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Abstract In this paper, we proposed a novel method for No-Reference Image Quality
Assessment (NR-IQA) by combining deep Convolutional Neural Network (CNN) with
saliency map. We first investigate the effect of depth of CNNs for NR-IQA by compar-
ing our proposed ten-layer Deep CNN (DCNN) for NR-IQA with the state-of-the-art CNN
architecture proposed by Kang et al. (2014). Our results show that the DCNN architecture
can deliver a higher accuracy on the LIVE dataset. To mimic human vision, we introduce
saliency maps combining with CNN to propose a Saliency-based DCNN (SDCNN) frame-
work for NR-IQA. We compute a saliency map for each image and both the map and the
image are split into small patches. Each image patch is assigned with a patch importance
value based on its saliency patch. A set of Salient Image Patches (SIPs) are selected accord-
ing to their saliency and we only apply the model on those SIPs to predict the quality score
for the whole image. Our experimental results show that the SDCNN framework is superior
to other state-of-the-art approaches on the widely used LIVE dataset. The TID2008 and the
CISQ image quality datasets are utilised to report cross-dataset results. The results indicate
that our proposed SDCNN can generalise well on other datasets.
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1 Introduction

Numerous digital photos are published on social media websites everyday. The image qual-
ity is hugely varied due to the conditions they were captured or the data types used for
storage. Low quality images may result in a bad user experience, therefore many Image
Quality Assessment (IQA) approaches have been proposed to objectively classify image
quality. The ground truth of IQA is different from traditional object classification tasks
because IQA label is subjectively marked by observers. Each individual assesses image
samples based on their own point of view so different scores may be assigned to the same
image. When using a reference image, viewers can better rate an image by comparing the
distorted one against its undistorted version, so called Full-Reference IQA (FR-IQA). While
in many cases, assessment can only be made based on a single distorted photo since the
reference image is not available, known as No-Reference IQA (NR-IQA).

In the work of [24], they listed three types of knowledge are essential in building a suc-
cessful QA model: 1. Distortion type - what causes the distortion, e.g, gaussian white noise
or gaussian blur; 2. Image source - how a model can capture discriminant information to
distinguish good quality from bad; 3. Human Visual System (HVS) - physiology about how
human beings view an image. This paper aims at solving all the three points by combining
Convolutional Neural Networks (CNNs) with saliency map.

For the first qustion, early IQA methods were designed specifically for one distortion
type. For instance, Sheikh et al. [20] proposed a NR-IQA method for JPEG2000 compres-
sion by combining gaussian scale mixture and wavelet coefficient. Most recent work tries
to solve a more challenging task where an algorithm can be applied on more than one dis-
tortion type or the distortion type is unknown. The first question has been well studied, so
all the works we compare with can be applied on different distortions, see Table 4.

The second question is actually how to design a good system that can accurately esti-
mate image quality. For NR-IQA, methods can be grouped into two main categories, Natural
Scence Statistics (NSS)-based and training-based. The former one aims at seeking “natural-
ness” among undistorted images so that “unnatural” distortion signal can be easily detected
[6, 14–16, 18]. For the training-based method, it relies on a set of features learned from
images and then a classifier is trained. The training-based method can be considered as a
traditional machine learning task [10, 11, 13, 25, 27]. Therefore how to extract discriminant
features is a common question between vision recognition tasks and training-based IQA.
It has been shown that CNN-learned features outperform hand-designed ones (local binary
patterns or scale-invariant feature transform) in many areas, such as object classification [7],
face gender recognition [8] or fashion detection [9]. More recently, CNNs have been intro-
duced to NR-IQA and achieved state-of-the-art results [10, 11, 13]. It has also been shown
that the depth of CNNs plays an important role in feature extraction [7, 8, 22, 23]. The CNN
architecture used in our work consists of ten convolutional layers, which is deeper than prior
works, referred as Deep CNN (DCNN) in this paper.

