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Abstract Anaemia disease attacks and deforms the circular red blood cells. Latterly, it has
classified as a very dangerous disease. Many papers have been presented approaches for
tracking and detection of anaemia cells before; but this time, elliptocytosis, sickle, and burr
cells have detected based on their shape signatures. In tested images, some of the cells have
been formed unknown shapes resulted from stuck operation in the instant image capture. This
shape have not been belonged to any of anaemia kinds, then they have considered as cells with
unknown shape. Here, the using of Circular Hough transforms, watershed segmentation and
some of the morphological methods has been urgent manner to enhancing and preparing tested
images. The performance of proposed algorithm have been achieved highly accuracy by
testing 45 colourful microscopic images in 15 samples from patients already have anaemia
disease. The Support Vector Machine (SVM), back propagation (BP) and self-organising map
(SOM) neural networks have been applied on all information data of mentioned kinds of
anaemia.

Keywords Elliptocytosis . Sickle cells . Burr cells . Cell signature . Circular Hough transforms .
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1 Introduction

Red blood cells are being inside the huge bones of the body in the spongy marrow. Along the
time, the main action of marrow is the renewing and replacing old red blood cells. Approx-
imately, 120 days is the normal life for RBCs in the stream of human blood. Their main role in
this short life is to carry oxygen to all body and remove carbon dioxide (a waste product) from
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it. The normal shape of RBCs is like a disc that gives a chance of moving easily through the
blood vessels [11, 22]. Anaemia disease is working on deformation of RBCs into various other
shapes that causes non-attendance of iron in the blood. Iron is essential to the human
body for the creation an iron-rich protein called haemoglobin, which assists red blood
cells with carrying oxygen from lungs to whatever is left of the body. When the
normal number of red cells is lower in the blood or deficiency of haemoglobin, this
ailment happens [10, 12, 14, 15, 32].

Echinocyte (Burr) comes from the Greek word meaning Bsea urchin,^ which relates to its
shell-like appearance. The shape of Burr cells have serrated edges over the entire surface of the
cell. Burr cells, are reversible, meaning that this change can be the result of the cell’s
environment, pH of the medium (including the glass slides on which blood smears are made),
the metabolic state of the cell, and the use of some chemical substances. Actually, Burr cells
appear due to uremia caused by mild hemolysis of red blood cells as seen in hemolytic
anaemia, hypomagnesemia, hypophosphatemia, and pyruvate kinase deficiency. The projec-
tions of the cell membrane may be sharp or blunt, are usually numerous, and tend to be evenly
spaced around the circumference. Spicules are usually of uniform size with short, evenly
spaced spicules and preserved central pallor that is usually artifactual (observed in uremia and
liver disease). There has been no clear definition of a reference range for burr cells in normal
individuals and among patients with various diseases [3, 4]. Echinocytes were first described
in 1957 in association with renal disease and uremia and may be exacerbated during hemo-
dialysis [1, 2]. Echinocytes are commonly found in patients with liver failure,
hyperbilirubinemia, vitamin E deficiency, pyruvate kinase deficiency and are seen occasionally
as artefacts on the peripheral smear.

One of most famous kind of anaemia is named sickle; this name comes when the disc shape
of red blood cells deformed into a crescent shape. The substantial danger of sickle cells is that
they obstruct the flow of the stream of blood in the veins, limbs, and organs. The resistance in
flowing of blood can cause pain; organ hurt and push the probability of illness. Moreover, the
sickle cells usually die after approximately ten to twenty days, and the bone marrow cannot
renew red blood cells fast enough to replace that dying RBCs [30]. In addition, this kind of
anaemia is most famous in people whose families come from Mediterranean nations, Africa,
South, or Central America, particularly Panama, Caribbean islands, Saudi Arabia, and India.
The patient number of the individuals that are suffering from sickle cell anaemia in the United
States ranged between 70,000 to 100,000 chiefly African-Americans. The primary decision of
it is dependent on blood test examination that can recognize sickle cells [12, 28].

Another kind of anaemia called elliptocytosis. It described in 1904 and then recognized as a
hereditary condition in 1932. Medically, it is so hard to determine the hereditary elliptocytosis.
This kind of anaemia is estimated to affect an average of 60–150 cases per 10,000 people in
African and Mediterranean countries, whereas to affect 3–5 cases per 10,000 people in the
USA, and between 1500 and 2000 in Malayan per 10,000 people [9, 23].

Actually, the danger and threat of anaemia disease have pushed to work in this paper for
giving some assistance in resistance and diagnosis. The extraction of information from
microscopic images represents a big challenge. The regularization of images, image segmen-
tation followed by feature extraction and its classification have included in this type of
research. The proposed algorithm begins by detecting the normal RBCs and abnormal ones
especially burr, sickle, elliptocytosis cells based on their shape signatures on blood smears
[13]. Circular Hough Transform (CHT), watershed segmentation, and morphological tools
have used through detection process to select and marked the normal cells. In this manner, the
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deformed cells have selected from the normal ones and based on cell shape signatures, as in
section 5. The deformed cells information and their related data have formed as input variables
to be suitable for use in SVM and two kinds of neural networks; self-organising map (SOM)
and back-propagation. These variables are Areas, Convex Area, Perimeter, Eccentricity,
Solidity, Ratio, absolute deviations, denoted by AVD, and variable of absolute subtractions
among input and saved signature values (see Eqs. 6, 7, 10, 11). The neural networks and
decision tree have applied to get optimum classification method with the proposed algorithm
[7, 16]. The differences in the shape of Normal, Burr, Sickle, and Elliptocytosis cells have
shown in Fig. 1.

The remainder of the paper is organised as follows; Section 2 focuses on related studies. An
overview on Circular Hough Transform is presented in section 3. Section 4 is introduced an
overview of SVM and neural networks. The shape signature of cells is presented in Section 5.
The proposed algorithm is discussed in section 6, and the experimental results of the proposed
algorithm are detailed in section 7. Section 8 concludes the paper.

2 Related studies

Recently, research using image processing has increased especially on the blood cells detection
and the determination of illnesses. In April and June 2016, two papers have presented
algorithms for counting and detecting healthy and many of the unhealthy human blood cells
on a smear based on circular Hough transform. These cells have detected and classified into
normal and different kinds of anaemia like a sickle, microcytic...etc. The neural network has
applied on their extracted data to evaluate the algorithm [14, 15]. The experimental results
have been demonstrated high accuracy, and the proposed algorithm has achieved the highest
detection dependent on CHT and morphological methods only [13]. In this paper, the
algorithm has been used shape signature method and some modifications for helping in the
detection process.

