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Abstract A fundamental problem in computer vision is finding correspondences between
features in pairs of similar images. By comparing feature descriptors instead of pixel intensi-
ties, the matching capability is significantly increased. Keypoints extracted by Scale-Invariant
Feature Transform (SIFT) provide superior matching ability, however, a small proportion of
false corresponcences is always inevitable. The exemption of false matches is achieved using
robust fitting algorithms, with RANSAC (random sample consensus) being a popular one.
SIFT and RANSAC are computationally demanding and time consuming algorithms. When
the target application operates in real-time, conventional approaches based on personal
computers usually fail to meet the requirements. In this paper, an FPGA-based architecture
for real-time SIFT matching and RANSAC algorithm is presented. The proposed scheme is
applied to identify the correspondences between point features across consecutive video
frames and reject the false matches. The architecture is verified using the DE2i-150 develop-
ment board. Using Cyclone IV technology, the system supports a processing rate of 40fps for
VGA resolution and therefore meets real-time requirements.

Keywords Scale-InvariantFeatureTransform(SIFT) .Randomsampleconsencus (RANSAC) .

Field Programmable Gate Array (FPGA) . Robotic vision . Real-time . Robust fitting

1 Introduction

A common task in many computer vision problems is to establish image correspondences
between similar images. Applications such as image stitching [21], object recognition [22],
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visual odometry [4], stereo vision [26] require to deal with this issue. During the last two
decades, many feature extraction algorithms have been proposed, such as Scale Invariant
Feature Transform (SIFT) [22, 23], Speeded Up Robust Features (SURF) [2, 3], BRIEF [5],
BRISK [20]. The matching procedure was significantly improved by using descriptor-based
metrics rather than comparing pixel intensities. A well-studied review of the matching
performance of local descriptors was presented in [24]. Even with advanced descriptors, the
matching process can result in a considerable number of false matches which need to be
identified and removed. Random Sample Consensus (RANSAC) [11] is one very popular
robust fitting algorithm which can be used to eliminate false matches.

In order to apply SIFT descriptor matching, the calculation of the distance between vectors
of 128 dimensions is required. The feature descriptors of the first image are compared with the
feature descriptors of the second image and those with the smallest distance are detected. If the
smallest distance is less than a threshold value, then the corresponding pair of features is
classified as a match. The aforementioned procedure constitutes a heavy processing load
which can become even heavier when the number of features is several hundreds or thousands.
In addition, RANSAC algorithm receives the set of correspondences, which is output from the
matching step, in order to remove the false matches. In general, RANSAC is an iterative
process which selects a number of random samples from a set, in order to fit a model for this
set. The samples which satisfy the model are called inliers and the corresponding set consti-
tutes the consensus set. The samples which do not satisfy the model are called outliers. The
model which produces the larger consensus set is considered as valid and the corresponding
inliers are kept for further processing.

Due to their huge computational complexity, SIFT matching and RANSAC processes are
rarely used when real-time operation is required. Implementations based on personal com-
puters fail to meet real-time requirements and therefore special designed hardware accelerators
are used to resolve this problem. In the literature, proposed architectures make use of GPUs,
FPGAs and ASICs in order to accelerate the algorithms execution, exploiting characteristics of
paralellism. Unfortunately, the use of hardware in algorithms implementation has its own
limitations, since there is a finite amount of resources on the chips. Some parts of the
algorithms can be parallelized accelerating the execution, while others are implemented in
an iterative manner using state machines.

In this paper, a complete FPGA-based architecture able to identify image correspondences
for robotic vision applications is proposed. Real-time SIFT matching is applied between
features in consecutive video frames. This work assumes a preceding step of SIFT feature
extraction. The present architecture has been developed to supplement previous work pub-
lished by the current authors [28]. However, the proposed system can be also used in
conjunction with other SIFT extraction architectures presented in the literature, such as in
[17]. A first implementation by the present authors of a pipelined matcher with basic
RANSAC support appeared in [30]. In the present paper, both matcher circuitry and RANSAC
implementation are revisited. Considering the SIFT matcher, an improved design is proposed,
which is more resource efficient. As a result, the architecture can fit in a medium scale FPGA
device. Furthermore, the new RANSAC implementation is more efficient in terms of false
matches’ elimination, under general image transformations such as translation, scaling and
rotation. When a new feature is extracted from the current frame, its descriptor is compared
with stored feature descriptors from the previous frame, using combinational parallel circuitry.
If the matching criterion is satisfied, then the pixel coordinates are stored in on-chip RAM. A
shift register structure shifts the descriptors across a moving window of 16 feature descriptors,
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which is used to facilitate the pipelining of the matching procedure and supports a standard
number of parallel comparisons between features. Additional shift registers are used in order to
store the current feature descriptor and use it again later for a new set of comparisons, when the
moving window is filled with 16 new features. The corresponding intermediate results are
stored as well. By using repeated comparisons with sets of 16 descriptors in the moving
window, the active size of the moving window can be practically increased, without reserving
additional resources for each new set of comparisons between feature descriptors. As it has
been discussed in [30], the active size of the moving window affects significantly the matching
ability. The larger the moving window, the better the matching results.

Furthermore, RANSAC algorithm is applied to reject the false matches after the completion
of the matching step. In the current work, the supported image transformations are isotropic
scaling, translation and rotation. Although a subset of image transformations is supported in
comparison with our previous work [29], the present scheme is more resource efficient,
rendering the complete architecture able to fit in a mid-range FPGA device. Moreover, the
limitation of the supported transformations does not affect the quality of outlier elimination,
since the input frames are read with high speed and in general, the overall affine transformation
does not occur frequently between frames. In feature matching between images, a set of
correspondences is used to derive the transformation matrix between the two images. The
required number of random samples is selected in order to compute the transformation model.
Afterwards, based on the calculated matrix, the compliance of every match with the derived
model is examined. Inliers constitute the true matches, while outliers constitute the false
matches and consequently, they are rejected. The model which gives the higher number of
inliers is selected to produce the consensus set.

The main contributions of this paper are listed below:

& A new hardware design of a SIFT matcher is proposed. The system matches features
extracted in successive video frames. The design can fit in a middle range FPGA device
and is capable to support real-time operation.

& RANSAC is parallelized to a significant degree; its execution requires as many clock
cycles, as the selected random samples.