For the third question, the use of saliency map has shown to be helpful in IQA tasks
[28]. However, most existing CNN methods have not introduced HVS into IQA designs.
In the works of [10, 11], a whole image is split into a set of small patches and the overall
estimation is based on the average of those patches. Two similar image patches may be
labelled as two totally different noise levels. In Fig. 1, human can easily classify the quality
of the two whole images, but it is difficult to recognise the difference based on the two
upper-right patches. It may lead to a low assessment accuracy that assigning equal weight
to all patches within an image. To introduce HVS, we combine CNNs with the saliency map
algorithm of [19], referred as Saliency-based DCNN (SDCNN). One close work to ours is



Multimed Tools Appl (2018) 77:14859–14872 14861

Fig. 1 Two similar patches from two images with totally different holistic quality

that of [13] in which a gradient map is used to measure the importance of each patch, see
Section 2.

In this paper, we train a DCNN model on the LIVE dataset [21] for comparability. Fol-
lowing the same experiment setting in [10, 11], the proposed DCNN achieves higher LCC
and SROCC scores, 0.9782 and 0.9735 respectively. Our experiment shows saliency maps
can further improve CNNs for NR-IQA. Our SDCNN achieves state-of-the-art results on
LIVE. To validate the generalisation ability of our SDCNN, we train an SDCNN model
on the LIVE dataset and apply it on the TID2008 [17] and the CSIQ [2] datasets for
cross-dataset evaluation, see Section 4.4.1.

We begin by reviewing current state-of-the-art techniques in Section 2. Then, in Section 3
we describe our CNN architecture and other pre-processing steps. The proposed method
is evaluated on the LIVE, TID2008 and CSIQ datasets in Section 4, while conclusions are
drawn in Section 5.

2 Related work

As mentioned above, the NSS-based NR-IQA method tries to capture statistical properties
of undistorted images regardless of the content. To compute NSS features, most algo-
rithms firstly transform an image into another domain to formulate distributions or train a
model. In the work of [16], the NSS feature is computed on a set of wavelet coeffiecients.
Their work needs to identify the distortion type before applying a distortion-specific clas-
sifier. Similarly, Saad et al. [18] transform each image using discrete consine transform
and the resulting coefficients are used for a generalized gaussian density model. Later,
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Li et al. [14] proposed a NR-IQA method using neural network to extract features in the
domain of shearlet. But the auto-encoder used in their work is different from CNNs. The for-
mer one is designed for unsupervised dimensionality reduction while the latter one has been
shown to achieve state-of-the-art results in many vision tasks [7–9, 22, 23]. More recently,
Hadizadeh and Bajicb [6] extract a richer quality feature (e.g. gradient magnitues and its
Laplacian) from the wavelet domain, so called wavelet-packet. Most NSS-based methods
need to transform images into a new domain before extracting features. This transformation
may be time consuming or only focus on a specific type of information (wavelet, DCT or
shearlet). Mittal et al. [15] proposed an NSS IQA method which is directly applied in the
spatial domain. In their work, it has been shown that mean subtracted contrast normalized
coefficients can represent statistical properties of distortion after applying the local normal-
isation. Recent CNN-based NR-IQA methods [10, 11], including ours, are also based on the
same spatial domain. But the difference is that we try to use CNNs to learn quality features
instead of seeking the naturalness.

On the other hand, much effort has been made recently in converting the IQA task into
a machine learning problem. Ye et al. [25] proposed a method that building a codebook for
image patches. The trainin process of their work is similar to CNN-based methods that the
learned quality feature is not hand-crafted. Later, the idea of codebook was combined with
object detection by Zhang et al. [27]. An interesting point is that object detection is actu-
ally similar to saliency maps but the saliency map is more suitable for “free-view” tasks
[3]. Feng et al. [5] proposed a NR-IQA method based on salient image patches. But it
may be a bottleneck for quality estimation that the feature learning step they used (sparse
coding). To leverage the power of CNN, Kang et al. [10, 11] proposed a simple CNN
architecture on local normalised images using [15]. But the depth of their CNN model
may limit the power of feature extraction and assigning eqaul weight to all patches may
not consistent with HVS. One close work to ours was proposed by Li et al. [13], which
also combines CNNs with a saliency algorithm of gradients. In their work, a two-layer
CNN model was used for feature extraction. More imporantly, they segment each image
and then apply the Prewitt operator to detect edges. However, weighing on edges may lose
the attention on other important factors for image quality, such as contrast sensitivity or
luminance [1, 29].