Yi and others in 2015 proposed a three-dimensional order technique for naturally deciding
the morphologically typical RBCs in the image of numerous human RBCs that got by off pivot
advanced holographic microscopy (DHM). The RBC 3D images recorded in the beginning by
DHM and after that computational numerical algorithm recreated the stage images of numer-
ous RBCs. They chipped away at three common RBC shapes, stomatocyte, discocyte, and
echinocyte for training and testing. Nonetheless, the irregular RBC shapes characterised as a
fourth class. Actually, they are subject to ten components extracted from every RBC after
segmenting the reconstructed phase images by using a watershed transform algorithm, which
include projected surface area, average phase value, mean corpuscular haemoglobin, perime-
ter, mean corpuscular haemoglobin surface density, circularity, mean phase of centre part,

Normal RBCs  (a) (b)  Burr cell   (c)  Sickle cell (d) Elliptocytosis

Fig. 1 The differences in shape among normal RBCs
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sphericity coefficient, elongation, and pallor. Likewise, they applied the principal component
analysis algorithm to diminish the dimension number of variables and built up the Gaussian
mixture densities utilising the anticipated information with the initial eight principal compo-
nents. Thus, the Gaussian mixtures used to plan the discriminant capacities in light of Bayesian
decision hypothesis. Their exploratory results demonstrated that the proposed strategy could
deliver good results for figuring the rate of each ordinary typical RBC shape in a recreated
stage image of various RBCs [33].

In 2014, Lee and Chen introduced a neural network model with a classifier which use the
visual data separated from the images of red blood cell to determine if a red blood cell is
ordinary or strange. They clustered the visual elements into two primary gatherings, in
particular, texture cluster groups and shape cluster groups depending on the element properties.
The input feature clusters handled utilising parallel and course construction with multiple input
layers. Their trial results indicated a noteworthy change in order precision in the proposed
framework when contrasted with the single input layer classifier with late feature selection
algorithms [23].

Rashmi Mukherjee in 2014 displayed an assessment of morphometric elements of placental
villi and vessels in preeclampsia and typical placentae. The study included light microscopic
images of placental tissue areas of 40 preeclampsia and 35 normotensive pregnant women.
The villi and vessels depicted from preprocessing and segmentation of these images. She
applied principal component analysis (PCA), Fisher’s linear discriminant analysis (FLDA),
and hierarchical cluster analysis (HCA) to recognize placental (morphometric) highlights,
which are basic features in microscopic images. She accomplished five huge morphometric
highlights (>90% general discrimination accuracy) recognized by FLDA, and PCA returned
three significant principal components cumulatively clarified 98.4% of the total variance [25].

In the same year, Tomari and others showed a proposed PC supported frameworks to
mechanize the procedure of discovery and recognizable proof of RBCs from blood smear
image. This framework has comprised a blend of three fundamental stages, segmentation and
handling, features extraction, and classification. They really were extracted RBCs regions from
the background using global threshold method applied on green channel color image. Otsu
segmentation method applied on green color channel image with a progression of post
handling filter to concentrate strong RBCs shape from the background. In addition, the filter
and connected component labeling used to remove noise and holes. According to feature
extraction, the fusion of compactness and HU moment invariant were successful to distinguish
the normal and abnormal shape with low computational resources and high discriminate
power. At last, the ordinary/irregular cells arranged to utilize neural network with four hidden
layers. The system tried to classify the RBCs, and the outcomes accomplished 83% accuracy,
82% normal accuracy, and 76% normal review [31].

In July 2013, Mushabe and others presented an algorithm was distinguished and counted
red blood cells (RBCs) and parasites to perform a parasitemia estimation. Morphological
operations and a histogram-based threshold used to classify red blood cells. They utilized
boundary curvature calculations and Delaunay triangulation to the split overlapped red blood
cells. A Bayesian classifier with RGB pixel values employed as elements to classify the
parasites. The outcomes indicated 98.5% sensitivity and 97.2% specificity for distinguishing
tainted red blood cells [26].

In March 2013, Minetti and others have presented an overview of common mistakes using
the most popular methodologies in red blood cell research and how to avoid them. In addition,
they introduced a number of standards for data comparison between the different labs and
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techniques. They were considered flow cytometry, patch-clamp measurements, biochemical
analysis, flux measurements and dynamic fluorescence imaging as well as emerging single-cell
techniques, such as the use of optical tweezers and atomic force microscopy. They concluded
that to clarify the intercellular variability of responses, measurements in cell suspensions
should be combined with single-cell techniques such as fluorescent live cell imaging, FCM
and/or patch-clamp approaches. Though, even between single-cell techniques, there are
regularly differences and confusing interpretations because cell behavior is highly sensitive.
So, considerations that lead to better harmonization of experimental conditions are timely and
relevant, especially regarding the accumulation of large amounts of data in the literature [24].

Taherisadr and others presented in January 2013 another proposition, which is exhibited a
mechanized red cells examination and grouping from created singular examples. This system
based on shape highlights inner focal whiteness setup of red cells and their circularity with the
assistance of decision logic. Red blood cells were classified into 12 classes to get results,
diagnosis of blood issue, for example, iron inadequacy anaemia, the anaemia of chronic illness,
β-thalassemia quality, sickle cell anaemia, haemoglobin C ailment, intravascular hemolysis,
hereditary elliptocytosis, genetic spherocytosis and megaloblastic anaemia because of folic
acid insufficiency can be conceivable. In this strategy, their portraying a few limits to
characterization has high efficiency in the coordination of results. Really, they contemplated
morphological perspectives and ascertained parameters and limits to get the quantitative
consequences of cells regions and diameters [29].

Das and others in December 2012 presented a philosophy utilizing a few strategies of
machine learning for describing RBCs in anaemia in view of microscopic images of peripheral
blood smears. First, to reduce the unevenness of foundation brightening and noise, they
preprocessed peripheral blood smear images taking into account geometric mean filter and
the method of gray world assumption. At that point, watershed segmentation strategy applied
to erythrocyte cells. Unhealthy RBCs, for example, sickle cells, echinocyte cells, teardrop
cells, elliptocytosis cells, and solid cells classified based on their morphological shape changes.
They observed that when a little subset of elements utilized by utilizing data pickup measures,
the logistic regression classifier exhibited better in execution. They accomplished better
forecast as far as general accuracy by 86.87%, sensitivity to 95.3%, and specificity was
94.13% [10].

