteration (such as the num-
ber of worker threads, number of limited data, etc.) are sent to the GPU at each iteration.
This process reduces the time consumed through the transfer of data between CPU and
GPU memories.

4. 256 threads are used in the implementation, and since the matrix initialization is done
at the GPU side, any thread located outside the range set by the CPU is excluded (thus,
guaranteeing getting the best running time).

5. Finally, the output (the H matrix) is transferred from the GPU to the RAM in order to
display the final result of the alignment.

5 Experiments

In this section, comprehensive tests are conducted to compare the performance of the pre-
sented implementations and select the most efficient one. Experiments are repeated 30 times
and the average are reported. Moreover, the output of each iteration is carefully checked
to verify its correctness. Finally, the performance of the new implementations is computed
using the following formula:

Perf ormance = (S − P)

S
× 100% (5)

where S refers to the running time of the sequential implementation and P refers to the
running time of the parallel implementation.

All programs are written in the C language, and the algorithm arguments are assigned
to the following values: Match score = 0, Mismatch score = 1, Gap open penalty = 1 and
Gap extend penalty = 1. The experimental setup used to test the performance of our imple-
mentations can be classified into two environments: the first environment is concerned with
the CPU-based implementations, while the second group is concerned with the GPU-based
implementation. For the first environment, we an Intel Core i7 processor (3.5 GHz) with
8 GB DDR3 of RAM while, for the second environment, we have an NVIDIA Geforce
(GT 740M) graphics card with 2 GB of memory as a GPU. As mentioned early, four
POSIX threads implementations are conducted, which differ in the number of threads used
to accomplish the work required (2, 4, 8, 16 threads).

The results of this experiment are depicted in Table 2. The table shows that the maxi-
mum performance can be gained when using 8 threads during the implementation, where

Table 2 The performance of the algorithm using a different number of threads

Sequence length Sequential implementation 2 threads 4 threads 8 threads 16 threads

10,000 7.425 6.414 5.646 5.594 6.027

14,992 25.383 15.273 13.365 12.193 13.817

20,000 46.897 36.361 25.148 22.652 30.721

Average 26.568 19.349 14.720 13.480 16.855
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Table 3 The performance of the
algorithm using two different
SIMD implementations

Sequence length Sequential implementation SSE3 AVX2

10,000 7.425 0.782 0.639

14,992 25.383 1.750 1.346

20,000 46.897 3.189 2.381

Average 6.568 1.907 1.455

it takes 5.594 seconds, 12.193 seconds and 22.652 seconds, respectively, to perform the
global alignment of the strings under consideration. This is considered 49.26% faster that
the sequential implementation of the same algorithm.

Although increasing the number of threads has contributed in improving the efficiency
of the program, the performance degrades when increasing the number of threads after a
certain extent as a result of the communication overhead between these threads. Hence,
slowing down the speed of the program.

The second group of experiments uses the SIMD extensions techniques and the results
are depicted in Table 3. The table shows that the AVX2 implementation outperforms both
the sequential and SSE3 implementations, with running times equal to 0.639 seconds, 1.346
seconds and 2.381 seconds, respectively. This is due to the fact that AVX2 instructions deal
with 16 elements at the same time instead of 8 elements as in SSE3 instructions, or one
single element as in the sequential implementation.

Although AVX2 deals with double the number of elements processed by the SSE3, the
amount of superiority is not too large due to the absence of some built-in instructions (like
shift instructions), which require the use of some built-in instructions combined with each
other to perform the desired task. This results in consuming more time and affecting the per-
formance of the whole program. The AVX2 implementation is considered as 94.52% faster
than the sequential implementation, whereas the SSE3 is 92.82% faster than the sequential
implementation.

The final group of experiments (which were already reported in our earlier paper [10]) is
done to compare between the CPU and GPU based implementations. From the results of this
experiment, which are depicted in Table 4, it is clearly shown that the GPU-based imple-
mentation significantly outperforms the CPU-based implementation. The running times that
have been spent from the GPU-based implementation to perform the alignment are 0.065
seconds, 0.222 seconds and 0.599 seconds consecutively, which is considered as 98.62%
faster than the CPU-based implementation.

The summary of results shown in Fig. 7 clearly shows that the GPU-based implementa-
tion is the best implementation as it achieves performance 72.5X faster than the sequential

Table 4 The performance of the
algorithm using CPU and
GPU-based implementations

Sequence length CPU implementation GPU implementation

10000 7.043 0.065

14992 18.811 0.222

20000 29.740 0.599

Average 18.531 0.295
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Fig. 7 The performance of three parallel implementations presented

implementation, whereas the best performance achieved by the POSIX threads and the
SIMD techniques are 2X and 18.2X faster than the sequential implementation, respectively.
The GPU implementation outperforms the other implementations due to the effective archi-
tecture that it uses. In GPUs, threads are ordered into blocks that are all organized into a
grid, where execution and management of possibly thousands of threads is conducted by
the GPU itself, preventing any thread management overhead that could negatively affect the
performance of the implementation. On the other hand, the POSIX threads technique uses
a number of separate threads to perform the parallelism task, which require more commu-
nication and synchronization operations, thus, limiting the possibility to use larger number
of threads during execution.

6 Conclusion

Existing approaches for genetic sequence alignment (such as the NW SW algorithms) suffer
from poor performance with large scale input. For this reason, we have presented three dif-
ferent sets of parallel implementations: POSIX threads based, SIMD extensions based and
GPU based implementations, to speed up the global alignment with the improved NW algo-
rithm. Our experiments show that the best performance is gained when using the GPU-based
architecture, due to the high number of threads it can utilize. However, the performance
of the GPU implementation is correlated with the memory optimization and the amount
of mutual transformation of data between the CPU and GPU memories. The presented
GPU-based implementation significantly outperforms the other implementations where it is
considered as 4.1% faster than the SIMD implementation represented by the AVX2 intrin-
sics, 49.36% faster than the POSIX threads implementation and as 98.62% faster than the
sequential implementation. We also confirm that it outperforms other previous GPU imple-
mentations because of the better design and optimization methods that are used in our
approach.

As a future work, we plan to design a new parallel implementation of the NW algorithm
using Open Computing Language (OpenCL) environment, which is supported by AMD,
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NVIDIA and other brands. This should open the door to experiment with our approach
on several hardware. Furthermore, we plan to present another new implementation, which
could be done by combining both the SIMD approach and the GPU approach (based on
CUDA or OpenCL framework) to exploit the parallelism capability provided by each type
of them.
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