The proposed method tries to leverage the power of DCNN for feature extraction. Fol-
lowing the concept proposed in [22] that combining small perceptive fields with more CNN
layers, our proposed DCNN model contains ten convolutional layers. To better mimic HVS
for NR-IQA, we use saliency maps to measure the importance of each image patch. In the
work of [28], most existing saliency algorithms can improve the accuracy for IQA. We
choose the method of [19] for availability.

3 Methodologies

Similar to the work of [10], we apply local normalisation on each image in those datasets.
The normalised image is split into Image Patches (IPs) to train a DCNN model. Those image
patches are assigned with the same quality label as the input image. The main difference
between our architecture and the CNN in [10] is that more CNN layers are used to extract
quality feature for NR-IQA. For the proposed SDCNN, as shown in Fig. 2, we compute
saliency map for each image and the map is also split into Saliency Patches (SPs). The SP
is used to determine whether the associated IP is a Salient IP (SIP) for the trained model to
predict on, see Section 3.3.
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Fig. 2 Proposed SDCNN workflow

3.1 Local normalization

A contrast normalization has been applied before training. We locally normalise contrast
on every image in LIVE before training a CNN. Given an input image, we calculate the
normalised pixel Î (i, j) at the location of (i, j) within the window W by:

μ(i, j) =
∑m=M

m=−M

∑n=N
n=−N I (i + m, j + n)

(2M + 1)(2N + 1)
(1)

σ(i, j) =
√∑m=M

m=−M

∑n=N
n=−N(I (i + m, j + n) − μ(I))2

(2M + 1)(2N + 1)
(2)

Î (i, j) = I (i, j) − μ(i, j)

σ (i, j) + C
(3)

We set C=1 in cases of the divisor is zero, and the size of W is 7 × 7(M=N=3).

3.2 DCNN architecture

Kang et al. [10] used only one convolutional layer followed by maxpool and minpool layers.
In the work of [12], they visualised the convolutional kernels at the first layer that the CNN-
learned features are selective to frequency and orientation of an image. In Kang’s work,
they also showed the CNN-learned features for NR-IQA. But it is difficult to tranlate CNN
features into a human-readable format. Extensive works [7, 8, 22, 23] have shown a CNN
architecture with more layers can deliver a better featre extraction. Our proposed CNN
architecture is similar to [22] that we stack ten convolutional layers with small receptive
fields for NR-IQA.

Following the setting used in the work of [10], we split each input image into small
patches in the size of 32×32. To build a deep CNN architecture, we introduce the idea
proposed in [22] by stacking small kernels (3×3) as an efficient representation of large
kernels. A 2×2 maxpool layer is added and the number of kernels is doubled every two
convolutional layers. Two fully connected layers are added at the end of the model, each of
which has 2048 neurons. Dropout is added in the two fully connected layers with ratio of
0.5. Table 1 illustrates the architecture of our proposed DCNN.

We apply exponential linear units [4] after each convolutional and fully-connected layer.

f (x) =
{

x, if x > 0
β(exp(x) − 1), if x ≤ 0

(4)
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when x is greater than zero, its output is same as Rectified Linear Units. But when x is less
or equal than zero, the function squashes the output to a negative constant value, negative
one in our experiment(β=1).

3.3 SDCNN algorithm

The proposed saliency algorithm in [19] (known as SDSR) has been proven to be one of
the most stable saliency maps on distorted images [28]. The SDSR is based on similarity
between a pixel value and its neighbourhood. As shown in Fig. 1c, the saliency map mimics
human attention by focusing on important image regions.

The workflow of our SDCNN is shown in Fig. 2. For each distorted image X, we compute
the saliency map using the algorithm of [19]. The resulting saliency values S in the map
are in the range of [0,255]. The higher saliency value it has, the more salient image pixel
is. We rescale saliency map values into the range of [0,1]. For the ith image patch IPi , we
compute its Patch Importance PIi by:

PIi =
m=M−1∑

m=0

n=N−1∑

n=0

S(m, n) (5)

where S(m, n) is the saliency value at the location of m, n in the SPi . The PIi is in the
range of [0,M × N ].