In 2010, Hirimutugoda and Wijayarathna proposed a strategy to recognize thalassemia and
malarial parasites in blood test images obtained from light magnifying instruments and
explored the likelihood of quick and exact robotized finding of red blood cell issue. To assess
the precision of the grouping in the acknowledgment of medicinal image patterns, they
prepared two back proliferation Artificial Neural Network models (3 and 4 layers) together
with image investigation systems on morphological components of RBCs. The three layers
yielded the best execution with an error of 2.74545 e−005 and an 86.54% right accurate rate.
The three prepared layers of an ANN comprised the most recent identification classifier to
decide illnesses [17].

3 Overview on circular Hough transform

The Hough transform is classified as a popular feature extraction technique that
transforms an image from its Cartesian to Polar coordinates. Duda and Hart in 1972
had used this technique of transformations after the presentation of Hough about it in
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1962. The detection of circles/ellipses using Circular Hough Transforms (CHT) is
more difficult than line detection algorithm due to a large number of parameters
involved in describing the shapes. It is used to determine the parameters of a circle
based on a known number of points that fall on the perimeter.

Three essential steps have done to be a CHT. One is Accumulator Array Computation, its
cells constructed by those candidate pixels have high gradients and allowed to ‘votes’ process.
Centre estimation is the second one that estimated by detecting the peaks in the accumulator
array. The radius estimation step that using the same accumulator array [18, 19]. Figure 2a
shows that each point in geometric space (solid dots) in the left generates a circle in parameter
space (dashed circles) on the right. The circles in parameter space intersect at the (a, b) that is
the centre of geometric space. In the same context, if the radius is unknown, then the points
located in parameter space will fall on the surface of a cone. Each point (x, y) on the perimeter
of a circle produces a cone surface in parameter space. The triplet (a, b, r) will correspond to
the accumulation cell in the array where the largest number of cone surfaces intersect, as in
Fig. 2b. A circle with a different radius has constructed at each level r.

In this paper, CHT has used to detect only the regular blood cells because they are
near in shape to circle whereas sickle, burr and elliptocytosis have detected using their
shape signatures.

4 Overview of neural networks and SVM

Neural Network (NN) is commonly known as a powerful function approximation for
prediction and classification problems. Warren McCulloch and mathematician Walter
Pitts who are first introduced a paper on how neurons might work in 1943 [20]. NN
comprises input layer that contains input vector, hidden layers, and output layer with
one neuron for every element of the output vector. Every element in the input layer is
connected to every neuron in the hidden layers with weights associated with the
connection between the input element and the hidden neuron, as shown in Fig. 3a.
The back propagation training process is to perform a particular function by adjusting
the values of the connections (weights) between elements. The dataset divided into
training and test subsets. The back-propagation works by presenting each input sample
to the network where the estimated output be computed by performing weighted sums
and transfer functions. It applies a weight correction to reduce the difference between
the network outputs and the desired ones, in other words, the neural network can
learn and can thus reduce the future errors [8, 17].

(a) Pixels in geometric and parameter spaces      (b)  A conical surface in parameter space for (x, y) points on a circle. 
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Fig. 2 An example of CHT
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In the multilayer feed-forward network, an input vector is presented, and the output
is compared with the target vector. If they differ, the weights of the network are
changed slightly to reduce the error in the output. This is repeated many times and
with many sets of vector pairs until the network gives the favourite output. However,
training the Self-Organising Map (SOM) not requires any target vector. A SOM learns
to classify the training data with no external supervision, as in Fig. 3b. The SOM is
one of the most popular competitive learning neural network models. It developed by
professor Kohonen [21]. He provided a way of representing multidimensional data in
much lower dimensional spaces usually one or two dimensions. This process, of
reducing the dimensionality of vectors, is essentially a data compression technique
known as vector quantization. In addition, the Kohonen technique creates a network
that stores information in such a way that any topological relationships within the
training set are preserved.

The training process occurs in several steps and over many iterations. The weights
of each node are initialized. A vector is presented to the lattice that randomly chosen
from the set of training data. Every node is examined to calculate which one’s
weights are most like the input vector. The winning node is commonly known as
the Best Matching Unit (BMU). After calculation the neighbourhood’s radius of the
BMU, this value starts large, typically set to the ‘radius’ of the lattice, but reduces
each time-step. Any nodes found within this radius are considered being inside the
BMU’s neighbourhood. The weights of each neighbouring node (the nodes found in
last step) are adjusted to make them more similar the input vector. The closer node is
to the BMU. By repeating, the second step give the N iterations.

Support vector machine (SVM) constructs one or a set of hyperplanes in a multi-or
infinite-dimensional space, which can be used for classification, regression, or other
tasks. A hyperplane that has the largest distance to the nearest training-data point of
any class is achieving good separation. Vladimir N. Vapnik and Alexey Ya.
Chervonenkis were invented SVM algorithm in 1963. However, in 1992, Bernhard
E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik suggested a way to create
nonlinear classifiers by applying the kernel trick to maximum-margin hyperplanes [6].
In this algorithm, every dot product is replaced by a nonlinear kernel function. This
allows the algorithm to fit the maximum-margin hyperplane in a transformed feature
space. The transformation may be nonlinear and the transformed space high dimen-
sional; although the classifier is a hyperplane in the transformed feature space, it may
be nonlinear in the original input space. Figure 3c represents the work of kernel
function of SVM.

(a) The Back propagation NN  (b) The SOM NN (c) Kernel function 
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Fig. 3 The structure of the Back propagation, SOM neural networks and work of non-linear SVM
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In this paper, the traditional back propagation with one hidden layer, SOM networks and
SVM have used to classify the same input vectors and comparing the results with the proposed
algorithm which depends on shape signature method.

5 Cell shape signature

The method of shape signature has used in this paper through the detection process because it
is simple in application on any closed geometrical shape and construct its own individual
signature without depending on its size, position or dimensions [13]. It is summarized as; the
distance between the boundary points of any shape and its centroid is the constructed shape
own signature. After the operation of signature construction done, a process of matching
among signatures begins in selecting shape that be described under the constraint rate of error.

For example, if the burr cell boundary points denoted by (xijk, yijk), where i, j represent their
components toward of X and Y-axis that related to the cell shape number k. The Euclidean
distances Dijk from its centroid Ck to (xijk, yijk) are calculated, plotted and saved as an
individual’s own signature. Since the normal blood cells have standard size and shape, the
distance from centroids and boundary points are also equal, then they have to get the
same own signature. Where Cxk, and Cyk are the centroid of cell k components on X
and Y-axis. It is clearly, that the signatures of sickle, elliptocytosis and burr shapes
differ completely from the normal blood cell signature because they have distinct
shapes, as shown in Fig. 4.