The rest of the paper is organized as follows. In Section II, a quick review of the related
literature is presented. The proposed matcher scheme is described in Section III. In Section IV,
the RANSAC module is presented. In Section V, the proposed architecture is evaluated and
Section VI concludes the paper.

2 Literature survey

The current work deals with two subjects that are usually faced separately in the literature. The
feature matching process in conjunction with the robust fitting algorithms is not met in
standalone papers. Regarding the matching process, to the best of our knowledge, there are
not any other papers that present FPGA-based implementations using SIFT features, apart
from [30]. Therefore, the literature survey is extended to include matchers in general,
regardless of the type of features or the special hardware used in the implementation.

In [30], the present authors introduced a SIFT matching architecture with RANSAC
support. The system was capable to process 81fps, meeting real-time requirements. This was
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the first attempt in the literature to solve this problem. However, certain important issues
needed improvement, like the considerable amount of chip resources required for an efficient
matcher and the ability of the RANSAC implementation to manage rotated images.

Condello et al. [6] presented a software-based SIFT matcher developed in the OpenCL
environment. The matching procedure was accelerated by exploiting GPU’s capabilities, such
as parallel processing. The authors claimed that their implementation did not degrade the
matching ability in comparison with the Best-Bin-First algorithm used by Lowe [23]. Their
system supported processing time 833 μs/descriptor or else 1200descriptors/s.

Haiyang et al. [14] used the CUDA platform in order to host their implementation.
Detection and description of SIFT features and the creation of a KD-tree space was conducted
by the CPU, while the search for the nearest neighbor was conducted by the GPU using
multithreading processing. The system supported up to 25fps, when VGA image resolution
was used.

Fassold and Rosner [10] also used CUDA environment to apply SIFT features extraction
for large scale video analysis tasks. In order to accelerate the execution, each block was
optimized accordingly so that all data required for the calculations was loaded to the GPU’s
shared memory once and was accessed as many times as needed by various threads. As a
result, global memory accesses were minimized. Their work was compared with a
CPU implementation based on HessSIFT library and it was found that it accelerates the
execution by a factor from 4.3 to 6, depending on the resolution and the number of SIFT
features.

Fürntratt et al. [12] used a SIFT matching scheme in order to develop a brand visibility
application in broadcast content. GPU took over the SIFT matching procedure between N
template descriptors extracted from the logo and M descriptors extracted from the current
frame. The speedup factor of the GPU implementation ranged from 6 to 10 when it was
compared with a multi-threaded CPU implementation using FLANN (Fast Library for Ap-
proximate Nearest Neighbor) algorithm from OpenCV.

Wang et al. [31] proposed an embedded System-on-a-Chip for feature detection, description
and matching. Feature detection used SIFT algorithm, while description and matching used
BRIEF algorithm [5]. The architecture included a fully pipelined detector. Description and
matching were implemented using state machines. High speed clocks were applied in the
description and matching schemes, 200 MHz and 150 MHz respectively, in order to support
high frame rate. The system supported processing rate 60 fps for images with resolution
1280 × 720 pixels, when the total number of features did not exceed 2000.

Kapela et al. [18] presented a hardware-software co-design, in which a FAST detector and a
FREAK [1] descriptor were implemented in software. The matcher was implemented in an
FPGA device. The matching scheme included parallel circuits in order to calculate the
Hamming distance between feature descriptors. The higher the number of Hamming calcula-
tors, the better performance the system presented. When 64 Hamming calculators were fit in
the design, the system was capable to process about 30 fps, assuming a fixed number of 128
features per frame.

Di Carlo et al. [7] introduced an FPGA-based feature matcher for space applications.
The Harris corner detector was used to detect features. The matching metric involved
the calculation of the un-normalized cross correlation between 11 × 11 image patches around
the candidate keypoints. The search for matches was limited to keypoints with coordinates
differing by no more than 17 pixels among two successive frames. The architecture supported
processing speed 33 fps for images with resolution 1024 × 1024 pixels.
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Regarding RANSAC algorithm, one main approach found in the literature in order to
accelerate its execution exploits the capabilities of GPUs for parallel programming. Although
execution speedup is achieved [16], this approach is not suitable for robotic vision applications
since it requires high power. Other approaches include FPGA devices, which fit better in
embedded low power applications. Since the proposed accelerator constitutes an FPGA-based
implementation, we focus our survey on those papers which use FPGAs for RANSAC
acceleration.

Dung et al. [9] presented an FPGA implementation of RANSAC algorithm for
feature-based image registration. The paper considers affine transformation between images.
The transformation matrix was calculated using a systolic array structure which consisted of
twelve processing elements. Divisions were performed in one clock cycle by multiplying
the dividend with the divisor’s reciprocal, which was preloaded to a LUT scaled
up by 5 bits. The system was able to process 30 fps in images with resolution 1024 × 1024
pixels.

Tang et al. [27] proposed a hardware/software co-design of RANSAC algorithm for real-
time affine geometry estimation. The authors implemented in hardware only the most intensive
task of the algorithm, i.e. the fitness of the hypothesis model to all samples. The hardware
module used a pipelined scheme of 4 cycles to increase maximum clock frequency. The
overall number of cycles, required to process all samples for one hypothesis model, is equal to
the number of samples plus 4 cycles. The architecture was able to process a video stream of 30
fps.

Dohi et al. [8] described an FPGA implementation of ellipse estimation for eye tracking.
This work included pre-processing steps, the Starburst algorithm to extract feature points of a
pupil contour and finally the RANSAC algorithm. RANSAC used the extracted features to fit
the best ellipse. The authors used three different methods to solve the system of the five
required equations to fit the ellipse, Cramer’s rule, Gauss-Jordan elimination and LU decom-
position. Cramer’s rule was found to be the most compact method. The system achieved a
throughput of 62.5 fps.

Compared to the above implementations, the system proposed in the present paper excels in
performance, since it can track a large number of true matches between video frames, at a
frame rate of 40 fps. Moreover, the complete architecture of SIFT matching and RANSAC can
fit into middle range FPGA devices, such as Cyclone IV.