We set a importance coefficient α as a threshold to select SIPs for quality score predic-
tion. The IPi is considered to be a SIP if PIi ≥ α × M × N . In our experiment, the α is
chosen from {0,0.01,0.1,0.5}. A higher α value leads to a more salient SIP subset.

When assessing an image, we only apply the trained model on the SIP subset to predict
quality scores. The final score of the whole image is the average of those scores computed
on SIPs. Note that the SDCNN method applies on all image patches when α = 0, which is
equivalent to DCNN.

4 Experiments and results

4.1 Datasets

The LIVE [21] dataset is used to train and test our DCNN and SDCNN methods. The
TID2008 [17] and the CSIQ [2] datasets are only used for SDCNN cross-dataset evalua-
tion. We train a classifier on the four common types (JPEG, JP2K, WN, GBLUR) from
the LIVE dataset and evaluate the model on the same distortion types from the other two
datasets.

4.1.1 LIVE IQA dataset

This dataset contains 799 distorted from five types of quality distortion, JPEG, JP2K, White
Noise(WN), Gaussian Blur(GBLUR) and Fast Fading(FF). LIVE also comes with 29 ref-
erence images. The subjective labels for this dataset are Difference Mean Opinion Score
(DMOS) in the range of [0,99] (higher DMOS denotes lower quality). In this work, we ran-
domly separate the whole dataset into training, validation and test sets, then each image is
split into smaller non-overlapping patches.
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4.1.2 TID2008 IQA dataset

The TID2008 dataset contains 17 different distortion types and each of which includes 100
distorted images. Note that the label for this dataset is Mean Opinion Score (MOS) in the range
of [0,9] (higher MOS value indicates better quality). To evaluate the classifier trained on
LIVE, a non-linear mapping function is applied to convert the LIVE DMOS label to TID2008
MOS. The whole TID2008 dataset is split to 80% for training and the rest for testing.

4.1.3 CSIQ IQA dataset

The CSIQ dataset is also used for cross-dataset validation. The label of this dataset is DMOS
but in the range of [0,1]. To evaluate the model on this dataset, we only rescale the LIVE
prediction into the same range of CSIQ. No non-linear mapping function is required.

4.2 Evaluation measurements

We evaluate our model using two measurements, LCC and SROCC. LCC is used to measure
the strength of correlation between predictions and ground truth on vaildation and test set.
While SROCC is high if ground truth can be monotonically represented by predictions on
the same set.

For distortion-specific experiment, all the images from a specific distortion type (e.g.
JPEG) are split into 60% for training, 20% for validation and 20% for testing. For non-
distortion-specific experiment, all images from the LIVE dataset are split following the
same protocol. During each train-test iteration, the best test result is recorded according to
the highest LCC obtained on the validation set. We repeat this train-test iteration 10 times
to report the average accuracy on the test set.

For the cross-dataset validation, we use the four types of distortions that are shared by
the three datasets. For the TID2008 dataset, 80% of the total is used to train a non-linear
mapping function and the rest is for testing. The whole CSIQ dataset is used for testing
because the mapping procedure is not required. We repeat this cross-dataset evaluation 30
times to report the average accuracy. Note that the saliency coefficient is applied in SDCNN
during the test phase, see Section 4.4.

4.3 DCNN experiments

Firstly, the distortion type is known before training a CNN model, so called distortion-
specific assessment. Each image in the training set is split into small IPs in the size of
32 × 32 and we assign the same label as the original image to all those patches. The starting
learning rate and momentum are 0.01 and 0.9. The total number of training epochs is 15
and the batch size used is 64. After every five epochs, the learning rate and momentum are
reduced by scaling and subtracting 0.1 respectively.

Table 2 illustrates the average LCC and SROCC of ten iterations on the test set. For
the distortion-specific experiment, our DCNN outperforms the CNN work [10] on most
distortion types, especially on “Fast Fading”, 0.9697 LCC and 0.9504 SROCC. But CNN
performs better on the type of “JPEG” (see Fig. 3a–e).