Figure 4 shows that an example of signature related to normal, sickle, elliptocytosis and
burr cells. In normal blood cells, all the distances from centroids to all the boundary points are
equal (radii) that tend to the constructed signature is one straight line far from X-axis by the
same measure of radii, as in Fig. 4a. In the proposed algorithm, the shape signature for normal
cells is already done; but apply of CHT on them is faster, and then it has used to detect the
normal cells. Other signatures for sickle, elliptocytosis and burr cell have presented in Fig. 4b.
The step after the construction of cell signatures is saving in the system and matching with the
input other signatures. In matching procedure, statistical equations related to the constructed
signatures have applied on both cell signatures input and saved ones.

(a) the signature of normal blood cell  (b)  the signature of sickle cell

(c) the signature of elliptocytosis  (d)  the signature of Echinocyte (Burr)

Dijk

(xijk, yijk)
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       Dijk
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                 (xijk, yijk) 
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C

(xijk, yijk) 

Fig. 4 The signatures for normal, sickle, elliptocytosis, and burr cells
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There exist different cell shape size and orientation in any hue microscopic image
of blood smear, then the signature data should be sorted and compute the absolute
deviation, as in Eq. (1).

AVD ¼ 1

nij
∑nij

i; j¼1 xijk−xijk
��� ��� ð1Þ

For all k represent the number of cells in the image and i, j are the number of cells data
boundary points. In Eq. (2), a method for measuring the least error by calculating the absolute
value of subtraction between absolute deviations related to saved and input cell shape
signatures [13].

DIF ¼ ABS AVDsaved−AVDinput
� � ð2Þ

The last decision of matching is based on the least error value of DIF, which gives the exact
matched cell sickle, burr or elliptocytosis.

6 The proposed algorithm

The detection of deformed cells of anaemia disease is the main aim of proposed algorithm,
beside the normal ones. It has concentrated on the famous and public three kinds of anaemia;
sickle, elliptocytosis, and burr cells based on their shape signatures in a hued microscopic
image of a human blood smear, as shown in Fig. 5.

Figure 5 illustrates the detected and contoured normal blood cells by using CHT with
morphological functions. CHT has used to detect RBCs although they have on image borders
or overlapped. At that point, the stuck and overlapped cells have separated by Watershed
segmentation and the morphological functions. This process is done under constrains like the
cell polarity; that it shows whether circulating blood cells are brighter or darker than the
background. Computation method (Two-stage) has used to find out the accumulator array of
CHT. It depends on figuring outspread histograms; radii are applied on the assessed cell
focuses alongside the image [12]. Sensitivity factor is the sensor of the accumulator array in
CHT. The recognition has included frail and halfway covered up or overlapped cells; higher
estimations of the sensitivity expands the risk of false identification. The edge gradient

Input coloured microscopic image of human blood smear

CHT and segmenta�on func�ons have used to detect normal RBCs.s

Normal, sickle, burr and elliptocytosis cells in Green, red, black, and blue colour in the detec�on
process

SOM NN trained 10 input variables with 100 nuerons layer and output

BP NN trained 10 input variables and one hidden layer with ten neurons and one output layer

SVM trained 10 input variables and three different tagets of sickle, elliptocytosis and burr cells.

Fig. 5 The proposed algorithm in images
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threshold; cells have largely a darker inside (cores) and encompassed by an outlying bright
halo. The edge gradient threshold is extremely helpful for deciding edge pixels in these
instances of image, both unhealthy and strong blood cells taking into account their difference
have recognised well by setting a lower worth in the threshold. It distinguishes fewer cells of
frail edges by expanding the estimation of the threshold [11].

Image segmentation is the process of selecting objects in the image from the background,
i.e., partitioning the image into disjoint regions, such that each region is homogeneous
regarding property, such as grey value or texture. The watershed transform is one of the
famous segmentation methods. In more details if f is a digital grey value of an image. In the
first, assuming that f is lower complete, each pixel which is not at a minimum has a neighbour
of lower grey value. The lower slope LS (p) of f at a pixel p, is defined as the maximal slope
linking p to any of its neighbours of lower height, as in Eq. (3).

LS pð Þ ¼ max
qϵNG pð Þ∪ pf g

f pð Þ− f qð Þ
d p; qð Þ

� �
ð3Þ

Where NG (p) is the set of neighbours of pixel p on the grid G = (V, E) of V that is the set of
all vertices and E is the set of all edges, whereas d (p, q) is the distance associated to edge (p, q)
(for q = p the expression following the max operator is defined to be zero). With pixels whose
neighbours are all of higher grey value, the lower slope is zero. The cost for walking from pixel
p to a neighbouring pixel q is defined as:

cost p; qð Þ ¼
LS pð Þ:d p; qð Þ if f pð Þ > f qð Þ
LS qð Þ:d p; qð Þ if f pð Þ < f qð Þ
1

2
LS pð Þ þ LS qð Þð Þ:d p; qð Þ if f pð Þ ¼ f qð Þ

8><
>: ð4Þ

The distance d (p, q), in Eq. (3) and (4), between non-neighbouring pixels p and q is defined
as the minimum path length among all paths from p to q (this depends on the graph structure of
the grid, in other words, the connectivity) [27]. In the proposed algorithm, the watershed
segmentation has used to help in separation of all overlapped cells. Figure 6 shows that an
example of using watershed in normal cells.

In Fig. 6a, the example of original image, the normal cells have filtered and selected in the
grey image by using some morphological functions in (b). In Fig. 6c, the final image of
watershed segmentation after divided the regions has appeared, then (d) shows the final image
of contoured normal cells by green line after separating overlapped cells. Therefore, all
separated cells are ready and available to get their measures like radii, areas, and so on. These
measures have used in the application of neural networks later.

The pipelines of the proposed algorithm have illustrated in Fig. 7. In the first, the algorithm
working on normal RBCs to enhance, select and contour them by using CHT with some of
morphological functions and watershed segmentation. All their information data (radii, cen-
tres...) is ready now to create own variables. The filtration process has applied to remove all
these normal cells from the input image and get the abnormal ones. The detection step of all
abnormal cells (sickle, burr and elliptocytosis) has started by applying all previous steps again.

The data variables of them lead to construct their own signatures. These signatures have
matched with the standard saved ones. Only three ideal shape standards have chosen from all
samples for elliptocytosis, sickle, and burr cells under the same laboratory and microscope
conditions, and all their measures have compared with other cells in images of whole samples.
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All the measures concerned of these three standard cells have done to continue in the signature
matching process. Table 1 shows all measures of these standard anaemia cells. The matching
process has done by select the least resulted value from a comparison among all absolute
deviation of them in the tested samples, as in Eq. (2). The BP NN, SOM NN and SVM have
applied by using the input vectors of all the cells’ extracted data.