3 SIFT matcher module

3.1 The moving window concept

A quite common method to accelerate processing is to apply operations in parallel. The
parallelism of the SIFT matching process would require many concurrent comparisons
between feature descriptors in the previous and in the current frame. Ideally, as a feature is
detected in the current frame, its descriptor should be compared in parallel with all descriptors
of the previous frame. However, this accomplishment would require huge resources. In the
case of matching features between successive video frames in real-time, the two images are
slightly different. If the comparisons between features are limited to those features that are
located in the same image area, then the required resources could be decreased. Nevertheless,
applying this limitation is not a trivial task when the camera sensor is moving arbitrarily.
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In order to limit the number of comparisons, we use a moving window of feature
descriptors. Each new detected feature in the current frame is matched against all descriptors
detected in the previous frame that reside in the moving window. On each new detected
feature, the moving window slides by one element inside the overall descriptor window. The
concept is depicted in Fig. 1. The matching ability is heavily dependent on the size of the
moving window. The smaller the moving window, the higher the probability that a new
detected feature of the current frame is located in an image area, different from the area that
contains the features of the moving window. If this happens, then the matching process is
destined to fail, since the feature of the current frame will not be matched with any feature of
the previous frame. Even if a match is found, it will be a false match. Rapid movements of the
vision system or far views also make the problem more difficult. By increasing the size of the
moving window, the possibility to get out of the area that is enclosed by the moving window is
decreased. A larger moving window produces higher accuracy in the matching procedure. On
the other hand, large moving windows demand extremely high resources from the FPGA chip.
In our previous work [30], we found that in order to have satisfactory matching ability, the
moving window size should be about 1/4th of the number of the detected features. Considering
that the detected features will be some hundreds, a moving window size of 128 features could
be sufficient for a wide range of applications. However, a moving window size of 128 features
could fit only in high-end FPGA devices. Instead of employing a large window, we propose in
the following a multiplexing scheme in which the employed moving window remains small,
while the active moving window size is 128 and as a result, the matching ability of the
architecture is not degraded. If the real size of moving window is selected to be 64 or 32
features, a great amount of FPGA resources is still required. In the proposed architecture, there
is one block which calculates the SAD (Sum of Absolute Differences) between descriptors and
two blocks which compare SAD values and forward the coordinates of the lowest ones to the
next comparison level. Those blocks are depended on the moving window size. The architec-
ture with sizes 64 or 32 cannot fit to mid-range FPGA devices such as Cyclone IV. The size of
the moving window has been finally selected to be 16, which is the maximum size that
produces a circuit that fits to our target FPGA device. As a result, the multiplexer should be 8
to 1 for the proposed scheme. More details about the architecture are given in the following
paragraph.

3.2 The SIFT matcher hardware scheme

The proposed scheme of the SIFT matcher is depicted in Fig. 2. Various blocks inside the
architecture are enclosed with dotted lines. The blocks with rounded corners declare combi-
national logic, while the blocks with rectangular shape indicate sequential structures. It is
assumed that SIFT extraction has been applied in a previous step, as presented in [28]. Each
feature descriptor is extracted in one clock cycle, as image pixels are read in a streaming
manner from the CMOS camera sensor. The descriptor vector consists of 128 elements of 6
bits each one. The feature coordinates are also included, containing 11 bits for every axis and
allowing support for images with resolution up to 2048 × 2048 pixels. As a result, 790 data bits
are produced when a SIFT feature is detected and its descriptor is extracted. 768 bits are used
to store the descriptor elements and 22 bits to save the feature coordinates.

The extracted descriptors from the previous frame are stored in the Bdescriptor FIFO
buffer^, which is a buffer of 2048 elements. Each FIFO element has width 790 bits, so the
structure can store 2048 descriptors per frame. The BSIFT module^ block is described in [28]

9398 Multimed Tools Appl (2018) 77:9393–9415



and outputs streaming descriptors, as they are extracted from the current frame. At the
beginning of the current frame, 16 descriptors are read from the Bdesctiptor FIFO buffer^
and saved into the Bmoving window array .̂ This task requires 16 clock cycles. The Bmoving
window array^ constitutes the descriptor moving window and in our implementation has a
length of 16 descriptors.

Moving window
of descriptors
from 17 to 32

descriptor
1

descriptor
17

Previous
frame

descriptors

Current
frame

descriptors

descriptor
33

...

Moving window
of descriptors

from 113 to 128

Moving window
of descriptors
from 1 to 16 ...

...

descriptor
1

Moving window
of descriptors
from 33 to 48

descriptor
17

descriptor
1

descriptor
113

...
descriptor

97
descriptor

1...{
8 descriptors

Fig. 1 The concept of moving window

Fig. 2 The SIFT matcher architecture
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The stored descriptors in the Bmoving window array^ as well as one descriptor of the
current frame are connected to the BSAD calculator^ block. The BSAD calculator^ is a
combinational circuit, where the SAD (Sum of Absolute Differences) values between the
descriptor of the current frame and the stored descriptors in the moving window of the
previous frame are calculated. The output of this block is the minimum SAD value, among
all possible matches, as well as the coordinates of the corresponding feature. Each SAD value
is stored with 12 bits, while the coordinates are saved with 22 bits. The BSAD calculator^
block and the Bmoving window array^ are the most resource demanding circuits in the FPGA.

The BComparator/Multiplexer circuit – ×16^ performs the matching process. It receives as
input the output of the BSAD calculator^ block. It consists of 4 levels of comparators and
multiplexers. It compares in pairs the 16 SAD values and forwards the smaller SADs and the
feature coordinates to the second level. The same process is applied continuously until we
reach the fourth level, in which the lowest SAD is derived. It is important to maintain the
aforementioned blocks as small as they can be so that the architecture can fit in the chip. For
this purpose, the number of concurrent comparisons needs to be low. On the other hand, a
small number of concurrent comparisons results in a reduction of the matching ability of the
system. In order to achieve a satisfactory matching ability, the system should be capable to
support at least 128 concurrent comparisons [30]. However, a matcher with such a lengthy
comparison block cannot fit in a mid-range FPGA device.

In order to overcome this issue, the proposed architecture adopts a multiplexing scheme
based on a moving window of length 16. In this scheme, each feature from the current frame is
stored into a RAM-based shift register structure and is compared again with the moving
window when 16 new descriptors have been loaded. This is repeated 8 times, so that the active
moving window is increased to 128, without a proportional rise in the required resources.