For non-distortion-specific assessment, all images from the LIVE dataset are used for
training regardless their distortion types, denoted as “ALL” in Table 2. Following the same
measurements used in the distortion-specific assessment, higher LCC and SROCC are
obtained by proposed DCNN, 0.9782 and 0.9735 respectively (see Fig. 3f).
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Table 2 Average DCNN
performance on the LIVE test set Distortion Type JP2K JPEG WN GBLUR FF ALL

CNN [10]-LCC .9530 .9810 .9840 .9530 .9330 .9530

DCNN-LCC .9782 .9810 .9933 .9756 .9697 .9782

CNN [10]-SROCC .9520 .9770 .9780 .9620 .9080 .9560

DCNN-SROCC .9691 .9532 .9901 .9702 .9504 .9735

Fig. 3 LCC and SROCC accuracies on the LIVE validation set using different importance coefficient (α =
[0, 0.01, 0.1, 0.5])
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Fig. 4 The trained model is evaluated on different subsets of patches (a), (b) based on the importance
coefficients α used.

4.4 SDCNN Experiments

The second experiment is to combine the proposed DCNN model with the saliency map of
[19]. As discussed in Section 3.3, the importance coefficient α is applied to ignore insignif-
icant image patches when predicting the quality score. In this experiment, the value of
α ∈ {0, 0.01, 0.1, 0.5}. When α = 0, the SDCNN model is the same as DCNN because it
considers all IPs as SIPs. When we set the α to a large value (e.g. α = 0.5), the SDCNN
only predicts on SIP subset, see Fig. 4c. All experiment settings used for the SDCNN are
the same as used in last experiment DCNN.

Figure 3 shows the average LCC and SROCC learning curve of ten iterations on the
LIVE validation set. Different α values are applied to different distortion types. As shown
in Fig. 3a, d–e, saliency map improves accuracy on the three distortion types of “JP2K”,
“GBLUR” and “FASTFADING”. The reason behind could be people focus more on salient
regions when marking the three distortion types. Our proposed SDCNN also achieves
improvement for non-distortion-specific accuracy on LIVE Fig. 3f.

The average LCC and SROCC of ten iterations on the LIVE validation set are used to
choose the best importance coefficient α∗ for each distortion type, see Table 3. For “JPEG”
and “WN”, the highest LCC on the validation set is obtained when α = 0. That is the
average performance of SDCNN on the test set is the same as DCNN on the two distortion
types because no saliency map is applied during the test phase, as shown in Table 4.

The performance of SDCNN on the LIVE test set based using chosen α∗ is reported
to compare against other methods in Table 4, the best results are highlighted in bold. Our
proposed SDCNN outperforms other IQA methods on most distortion types. Especially on
the “ALL” distortion type, the proposed method achieves 0.9794 LCC and 0.9757 SROCC,
which outperforms the state-of-the-art FR-IQA method in [26]. The method in [6] achieved

Table 3 The highest average
LCC on the LIVE validation set
and the best importance
coefficient α∗

Distortion Type JP2K JPEG WN GBLUR FF ALL

α∗ 0.1 0 0 0.5 0.1 0.1

LCC .9829 .9832 .9934 .9766 .9708 .9807
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Table 4 LCC and SROCC on the LIVE test set