The BP, SOM NNs and SVM have applied to make a comparison with the proposed
algorithm and standing on the right stone for diagnosing and deciding whether the patient has
one or more sorts of anaemia. The ten information data input variables are the Area, Convex
Area, Perimeter, Eccentricity, Solidity, Ratio, AVD,DIFsi, DIFbu andDIFel (see Eqs. 1, 2, 5, 6).
Table 2. describes these variables in brief.

The proposed algorithm has stopped when it includes the input image covered by green,
red, blue, black lines on the normal, sickle, elliptocytosis and burr cells, respectively. The
previous input variables have been used for training BP NN, SOM NN and SVM. In SOM
NN, no need to compute any targets for all input variables, however, BP NN and SVM should
have targets to starting the train. Three output targets DIFsc, DIFe and DIFbur have computed
concerned of sickle, elliptocytosis, and burr cells, as in Eqs. (7), (8), (9), respectively.

•Working on normal RBCs
•Noise removal and apply CHT, some morphological func�ons and watershed
segmenta�on to separa�ng overlapped cells

•Contouring normal RBCs and filter them.
•Construc�on of sickle, burr and elliptocytosis signatures on the remaining cells
in the image and extract their data variables.

•choosing three standard ideal sickle, burr and elliptocytosis cells.
•Match their signatures with the standard saved ones.
•Apply BP NN, SOM NN and SVM.

Input
original

microscopic
Image

Fig. 7 Proposed algorithm steps

(a)  The original image   (b) The selected single, overlapped and stuck cells

 (c)  The process of watershed segmentation    (d) Final separation of overlapped cells.

Fig. 6 The watershed and morphological functions application
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The variable Solidity (SC) is the dividing the Area by its Convex Area for all separate cells
as shown in the Eq. (5), whereas the variable that named Ratio (RC) is calculated by dividing
the Area of cells to Perimeter of cells, as shown in Eq. (6):

SC ¼ areac
convex areacð Þ ð5Þ

where areac is the area of each cell for all different cells, and convex areac represents the
convex area of each cell for all detected abnormal cells.

RC ¼ 4π areacð Þ
perimetercð Þ2 ð6Þ

Here, perimeterc represents the perimeter of each cell for all kinds of detected abnormal
cells. The target DIFSC is an array that comprises binary numbers (1) and (0) on the values of
DIFsi to classify sickle cell Anaemia, as shown in Eq. (7).

DIFSC ¼ 1 if DIFsi < 0:5
0 Otherwise

�
ð7Þ

In Eq. (7), if any of the absolute difference of absolute deviations values DIFsi is less than
0.5 then the decision is a sickle cell. Otherwise, when DIFSC assumes zero value that is leading
to ensure that cell is not sickle and may be one of other anaemia cells. The same way applies to
target DIFe, which is an array that comprises binary numbers (1) and (0) on values of DIFel
variable, as shown in Eq. (8).

DIFe ¼ 1 if DIFel < 0:5
0 Otherwise

�
ð8Þ

Table 2 Cells variables description

# Variables Description

1 Area The actual number of pixels in the cell’s region
2 Convex

area
The number of pixels in convex hull of the cell, with all pixels within the hull filled in. In

addition, the convex hull is m × 2 matrix that specifies the smallest convex polygon, which
can contain the cell region. Each row of the matrix contains the x-and y-coordinates of one
vertex of the polygon.

3 Perimeter The distance around the boundary of the cell’s region. It has calculated the distance between
each adjoining pair of pixels around the border of the cell.

4 Eccentricity The eccentricity is the ratio of the distance between the foci of the ellipse and its major axis
length. The value is in between 0 and 1. (0 and 1 are degenerate cases; an ellipse whose
eccentricity is 0 is actually a circle, while an ellipse whose eccentricity is 1 is a line
segment).

5 Solidity The relationship or proportion of the pixels in the convex hull that are also in the region, as in
Eq. (5).

6 Ratio It is a relationship between Area and Perimeter, as in Eq. (6).
7 AVD It represents an absolute deviation of all values counted by the Euclidian distance from the cell

centroid to its boundary points as in Eq. (1).
8 DIFsi It represents the absolute difference among all AVDs related to input and saved standard sickle

signatures, as in Eq. (2).
9 DIFbu It represents the absolute difference among all AVDs related to input and saved standard burr

signatures, as in Eq. (2).
10 DIFel It represents the absolute difference among all AVDs related to input and saved standard

elliptocytosis signatures, as in Eq. (2).
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When DIFe is 1 the value of DIFel is less than 0.5, which shows that the abnormal cell
belongs to elliptocytosis. Otherwise, DIFel value is greater than or equal 0.5 then DIFe takes
the value zero and leads to the decision that cell not classified as elliptocytosis and belongs to
burr cells or other kinds of abnormal cells.

DIFbur ¼ 1 if DIFbu < 0:5
0 Otherwise

�
ð9Þ

As the previous, DIFburis equal 1 when the variable value DIFbu recorded value less than
0.5, which means the cell is surly burr. However, if DIFbu has recorded value greater than or
equal 0.5, the target has recorded zero and the network decided that the cell is not burr and may
be belongs to other kinds of unchecked anaemia or other disease can also deforms RBCs.

The dataset has described as; 10 variable columns of inputs and 3 targets columns. The
length of column is related to the size of cell in the tested image. The number of tested samples
is 15; each one has 3 tested images, then the tested images have become 45 that have over
1000 cells at minimum. Table 3. illustrates the description of the formed abnormal cells
information data for one example tested image. All variables have been ranged in the same
types whereas only the output variables have valued binary values as 1 to exactly defined cells
and 0 otherwise. The second column in Table 3. represents the intervals of variable measure-
ments, for example, the Convex Area variable has a maximum value of one tested
cell (1145) related to one image of one sample and minimum value (178) for the
another cell in the same image. With knowing that, all the tested samples have the
same distances from the microscope lenses (focal length), which give that all these
measures have not big gaps from one sample to another.

The samples of the input variables have divided into 70% for training and 30% for testing,
and the network has changed according to its error. The validation has used 15% out of
samples to measure network generalisation and to pause training when generalisation stops
improving. The remaining 15% out of all samples of cells have presented to be test samples
that have no effect on training and so provides an independent measure of network perfor-
mance during and after training. Ten variables trained and tested in the input layer, ten neurons
of the hidden layer, and one neuron in the output layer. In addition, the mean square error
(MSE) has applied which is defined as the average squared difference between outputs and
targets, whereas lower values are better, zero means no error.