This multiplexing scheme is implemented in the BRAM-based SR descriptors circuit^. It
consists mainly of the BRAM-based SR–112^ structure. This structure includes 112 shift
regsiters in 7 groups, with tap distance equal to 16. The width of each shift register is 790
bits, so that one full descriptor can be stored in each one element of the structure. The output
taps include the descriptor vector as well as the feature coordinates. The descriptor vector at
each output tap is connected to the inputs of the BMUX1^ multiplexer. The control lines of the
multiplexer are driven by a 3-bit counter. The 3-bit counter clock is 8 times faster than the
clock used by the BRAM-based SR–112^ structure. The clock of the 3-bit counter is also 8
times faster than the clock used in the BSIFT module^. Let us define the clock signal of the
sequential circuits BSIFT module^ and BRAM-based SR–112^ as clk, while the 8 times faster
clock of the 8-bit counter as clk8. On each clk8 cycle, one different input is selected from the
MUX1 to be connected to the BSAD calculator^ block. As a result, 8 different feature
descriptors will be compared with the current moving window by the end of 8 clk8 cycles.
The current feature descriptor will be compared again with a new moving window after the
detection of 16 new features, since it will have been shifted to the shift register position that is
connected to the second input of MUX1. This shift proceedure will continue until the feature
descriptor reaches the last place of the shift register. Thus, each feature descriptor is compared
with 8 different moving windows of 16 descriptors, giving an active moving window of 128.

The adopted multiplexing scheme produces 8 matching sub-results at different times in the
pipeline sequence. Those sub-results should be synchronized and compared with each other in
order to find the best match. The BRAM-based SR results circuit^ block is used for this
purpose. It consists of 7 shift register structures, named BRAM-based SR–8 × 16^, of 128
elements each one. The shift registers width is 34 bits. This sequential curcuit is clocked by the
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clk8 clock. It receives the SAD value as well as the coordinates of the corresponding feature
which has been detected as the best match for the current moving window. When a new feature
is detected, 8 sub-results will be saved. The shift register structure provides concurrent access
to all sub-results of a specified feature. Let us see the complete journey of intermediate
matching results for a detected feature. When a new feature is extracted, 8 cycles of clk8 will
shift the matching results of the first moving window – named MV1 – to Reg7 of the first line
in the shift registers structure. After the detection of 16 additional features, the initial feature
has shifted to the second input of the MUX1. The corresponding matching result MV1 has
shifted to Reg7 of the second line, while the match with the new moving window MV2 has
shifted to Reg6 of the first line. After the detection of 16 more features, the match with the
descriptors of the MV1 will be in Reg7 of the third line, the match with the MV2 in Reg6 of
the second line and the match with the MV3 will be in Reg5 of the first line. When a total of
16 × 7 = 112 features has been detected, the match with the MV1 will have shifted to Reg7 of
the 8th line. Similarly, the match with the MV2 will have shifted to Reg6 of the 7th line and so
on, up to the final match with the moving window MV8, which will be available at the output
of the BComparator/Multiplexer circuit – ×16^.

Since the BRAM-based SR results circuit^ provides concurrently the matching results between
a specific feature and 8 different 16-element moving windows, a circuit for additional compar-
isons is required in order to produce the best match. This is achieved by using the BComparator/
Multiplexer circuit – ×8^. This scheme is internaly similar to the BComparator/Multiplexer circuit
– ×16^ but it has 8 inputs instead of 16. The 8 inputs require 3 levels of comparators and
multiplexers. The SAD output of the BComparator/Multiplexer circuit – ×8^ block is compared
with a predefined SAD threshold and if it is smaller, then the Bmatch flag^ fires. Apart from the
SAD value, this circuit outputs the stored coordinates of the feature that is matched. The signal
BPrevious frame feature coordinates^ is valid when the Bmatch flag^ is asserted.

The remaining task in order to complete the matching process is to locate the feature of the
current frame inside the BRAM-based SR–112^ structure, which is matched with the feature
that comes out from the BComparator/Multiplexer circuit – ×8^ block. Normally, when the
BRAM-based SR–122^ is fully filled with data, the corresponding feature is located at the last
output tap of the shift registers. Its coordinates are sent to the output of the matcher circuit,
named as BCurrent frame feature coordinates^ and together with the BPrevious frame feature
coordinates^ constitute the match. This means that when a feature is detected in the current
frame, its match with the features of the previous frame will be derived after the detection of
112 more features.

The feature matching pipeline logic is depicted in Fig. 3. The columns Bclk^ and Bclk-n^,
n = 1,…,8 show data outputs at specific clock cycles. The BMov Window^ row denotes the
current moving window with features of the previous frame. Rows BO1^ to BO8^ indicate the
outputs of the BRAM-based SR results circuit^. It is assumed that n-1 features have been
already detected and the BRAM-based SR-112^ structure has been filled completely with
feature data. When the nth feature of current frame is extracted, the corresponded match against
the moving window that include features from the nth to the (n + 15)th of the previous frame is
identified at the first clk8 cycle. The matching results will be appeared at the O1 output. At the
second clk8 cycle, the best match between the (n-16)th feature and the previously mentioned
[n, n + 15] moving window, which includes features from nth to (n + 15)th, appears at the O1
output. The same reasoning is applied to the rest outputs. At the 8th clk8 cycle the outputs
BO1^ to BO8^ will hold the best matching results between the (n-112)th feature and 8
osculating moving windows forming an overall moving window from feature (n-112) to
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(n + 15), which means an active moving window of 128 elements. When the (n + 1)th feature is
detected from the current frame, the BO1^ to BO8^ outputs will hold the matches between the
(n-111)th feature of the current frame and the moving window from (n-111) to (n + 16). Finally,
the nth feature of the current frame will have been matched when (n + 112) features have been
detected after the 8th clk8 cycle.

There is also one more block, which is named Bmatcher controller .̂ The Bmatcher
controller^ is responsible for the control of sequential operations of the matcher scheme. It
produces all control signals that the matcher blocks require for their operability. It also
produces the required clock enable signals to create the clk signal from the faster clk8 clock.
It loads the initial descriptors from the Bdescriptor FIFO buffer^ to the Bmoving window array^
at the beginning of each frame. It stores every new extracted descriptor of the current frame in
the FIFO buffer. In general, its logic is implemented using state machines.