LCC JP2K JPEG WN GBLUR FF ALL

DIVINE [16] .9220 .9210 .9880 .9230 .8880 .9170

BLIIDNS-II [18] .9348 .9676 .9799 .9381 .8955 .9302

BRISQUE [15] .9229 .9734 .9851 .9506 .9030 .9424

CORNIA [25] .9510 .9650 .9870 .9680 .9170 .9350

SOM [27] .9520 .9610 .9910 .9740 .9540 .9620

SESANIA [14] .9537 .9732 .9806 .9749 .9195 .9476

Hadizade [6] .9591 .9720 .9954 .9717 .9345 .9601

Prewitt [13] .9780 .9770 .9930 .9450 .9600 .9660

SFOSR [5] .9390 .9510 .9490 .9450 .9250 .9640

CNN [10] .9530 .9810 .9840 .9530 .9330 .9530

DCNN .9782 .9810 .9933 .9756 .9697 .9782

SDCNN .9801 .9810 .9933 .9744 .9723 .9794

SROCC JP2K JPEG WN GBLUR FF ALL

DIVINE [16] .9130 .9100 .9840 .9210 .8630 .9160

BLIIDNS-II [18] .9285 .9422 .9691 .9231 .8893 .9306

BRISQUE [15] .9139 .9647 .9786 .9511 .8768 .9395

CORNIA [25] .9430 .9550 .9760 .9690 .9060 .9420

SOM [27] .9470 .9520 .9840 .9760 .9370 .9640

SESANIA [14] .8862 .9293 .9309 .9410 .8807 .9340

Hadizade [6] .9467 .9768 .9903 .9695 .9202 .9521

Prewitt [13] .9640 .9350 .9880 .9410 .9450 .9580

SFOSR [5] .9320 .9470 .9820 .9510 .9460 .9530

CNN [10] .9520 .9770 .9780 .9620 .9080 .9560

DCNN .9691 .9532 .9901 .9702 .9504 .9735

SDCNN .9691 .9532 .9901 .9732 .9513 .9757

the highest result on the type of “WN”. The reason behind can be that the first and the
second order information can better represent the white noise.

4.4.1 SDCNN cross-dataset test

Deeper CNN architectures normally consist of more parameters which may lead to over-
fitting on a small training set. To investigate generalisation ability of our SDCNN, we train a
model on the LIVE dataset and test on TID2008 and CSIQ. Only the four common distortion
types (“JP2K”, “JPEG”, “WN”, “GBLUR”) are used for this cross-dataset experiment. The
output label of our model is in the DMOS range of [0,99]. Following the settings in [11],
we split the TID2008 dataset into two subsets, 80% of the data is used to train a non-linear
mapping and the rest is for testing. We repeat this split 30 times to report cross-dataset
performance on the TID2008 dataset. We do not apply non-linear mapping on the CSIQ
dataset so that the whole dataset is used to report test result. The best importance coefficient
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Table 5 LCC and SROCC on the
TID2008 and the CSIQ datasets,
trained on the LIVE dataset

LCC TID2008 CSIQ

CORNIA [25] .8900 .9140

SFOSR [5] – 0.7290

CNN[10] .9030 .9130

IQA-CNN++ [11] .8950 .9280

DCNN .8865 .9292

SDCNN .8872 .9295

SROCC TID2008 CSIQ

CORNIA [25] .8800 .8990

SFOSR [5] – 0.7400

CNN [10] .9200 .9230

IQA-CNN++ [11] .9060 .9360

DCNN .8824 .9340

SDCNN .8853 .9341

α∗ = 0.1 for SDCNN is chosen based on the non-distortion-specific setting in the last
experiment (Table 3). Our results are compared against other state-of-the-art methods in
Table 5, the best results are highlighted in bold.

5 Conclusions

In this paper, we have proposed a deep CNN architecture for NR-IQA and achieved state-
of-the-art results on different datasets. Comparing with coding-based NR-IQA methods [5,
25], CNN-learned features can deliver a higher performance and better generalise on unseen
data. Our method outperforms the work of [10] by leveraging a deeper CNN architecture
for quality feature extraction. The saliency map has been shown that can further improve
the accuracy of CNNs. The training time for each batch is 0.048 seconds and the total train-
ing time for 15 epoches on the whole LIVE dataset is about two hours using NVIDIA GTX
980. It takes the DCNN model 0.042 seconds when evaluating on an image. But computing
saliency map is time consuming for evaluation which[19] costs about three seconds for an
image from LIVE (average height: 548, average width: 665). An even deeper CNN architec-
ture (hundreds of layers [7]) might deliver a better performance but existing quality datasets
are much smaller than the ones for object recognition. Merging quality dataset is also very
difficult due to the subjectiveness of annotation. Nevertheless, CNN-learned feature offeres
a new promising way for NR-IQA.
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