Table 3 Information data variables of cells

# Variables Type Intervals of Measurements

1 Convex area Ranged 178:1145
2 Perimeter Ranged 51.1127:150.3675
3 Eccentricity Ranged 0:0.97553
4 Areas Ranged 158:869
5 Solidity Ranged 0.506494:0.97914
6 Ratio Ranged 0.278963:0.945956
7 AVD Ranged 0.573935441:5.57356289
8 DIFsi Ranged 4.07924e−07:3.282988559
9 DIFbu Ranged 5.26987e−11:3.430691048
10 DIFel Ranged 3.31304e−10:3.361646293
11 DIFsc Binary (1 for sickle cell, 0 for other normal/abnormal cells)
12 DIFbur Binary (1 for bur cell, 0 for other normal/abnormal cells)
13 DIFe Binary (1 for elliptocytosis, 0 for other normal/abnormal cells)
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Every classification model has been assessed using three factual measures: classification
accuracy, sensitivity, and specificity. These norms have set as true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). A true positive choice happens when the
positive estimate of the classifier agreed with a positive expectation of the beforehand
segmentation. A true negative choice happens when both the classifier and the segmentation
proposes have the non-attendance of a positive expectation. False positive happens when the
framework names sound cell (positive estimate) as an undesirable one.

False negative happens when the framework names a negative (abnormal) cell as positive.
In addition, the classification accuracy has been characterised as a proportion of classified cells
and equivalent to the entirety of TP and TN separated by the total number of RBCs (N) [5].

Accuracy ¼ TP þ TN
N

ð10Þ

The sensitivity refers to the rate of arranged positive and is equivalent to TP partitioned by
the total of TP and FN.

Sensitivity ¼ TP
TP þ FN

ð11Þ

Specificity pointing to the rate of characterised negative and is equivalent to the proportion
of TN to the entirety of TN and FP [5].

Specificity ¼ TN
TN þ FP

ð12Þ

All tested images of samples are set far from the same distance (focal length) from the
magnifying microscope optics to controlling all measures.

7 The experimental results

The flow of experimental results has done through three steps. One is the detection process for
the normal and anaemia cells; the second is the signature matching to classify all these cells
into sickle, burr, and elliptocytosis. The third step is applying of BP, SOM neural networks and
SVM to make a comparison between them with the proposed algorithm. The morphological
functions, watershed segmentation and CHT have used to enhance, separation of stuck cells,
and noise removal from the image, then detect and contour the normal cells. The step after is
filtering these detected normal cells from the image to select all stranger ones. The signature
shape for each remaining cell in the resulted filtered image has constructed with its information
data and saved. Therefore, the role of matching has come by test all signatures among
themselves with standard ones to classify them as sickle, burr or elliptocytosis. To be on the
right way, two kinds of neural networks have applied to all cells information data of the
microscopic image to making other classification [5, 7].

All the blood cells samples have taken from patients that already have anaemia disease. The
algorithm has applied on 45 chosen microscopic images with a size of 504 × 700 in 15 test
samples with 40 × magnifications to accurate detect normal, sickle, burr, and elliptocytosis
cells. The cells have spread meagrely onto glass magnifying lens slides to permit odd kinds to
be observed. Giemsa has used in blood preparations and stains red blood cells pink, platelets
and white blood cells magenta. In the detection of normal cells, CHT has applied in the
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conditions of cell polarity to determine all dark and bright cells according to their intensity.
Two-stage techniques are used after to compute the accumulator array of CHT; the sensitivity
of this accumulator array in the proposed algorithm is 0.97 for brightness and 0.90 for dark
cells, and an Edge gradient threshold 0.2 that is detected fewer cells with weak edges. These
conditions help CHT to detect most of the normal RBCs that located singular, overlapped, and
even that stuck to other abnormal cells. Figure 8 shows an example of input original image of
human blood sample in (a), and the result of the contoured normal red blood cells.

In this input sample image, the total cells is 160 and only 109 normal cells have detected
and contoured by green line, as in Fig. 8b. The remaining number of cells (51) may consider as
detection errors, anaemia cells, platelets, white blood cells, or other kinds of diseases
can attack RBCs. Platelets and white blood cells have been neglected (if they have
appeared in the image) because the algorithm has only concentrated on normal and
abnormal shapes of red blood cells [12, 14].

By removing all border cells from the images in Fig. 8a, only 153 RBCs have detected
based on the proposed algorithm. The used filter for selection and remove normal cells
comprises mask of balls simulate cells centroids and radii that measured between 17 and 20
pixels. Some difficulties have been happened through the flow of algorithm like normal/
abnormal stuck cells, appearing platelets or blood impurity. The watershed process has applied
to get the optimum cells separation and the morphological functions have worked to enhance
the image and removing any platelets or impurities.

Now, it is the time to classify the remaining 44 cells into the three kinds of anaemia
dependent on their shape signatures. Figure 9 presents the contoured abnormal cells except all
of them on the image borders [14, 15]. The total number of detected anaemia cells is 42 out of
44 and it is classified as; 15 of sickle cells, 18 of elliptocytosis, and 9 of burr cells. The
remaining number of those abnormal cells may be classified as other kinds of anaemia or cells
stuck together to produce unknown shapes.

Figure 9 shows all detected elliptocytosis, sickle and burr cells have marked in clear serial
numbers to be easier when they mentioned in the following tables. The 18 elliptocytosis have
contoured by the blue line, the red line have represented the 15 sickle cells and all the burr cells
have bounded by black line, as in Fig. 9 (a), (b), and (c). The construction of signatures that
represents the detected elliptocytosis, sickle and burr cells have started. All these signatures
have matched with the saved standard ones related to the previous Eqs. (1), (2). The following
Tables 4, 5, and 6 illustrate the matching process among all signatures and measures of them.
The constructed signatures of all the numbered elliptocytosis, sickle and burr cells in Fig. 9, the
absolute deviation AVD in Eq. (1), and the least error DIF in Eq. (2) have counted. The
decision of matching depends on the least error among the cell signatures and the standard

(a) Input original sample image (b) Contoured normal cells only

Fig. 8 An example of the normal cell detection process
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chosen one. In fact, AVD and DIF have counted not for only these 33 detected cells but for all
44 cells to get the best match decision on them.

Table 4 describes the 18 elliptocytosis that appeared in the Fig. 9a. The cell number (11) has
been chosen before as a standard signature cell of elliptocytosis. The values with red numbers
in the row of DIFF are over 0.5, which is lead to out of matching with the standard one.
Twelve cell shapes in Fig. 9a, which is represented one example image, have classified as
elliptocytosis and the others may be belong to other kinds of anaemia, unknown cell shapes or
not clear to be absolute elliptocytosis.