Moreover, the Bmatcher controller^ manages the behavior of the matcher at specific points
of the process, for example at the start and at the end of a frame. Let us assume that the last
feature of the current frame has been extracted while the Bdescriptor FIFO buffer^ still contains
descriptors, meaning that it is not empty. In this case, the Bmatcher controller^ will produce the
appropriate clk enable signals to the RAM-based shift register structures so that in each clk
cycle, the last feature will be propagated until it arrives at the last output tap of the BRAM-
based SR–112^ structure. If this is accomplished while the moving window still does not have
reached to the end of the Bdescriptor FIFO buffer^, then the last descriptors in the FIFO buffer
will not be matched. This case occurs when the previous frame has far more features than the
current frame. If the moving window reaches the end of the Bdescriptor FIFO buffer^ before
the last feature comes out from the BRAM-based SR–112^ structure, then the moving window
will stall while it contains the last 16 descriptors. This means that some of the last detected
features will be matched with a descriptor moving window with active size less than 128. The

Fig. 3 Matching sequence between incoming features of the current frame and stored features of the previous frame
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last case is when the moving window reaches the end of the Bdescriptor FIFO buffer^ while
features are still being detected in the current frame. In such a case, the last 16 features of the
previous frame will be compared continuously with every new feature of the current frame.
This occurs when the current frame has far more features than the previous frame.

4 RANSAC algorithm hardware module

As it was mentioned previously, RANSAC is used in order to remove the false correspon-
dences from the set of matches that comes out from the matcher scheme. The image
transformation matrix is calculated using the required number of random matches. The
transformations taken into account are rotation, scaling and translation. Based on each
produced matrix, the rest of the matches are examined and classified as inliers or outliers.
The transformation matrix which gives the higher number of inliers is considered to describe
best the image transformation and is selected to produce the consensus set of the true matches.
It makes sense, however, to consider as true matches the inliers of other transformation
matrices as well, if those are supported by adequately many matches, according to a predefined
threshold. Such inliers are attributed to different scales within the same image. This is possible
due to the existence of objects at different distances from the camera.

4.1 Computation of the Transformation Matrix

Let us consider a set of n matches between the current and the previous frame as U = {{(x1a,
y1a), (x1b, y1b)}, {(x2a, y2a), (x2b, y2b)}, …, {(xna, yna), (xnb, ynb)}}, where index a denotes the
current frame and b the previous frame. By taking into account rotation, scaling and translation
between frames, the set of matches should satisfy (1).

xa
ya

� �
¼ Rtra � Rsca � Rrot � xb

yb

� �
ð1Þ

where Rrot, Rsca and Rtra are defined in Homogenous space [13], as in (2).

Rrot ¼
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

2
4

3
5;Rsca ¼

sx 0 0
0 sy 0
0 0 1

2
4

3
5;Rtra ¼

1 0 tx
0 1 ty
0 0 1

2
4

3
5 ð2Þ

Equation (1) assumes that rotation about the point with coordinates (0,0) is performed first,
then scaling is applied and finally, translation is added. This does not mean that the formula
will fail if a transformed image is produced with different order. The formula will fit the
independent variables appropriately to describe best the final transformation.

We also assume isotropic scaling, resulting in sx = sy = s. Combining (1) and (2), we end up
with the following equations:

xra ¼ s� cosθ� xrb−s� sinθ� yrb þ tx
yra ¼ s� sinθ� xrb þ s� cosθ� yrb þ ty

� �
ð3Þ

In (3), there are two equations with four unknowns, which are s, θ, tx and ty. Therefore, two
samples from the set of matches are required to compute the model. By selecting two random
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matches, e.g. r1 and r2, and setting A = s∙cosθ, B = s∙sinθ, the following equations hold:

xr1a ¼ A� xr1b−B� yr1b þ tx
yr1a ¼ B� xr1b þ A� yr1b þ ty
xr2a ¼ A� xr2b−B� yr2b þ tx
yr2a ¼ B� xr2b þ A� yr2b þ ty

8>><
>>:

9>>=
>>;

ð4Þ

By setting the constraint |xr1b–xr2b| + |yr1b–yr2b| ≠ 0 and solving (4), A, B, tx, ty are calculated
as in (5).

A ¼ yr1a−yr2að Þ � yr1b−yr2bð Þ þ xr1a−xr2að Þ � xr1b−xr2bð Þ
xr1b−xr2bð Þ2 þ yr1b−yr2bð Þ2

B ¼ yr1a−yr2að Þ � xr1b−xr2bð Þ þ xr1a−xr2að Þ � yr1b−yr2bð Þ
xr1b−xr2bð Þ2 þ yr1b−yr2bð Þ2

tx ¼ xr1a−A� xr1b þ B� yr1b
ty ¼ yr1a−B� xr1b−A� yr1b

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð5Þ

When a valid model is produced, all matches are examined if they satisfy the model. Every
matched feature in the previous frame is projected to the current frame using the transforma-
tion matrix. If the projection and the corresponding matched feature in the current frame have
Manhattan distance less than 2, the sample pair is considered an inlier, i.e. a true match:

A� xb−B� yb þ tx−xaj j þ B� xb þ A� yb þ ty−yb
�� ��fU2 ð6Þ

In the proposed architecture, no floating point numbers are used. Instead, every arithmetic
operation is performed using integer numbers. In order to calculate the Manhattan distance
with satisfactory accuracy, A, B, tx and ty should be scaled up by at least 8 bits. The equations
were applied in hardware as quoted in (7) and (8).