In Table 5, all the detected and numbered sickle cells in Fig. 9b signatures have drawn. The
AVD and DIF have counted and given that, the cell number (12) has been considered as a
standard signature for all images in whole samples, as mentioned before. Again, the row of
DIFF has red values greater than 0.5, then the related signatures of these values not clearly
sickle. Only six cells in image of Fig. 9b have classified as sickle cells and the others may be
belong to other kinds of anaemia.

Table 6 shows all signatures and measures of selected and numbered burr cells in Fig. 9c.
The data of DIF row give that only 5 cells out of 9 have classified as burr cell by the matching

(a) The numbered elliptocytosis cells   (b) The numbered sickle cells

(c) The numbered burr cells

Fig. 9 Contoured and marked elliptocytosis, sickle, and burr cells in blue, red, and black lines respectively

Table 4 Elliptocytosis cells measures and signatures

Elliptocytosis cell signatures and measures

Cell 

number

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Cell 

signature

AVD 2.654921 2.04886 3.244861 1.764136 1.861919 2.116806 0.724981 2.156762 1.129325
DIFel 0.443004 0.163057 1.032944 0.44778 0.349998 0.095111 1.486935 0.055154 1.082591
Cell 

number

[10] [11] [12] [13] [14] [15] [16] [17] [18]

Cell 

signature

AVD 1.132543 2.211917 1.771723 1.69874 2.70218 2.65952 1.148013 1.915369 2.616559
DIFel 1.079374 0 0.440194 0.513177 0.490263 0.447603 1.063903 0.296547 0.404642
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with the standard signature number (2). Obviously, the other values are belonging to signatures
of shapes not clearly burr cell.

In Fig. 10, the detection process of normal cells in green lines and three of anaemia kinds;
elliptocytosis in blue lines, sickle cells in red lines, and burr cells in black lines based on their
signature shapes.

For about the neural networks application, SOM NN and BP NN have applied by using the
same ten input variables. As it has been mentioned before, SOM NN has no need any target
variable, however, BP NN needs to train these input variables three targets for three kinds of
anaemia. These targets are DIFe, DIFsc, and DIFbur for elliptocytosis, sickle, and burr cells, as
in Eqs. (7), (8), and (9). Three BP NNs have applied with these targets individually. One is
applied for elliptocytosis with ten input variables, ten neurons of one hidden layer, and one
output layer. Figure 11 shows an example about first train of BP NN, which is represented
elliptocytosis with an output target DIFe. The training NN is shown in Fig. 11a, whereas the
performance of best validation is 0.00070491 at epoch 31; the blue line represents training, the
green one for validation, and the test with red line in Fig. 11b. The confusion matrices for
training, validation, and testing processes of the first iteration BP NN have shown in Fig. 11c.

Table 7 presents a small part of results of elliptocytosis BP NN, which it contains the
training iterations time, the number of iterations, the network performance, best validation
performance, the number of epochs that the network has stopped, and the percentage of all
confusion matrix. The confusion matrix has moved to swing in between two percentages along

Table 5 Sickle cells measures and signatures

Sickle cell signatures and measures

Cell 

number

[1] [2] [3] [4] [5] [6] [7] [8]

Cell 

signature

AVD 4.272759 4.080093 3.517582 3.25253331 3.13415329 3.05439855 3.352836 5.573563
DIFsi 0.415835 0.223169 0.339342 0.60439 0.72277 0.802525 0.504088 1.716639
Cell 

number

[9] [10] [11] [12] [13] [14] [15]

Cell 

signature

AVD 4.863899 4.211205 3.478324 3.856924 3.119296 4.43175152 2.57680156

DIFsi 1.006975 0.354282 0.378599 0 0.737628 0.574828 1.280122

Table 6 Burr cells measures and signatures

Burr cell signatures and measures

Cell 

number

[1] [2] [3] [4] [5] [6]

Cell 

signature

AVD 1.855338 2.142872 4.804057 2.874954 2.042019 4.076434
DIFbu 0.287534 0 2.661185 0.732082 0.100853 1.933563
Cell 

number

[7] [8] [9]

Cell 

signature

AVD 2.34371 2.002519 2.738587
DIFbu 0.200839 0.140353 0.595715

15064 Multimed Tools Appl (2018) 77:15047–15074



all the trains; 81% and 100%. In Table 7, the highest percentage has recorded 100% at zero
seconds in the rows number 2 and 6; but the lowest one is 81.8% in the row number 4.

The second BP NN network has used the target DIFSC of sickle cells data with the same
input variables. Figure 12 presents another example about first training of sickle BP NN. The
training NN has shown in Fig. 12a, whereas Fig. 12b, c have the performance of best
validation and The confusion matrices for training, validation, and testing processes of the
first iteration. The training has represented by blue line, the green one for validation, and the
test with red line in Fig. 12b.

As in the previous, Table 8 introduces results of second BP NN that training the same input
variables and different target. It contains the same columns of Table 7 with different values.
The confusion matrix has recorded 100% as a highest value in the first train of the network
after 32 iterations at zero seconds and repeated in rows number 2, 4 and 6; however, 88.6% has
achieved as the lowest value in the column of confusion.

The target DIFbur has been used in the third BP NN to train all input variables for
classifying burr cells, as shown in Fig. 13. Figure 13a, b, c have given three images that
represents an example of one train for the burr cells BP NN, the performance of best
validation, and the confusion matrices for training, validation, and testing processes. Blue,
green, and red lines have represented the training, validation, and the test.

Table 9 displays burr cells BP NN results, which has trained the same input variables and
target DIFbur. The same work as the last two tables has done in Table 9 with different trains
values. The confusion matrix has recorded 100% as a highest value in all trains of the network
after 52 iterations through zero seconds and repeated one time in row number 7; but the lowest
recorded value 86.4% that has appeared in the fourth row.

Fig. 10 Result of detected anaemia cells

 (a) the training of BP NN process (b) the performance of best validation (c) training, validation, and testing confusion.

0 5 10 15 20 25 30 35
10-4

10-3

10-2

10-1

100
Best Validation Performance is 0.00070491 at epoch 31

M
ea

n 
Sq

ua
re

d 
Er

ro
r  

(m
se

)

37 Epochs

Train
Validation
Test
Best

Fig. 11 An example of training elliptocytosis BP NN
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One of the modern application in data classification is self-organising map (SOM).
The topographic map has two important properties; at each stage of processing, each
piece of incoming information is kept in its proper context/neighbourhood, and
neurons dealing with closely related pieces of information are kept close together so
they can interact via short synaptic connections. The interest is in building artificial
topographic maps that learn through self-organisation in a neurobiological inspired
manner. The spatial location of an output neuron in a topographic map corresponds to
a particular domain or feature drawn from the input space. The SOM has a feed-
forward structure with a single computational layer arranged in rows and columns.
Each neuron is fully connected to all the source nodes in the input layer. As
mentioned before, SOM NN has needed no target variables. By using the same
variables in Table 3 except last three rows, which are targets for elliptocytosis, sickle,
and burr cells, the SOM NN has trained to get comparison with BP NN on the
proposed algorithm data. The training automatically has stopped when the full number
of epochs have occurred. Figure 14 shows an example of training SOM NN has one
layer, with neurons organised in a grid. When creating the network, the numbers the
numbers of rows and columns in the grid have specified. Here, the number of rows
and columns is set to 10. The total number of neurons is 100. The training runs for
the maximum number of epochs, which is 200. For SOM training, the weight vector
associated with each neuron moves to become the centre of a cluster of input vectors.
Neurons adjacent to each other in the topology should also move close to each other
in the input space, therefore it is possible to visualise a high-dimensional inputs space
in the two dimensions of the network topology.

In Fig. 14b, the blue hexagons have represented the neurons. The neighbouring
neurons have connected by red lines. The colours in the regions containing the red
lines have showed the distances between neurons. The lighter colours have represent-
ed smaller distances, and the darker colours have represented larger ones. A band of
dark segments has crossed from the lower-centre region to the upper-right region. The
SOM network appears to have clustered the flowers into two distinct groups. The
SOM weight positions in Fig. 14c shows the locations of the data points and the
weight vectors after 200 iterations of the algorithm, the map has distributed through
the input vector space. Figure 14d presents the neuron locations in the topology and
shows how many of the training data are associated with each of the neurons (cluster

(a) the training of BP NN process (b) the performance of best validation (c) training, validation, and testing confusion.
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Fig. 12 An example of training sickle cells BP NN
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centres). The topology is a 10 X 10 grid, so there are 100 neurons. The maximum
number of hits associated with any neuron is 2. Thus, there are 2 input vectors in that
cluster. In Fig. 14e, the neighbours typically have classified similar samples; neuron
neighbour connections. The weight planes for each element of the input 10 vectors
are in Fig. 14f. They are visualisations of the weights that connect each input to each
of the neurons; such that; the larger weights have represented by darker colours. If the
connection patterns of two inputs were very similar, you can assume that the inputs
are highly correlated. In this example, input 1 has connections that differ greatly from
those of input 4; but closer in 7 and 8.

SOM NN is easy to use and no need to target vectors but it has been slower in the trains
followed the first one. For example, first train has taken 32 s; but the second train has taken
4 min and 47 s. The same input variables have used in all trains of SOM and BP neural
network. All neural networks have agreed with the proposed algorithm in the classification
process and the distinguishing of anaemia cells. In the detection process, the proposed
algorithm has appeared effective when using cell signatures to select elleptocytosis, sickle,
and burr cells and select them from the others, which are not clearly belonging to these three
anaemia cells.

The support vector machine (SVM) has applied on the same input variables in
Table 3. with the same three targets for elliptocytosis DIFe, sickle DIFsc, and burr
cells DIFbur, as in Eqs. (7), (8), and (9). All data of input variables divided into 70%
for training and 30% for testing in a simple mode. Figure 15 shows the component
nodes of SVM in a proposed stream. The stream is implemented in SPSS Clementine
data mining workbench. Clementine uses client/server architecture to distribute re-
quests for resource-intensive operations to powerful server software, resulting in faster
performance on larger datasets. In Fig. 15a, anaemia dataset node is connected to
EXCEL sheet file that contains the source data. Type node specifies the field metadata
and properties important for modelling and other work in Clementine. These proper-
ties include specifying a usage type, setting options for handling missing values (the
used dataset in this paper has not been missing values to handle), and setting the role
of an attribute for modelling; input or output. Type SVM node enables to classify data
into one of two groups without over fitting. The process has applied three times on
three different targets to get good comparison and linear correlation between the
outputs and the targets of Table 3. Figure 15b, c, d show the important variable in

(a) the training of BP NN process (b) the performance of best validation (c) training, validation, and testing confusion matrix.
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Fig. 13 An example of training burr cells BP NN
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the three cases of targets have chosen. The variables DIF ellipto and DIF Burr have
chosen as the most important variables with the targets DIFe and DIFbur, respectively.

(a)  the training of SOM NN process    (b)  SOM neighbour weight distances           (c) SOM weight positions 

(d) SOM sample hits (e)  neuron neighbour connections (f) Input planes, maximum epoch reached. 
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Fig. 14 An example of training SOM NN

(a) data stream of applied SVM (b) the variable importance in the case of elliptocytosis

(c) the variable importancein the case of burr cell  (d)  the variable importance in the case of sickle cell

Fig. 15 The application of SVM and the variable importance
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However, that the variable tends to the area of the cell has more important variable
with the target DIFsc. The linear correlations between the SVM outputs and DIFe,
DIFbur and DIFsc are 0.822, 0.631, and 0.799 for training and 0.916, 0.621 and 1.0
for testing, respectively.

The Matlab-2013a has used to build the algorithm on Windows 10 operating
system with processor Intel ® Core™2Duo CPU T5550@ 1.83GHz and 2.50 GB
RAM with 32-bit. The optical Nikon microscope has digitised all the images of blood
samples.

8 Conclusions

In this approach, famous anaemia cells as elliptocytosis, sickle and burr have detected
and contoured based on their own signatures. The cell signature has depended on its
shape measures and created variables of their information. The Self-Organising Map
(SOM), Back-Propagation (BP) neural networks and Support Vector Machine (SVM)
have used these information data of cells’ area, convex area, perimeter, eccentricity,
solidity, ratio, absolute deviations, least error of elleptocytosis, least error of sickle,
and least error of burr as input variables. In SOM no targets have needed; but in BP
neural network and SVM three targets regarding to elliptocytosis, sickle and burr have
used in training and testing. Some difficulties have faced the flow of the proposed
algorithm, but by applying circular Hough transform, watershed segmentation and
some of the morphological functions it has continued its way. The normal red blood
cells also have detected their signatures measured, counted, and contoured in this
approach. The performance has calculated by three statistical measures, classification
accuracy, sensitivity, and specificity. Three BPs have been succeeding for about 100%
as a highest value of all trains in confusion matrix about the three anaemia cells. The
topology of SOM has 100 neurons, and the greatest number of hits associated with
any neuron is recorded. In SVM, the highest value of linear correlation between its
output values and algorithmic targets is 0.822 for training and 1.0 for testing. The
proposed algorithm has tried to turn the light on an effective way for diagnosing and
counting normal and anaemia cells in blood samples based on medical image
processing.
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