A ¼ yr1a−yr2að Þ � yr1b−yr2bð Þ þ xr1a−xr2að Þ � xr1b−xr2bð Þ½ � � 256

xr1b−xr2bð Þ2 þ yr1b−yr2bð Þ2

B ¼ yr1a−yr2að Þ � xr1b−xr2bð Þ þ xr1a−xr2að Þ � yr1b−yr2bð Þ½ � � 256

xr1b−xr2bð Þ2 þ yr1b−yr2bð Þ2
tx ¼ 256� xr1a−A� xr1b þ B� yr1b
ty ¼ 256� yr1a−B� xr1b−A� yr1b

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð7Þ

A� xb−B� yb þ tx−256� xaj j þ B� xb þ A� yb þ ty−256� yb
�� ��fU512 ð8Þ

4.2 RANSAC hardware scheme

The hardware implementation of the RANSAC algorithm is depicted in Fig. 4. The RANSAC
module consists of 3 blocks, the “transformation matrix calculator”, the Binliers count
calculator^ and the BRANSAC controller .̂

The Btransformation matrix calculator^ implements (7). It receives as inputs two samples
from the set of matches and it stores them in the BArray of random samples^. This is an 8-
element array, with each element having a width of 11 bits. The BCombinational logic 1^
includes the required multipliers and adders, in order to compute the two numerators as well as

9404 Multimed Tools Appl (2018) 77:9393–9415



the denominator of (7). The two dividers perform the divisions in (7). The dividers produce the
longest propagation delay in the overall architecture and consequently, registering is used to
increase the maximum clock frequency. The BCombinational logic 2^ block calculates the tx
and ty components. Since there is a delay of two clock cycles in computing A and B, the
random sample {(xr1a, yr1a), (xr1b, yr1b)}, which is required for the calculations, is also
registered accordingly. The output of the block feeds the Binliers count calculator .̂

Fig. 4 The proposed RANSAC scheme
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The Binliers count calculator^ block is responsible for computing the number of inliers for
the current transformation matrix. The BArray of initial matches^ is an array of 128 elements in
which all matches between two images have been stored. Each match inside the array is
connected to combinational circuits, called Binlier calculator n^, n = 1,2,…,128. Every inlier
calculator circuit implements (8) and consists of the BManhattan distance calculator^ as well as
a comparator. The output of the comparator indicates whether the corresponding match
constitutes an inlier. All comparator outputs are summed in a parallel adder, producing the
overall number of matches for the transformation matrix produced by the current sample pair.

The BRANSAC controller^ block is responsible for reading samples from the BArray of
initial matches^ and storing to the BArray of random samples^. In every clock cycle, a new
sample pair is selected and after a propagation delay, the Binliers sum^ provides the number of
inliers. It should be noticed here that there is a delay of two clock cycles due to the registered
data of the two dividers in the Btransformation matrix calculator^ block. Moreover, the
BRANSAC controller^ keeps track of the Binliers sum^ signal and copies matches from the
BArray of initial matches^ to the BArray of true matches^, when it is required. The BRANSAC
controller^ was implemented using state machines.

There is an issue that should be highlighted at this point. In real video frames, captured by a
moving vehicle, objects in the foreground and in the background obey to transformations with
different scaling, therefore different transformation matrices apply. When a random sample
from the foreground is selected, it is quite possible to result in a transformation matrix, which
renders true matches in the background outliers. The opposite is also possible. This phenom-
enon is getting stronger when an object is very close to the camera system and another one is
very far. When addressing the problem of finding correspondences, such matches should not
be rejected by RANSAC, since they are true matches. Therefore, we accept as true matches,
inliers that come from different transformation matrices, under the condition that the resulting
number of inliers is greater than the threshold of five matches. It is quite unlikely to locate five
false matches that obey the same transformation. However, it could be quite common to detect
five features that belong to a specific object and obey a unique transformation, due to its
position in the scene.

According to [15], the minimum number of random samples that should be selected, can be
obtained from (9).

R ¼ log 1−pð Þ
log 1− 1−εð Þk

� � ð9Þ

where p is the probability of at least one random sample to include matches that constitute
inliers, ε is the proportion of outliers and k is the number of matches that can be inferred by one
sample. In our case, k = 2. Assuming a reasonable proportion of outliers, approximately 40%,
and setting p = 0.99, the minimum number of random matches is found to be 16. This means
that from the moment the BArray of initial matches^ has been filled with data, the RANSAC
process will have been completed after 16 clock cycles. In the most demanding scenario of
using all possible combinations, the required iterations are given by (10).

Rmax ¼ m!
m−kð Þ!� k!

ð10Þ

where m is the number of matches and k = 2. For m = 128, RANSAC lasts for 8128
clock cycles.
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5 Evaluation of the proposed architecture

The proposed architecture was evaluated in terms of accuracy, resource usage and execution
speed. Furthermore, the development board DE2i-150 from Terasic, based on Cyclone IV
technology, was used to verify the functionality of the system.

5.1 Matching accuracy

In order to evaluate the matching accuracy, the recallmeasure with respect to the false ratewas
used. Recall is defined as in (11), while false rate is defined as in (12). In (11), the overlapping
features are defined as those which their Manhattan distance is less than 2 pixels, when the
features of the first image are projected with homography to the second. The aforementioned
criterion is widely used in the literature [24, 28, 31] and is considered as a safe way to draw
conclusions in matching accuracy evaluation.

recall ¼ true matches
overlapping features

ð11Þ

false rate ¼ 1−precision ¼ true matches
total matches

ð12Þ

In general, the matching capability of the system depends on the adopted SIFT descriptor
scheme. A detailed evaluation of the hardware optimized SIFT descriptor, which can be used
in conjunction with the present matcher/RANSAC architecture, was presented in [28]. The use
of moving window, in order to reduce comparisons between features, affects the matching
accuracy. A large moving window provides higher recall values in comparison with a smaller
one. Moreover, the number of detected features in each frame also affects matching. Higher
numbers of detected features reduce the matching ability.

In order to evaluate the matching accuracy we fed the hardware pipeline with image data
and executed the processing steps in an accurate ModelSim simulation of the datapath. We
used a set of 20 images from the Middlebury data set [25]. Each image was transformed by a
scale factor of 0.8. The shrunken images represented the current frame, while the initial images
represented the previous frame. This procedure simulates backwards translation of the robotic
vision system. SIFTwas applied to the initial image and the extracted descriptors were saved in
a memory initialization file. At the beginning of the simulation, the testbench reads descriptor
data from the RAM which is pre-loaded with the previously saved memory initialization file
and stores it to the Bdescriptor FIFO buffer .̂ Subsequently, the testbench reads the pixel data
of the current frame in a streaming manner from another file that is stored in the computer and
saves the matches to the results file. In a next step, the results file is entered to a computer
program, where the validation of the matches is examined. Since the image transformation is
known, the computer software is able to identify all true and false matches.

The architecture was developed so that the active moving window is 128. Using that
moving window, satisfactory matching ability is provided when the number of features is up to
600. The accuracy is also acceptable when the number of features approaches to 800. When
the number of features is higher than 1000, then the recall degrades more but the architecture
can still provide a considerable number of true matches. In Fig. 5, typical recall values with
respect to false rate are presented, as obtained from the Cones image [25]. The tuning
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parameters of SIFT algorithm were configured so that the number of detected features is 400,
600, 800, 1000 and 1200 respectively. In this typical graph, recall reaches almost a value of 0.3
when 800 features are detected. Considering that the repeatability of the SIFT extraction
module is greater than 0.7 [28], the number of overlapping (repeatable) features is more than
0.7 · 800 = 560. This results in 168 true matches at least, which is sufficient for several robotic
vision applications.

The matches file is also used in order to evaluate the RANSAC module. In the simulation
step, the testbench filled the BArray of initial matches^ by reading the matches file between
two images, which is produced previously in the matching step. After the execution of the
algorithm, the testbench produced an output file containing the inliers. Inliers were input to the
computer program, by which they were drawn on the screen, together with the corresponding
images, for visual verification. The output of the RANSAC module was compared against the
expected inliers. In this case, all true matches were recognized and all false matches were
rejected. When the transformation is artificial, all pixels verify the same transformation matrix.
As a result, the phenomenon of different transformation matrices between pixels in the
background and in the foreground does not apply.

Subsequently, real image pairs were captured, with arbitrary transformations. In Figs. 6 and 7,
results from real-world images are depicted. Figure 6 shows the initial matches produced by the
SIFT matching step, while Fig. 7 shows the matches kept by the proposed RANSAC hardware
module. In this pair, most visually established true matches were kept, while all visually
established false matches were rejected.

5.2 Resource usage

In Table 1, the required resources from the FPGA chip are presented. Each main module of the
design is presented separately. The complete architecture is able to fit in a Cyclone IV FPGA
device. The optimized SIFT matcher module demands only 1/3 of the LUTs of the overall
design. This is due to the adopted multiplexing scheme. A similar multiplexing scheme could
be also applied to the RANSAC module so that a further reduction of the required resources
would be achieved. This reduction could make the FPGA chip capable to fit additional circuits,
as the SIFT extraction module. Therefore, the complete architecture of SIFT extraction, SIFT

Fig. 5 Recall with respect to false rate for the Cones image
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matching and RANSAC would fit to a mid-range FPGA chip, which is considerer as a future
work.

We should notice here that the combined SIFT matcher – RANSAC architecture is
independent on the image resolution as it concerns the required resources. It deals only with
the number of extracted features of a frame. For as long the number of extracted features are
less than 2048 so that they can be stored in the Bdescriptor FIFO buffer^, the SIFT matcher will
work effectively no matter what the frame resolution is. Even if more than 2048 features is
possible to be detected, the matcher scheme could be built with larger Bdescriptor FIFO
buffer^, increasing the RAM requirements from the FPGA. However, care should be taken
in such a choice. If the number of features is increased excessively, the accuracy of the matcher
will be decreased and a larger active moving window will be required. The RANSAC scheme
is also independent of the image resolution and it was designed with the limitation of a
maximum of 128 matches. The image resolution affects only the SIFT module block. In [28],
details about how the resolution affects the SIFT module are presented. In general, let us notice
that the number of columns affects the required RAM resources of the design.

5.3 Execution speed and real time performance discussion

The proposed architecture was built using the Quartus Prime software. The TimeQuest Timing
Analyzer was employed in order to determine the maximum propagation delay inside the
architecture. The design uses two clock signals, which are the clk and the clk8. The latter is

Fig. 7 Real images with extracted number of inliers: 26 matches were established as true matches by RANSAC

Fig. 6 Real images with initial matches: 34 matches were found by the SIFT matcher
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eight times faster than the former. As a consequence, this should be taken into consideration in
the search for the maximum clock frequency. Each module was analyzed separately. The
maximum delay in the SIFT matcher module was found 10 ns. Thus, the maximum applied
frequency is 100 MHz. This module is clocked by both clk and clk8 clocks. This means that
the clk8 can be 100 MHz, while the clk can be 12.5 MHz. In the RANSAC module, the
maximum propagation delay was found 66 ns and this means that the maximum applied
frequency is 15 MHz. The clk clock is used for this module so the applied clock is limited to
12.5 MHz.

Considering that the clk clock is 12.5 MHz, the supported frame processing rate by the
architecture is about 40fps, when images with resolution 640 × 480 pixels are processed. The
frame rate is determined by the SIFT extraction module. On each clk cycle, one pixel is read.
The required time to detect, extract and match a pixel (if it constitutes a feature) is 80 ns when
clk is 12.5 MHz. In order to process the complete frame, the required time is about
640·480·80 ns = 24.5 ms when the frame has resolution 640 × 480. If the resolution was
1280 × 720, the required time to process the frame would be about 73 ms, meaning that the
system would have lost its real-time performance. The execution speed is dependent on the
low speed clk clock. The multiplexing scheme affects the frame rate since it constraints the low
speed clock. Since the multiplexer is 8 to 1, the high speed clock should be 8 times faster than
the clk. For that reason it is named clk8. If the multiplexing scheme was 4 to 1, the high speed
clock should be 4 times faster than the low speed clock. In that case, the constraint for the clk
comes from the RANSAC circuit. It should be 15 MHz, which means that the supported frame
rate could be 48fps for images with VGA resolution. However, there is always the option to
use a different clock to the RANSAC circuit and the SIFT module clock. In such a case, the
low speed clock could be 25 MHz, meaning that the maximum propagation delay could be
40 ns. This has been analyzed in detail in [28, 30]. Considering VGA frames as well as
multiplexer 4 to 1, the architecture could support 81fps. If the multiplexing scheme was 2 to 1,
then the constraint between the two speed clocks would be even looser. However, schemes
with multiplexers of 4 to 1 and 2 to 1 cannot fit in Cyclone IV devices. If a multiplexing
Scheme 16 to 1 was used, the high speed clock should be 16 times faster. As a result, the low
speed clock should be 6.25 MHz. That would lead to a supported frame rate at 20fps, meaning
that the real-time performance requirements are not met. In conclusion, the final selection of a
multiplexer 8 to 1 and the low speed clock at 12.5 MHz seems to be the optimum choice.

As it has been already mentioned, the proposed vision system uses previously
published work [28] for SIFT extraction and targets robotic vision applications. The
vision system is going to be used in a mobile vehicle which is moving in smooth
terrain. Furthermore, the vehicle is not intended to be moving fast. For these condi-
tions a speed about 30fps is considered sufficient for real-time operation.

Table 1 Required resources (Cyclone IV EP4CGX150DF31C7)

Module LUTs Registers Multipliers 9 × 9 bits RAM (bits)

SIFT matcher 51,068 13,646 0 1,737,522
RANSAC 90,326 11,430 a 528 5632
Complete architecture 141,394 25,076 a 528 1,743,154

(94%) (17%) (73%) (26%)

a Half of the required multipliers are implemented using the dedicated multiplier circuitry and the rest using the
available logic elements (LE)
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In conclusion, we would say the factors that affect the real-time performance are
the low speed clock clk, the multiplexing scheme and the image resolution. In order
to improve performance, the clk clock can be increased by reducing the maximum
propagation delay in the datapath. For example, asynchronous dividers have been
employed to perform calculations in the RANSAC module as well as in SIFT
extraction module [28]. The deviders are responsible for the maximum propagation
delay of these circuits. Optimization of asynchronous divisions could significantly
increase the supported frame rate. Another way to speed up the architecture would
be to host it in last generation technology FPGAs, which are faster and consists of
more resources. The selection of multiplexing scheme of 4 to 1 or 2 to 1 in
conjunction with a more advanced FPGA could also offer significant improvement
in performance. In such a case, where the plenty of hardware resources are available,
the multiplexing scheme could not be adopted [30]. However, the power of this
design is that it can be implemented using mid-range FPGA devices.

5.4 Verification and power consumption

The Cones image was used for the verification of the proposed system. A shrunken
image was produced from the initial image and the feature descriptors of each image
were extracted by the hardware block described in [28] and were stored in a file. The
descriptors of the initial image were saved in a memory initialization file and loaded
to the Bdescriptor FIFO buffer^ by a starting process. The descriptors of the shrunken
image were saved to a second memory initialization file and were read in order to
feed the SIFT matcher circuits. The second initialization file was used since the
Cyclone IV chip does not suffice to host the SIFT extraction module concurrently
with the SIFT matcher and RANSAC. Therefore, for verification purposes the SIFT
extraction module was replaced by RAM, in which the descriptors are preloaded. In
Fig. 8, the system is illustrated using the DE2i-150 development board in operation.
The true matches that are output of the RANSAC module are marked with crosses.

The power consumption was estimated using the PowerPlay Early Power Estimator
tool for Cyclone IV. It was difficult to measure the power consumption directly from
the chip since the DE2i-150 development board consists of several other external
circuits that contribute to the overall consumption. The power consumption was
estimated to be about 2 W. The use of the high speed clk8 clock in the architecture
increases the dynamic consumption in general. On the other side, the use of the
multiplexing scheme and consequently, the reduction of the employed LE from the
FPGA device reduce the static consumption.

5.5 Comparison with other systems

It is not safe to have a direct comparison with other systems presented in the literature.
Different image sizes, feature types, target applications, octaves/scales configuration are met
in a variety of architectures and as a result it is very difficult to draw safe conclusions. We have
limited our comparison only to those papers which present a hardware matcher, regardless of
the adopted features type. In Table 2, a rough comparison with other systems is presented. In
comparison with our previous work [30], the present architecture outperforms the former in
resource usage maintaining satisfactory matching accuracy. This is achieved by using the
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Table 2 Comparison with other systems

[31] [7] [30] Proposed

Image size 1280 × 720 1024 × 1024 640 × 480 640 × 480
Configuration a Sd + BD + Bm a H + CC a Sd + SD + Sm + R Sm + R
Octaves/scales 2/6 – ¼ 1/4
Technology used Virtex-5 Virtex-4 Stratix IV Cyclone IV
LUTs 18,437 20,576 494,201 51,068 + 90,326
Registers/FF 13,007 4733 105,423 13,646 + 11,430
DSP/Multipliers 52 b 0 960 c 528
RAM (Kbits) 4932 d 630 1886 1697 + 5.5
Power Consumption 4.5 W 2 W 4 W 2 W
Frame rate e 60fps 33fps f 155fps 40fps

a Sd: SIFT detector, SD: SIFT descriptor, Sm: SIFT matcher, BD: BRIEF Descriptor, Bm: Brief matcher, R:
RANSAC, H: Harris detector, CC: cross correlation metric used in matching
bMuliplications are performed without the use of DSPs
c Half of the required multipliers are implemented using the dedicated multiplier circuitry and the rest using the
available logic elements (LE)
d The authors used 35 Block RAMs
e This frame rate is supported when the number of features does not exceed 2000
f This frame rate is supported considering that the descriptor processing time is 21 ns for Stratix IV FPGAs

Fig. 8 Verification of the proposed architecture using the DE2i-150 development board
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descriptors multiplexing scheme. The supported frame rate is reduced by half; however the
system maintains its real-time operation. In [7, 31] other feature types than SIFT are used in the
matcher. In [10], the BRIEF descriptor is used for matching which leads to a better usage of the
FPGA resources but it also degrades the accuracy of the matcher. In [18], no SIFT features are
used at all. Harris corner detector and cross correlation metric are used in the design. Let us
note that the matcher presented here and in [30] is the first fully paralellized SIFT matcher
implemented in hardware.

6 Conclusion

In this paper, an FPGA-based architecture for real-time SIFT matching and RANSAC
algorithm for robotic vision applications is presented. A moving window of 16 elements is
employed in order to reduce the concurrent comparisons between features of previous and
current frames. A multiplexing scheme is used to increase the active moving window to 128,
achieving satisfactory matching ability. The architecture uses 2 clocks, the fast clk8 clock and
the slower by 8 times clk clock. On each new detected feature, a match is produced in one clk
cycle. The RANSAC algorithm has been also implemented and the overall architecture is able
to fit in mid-range FPGA devices. Image transformations supported by the RANSAC module
are scaling, translation and rotation. Each RANSAC run lasts for as many clk cycles as the
number of the random samples. The maximum supported frequencies for clk and clk8 clocks
are 12.5 MHz and 100 MHz respectively, considering Cyclone IV technology. The proposed
system is capable of processing 40fps, meeting real-time requirements.
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