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Abstract Stable orthogonal local discriminant embedding (SOLDE) is a recently proposed
dimensionality reduction method, in which the similarity, diversity and interclass separa-
bility of the data samples are well utilized to obtain a set of orthogonal projection vectors.
By combining multiple features of data, it outperforms many prevalent dimensionality
reduction methods. However, the orthogonal projection vectors are obtained by a step-by-
step procedure, which makes it computationally expensive. By generalizing the objective
function of the SOLDE to a trace ratio problem, we propose a stable and orthogonal
local discriminant embedding using trace ratio criterion (SOLDE-TR) for dimensional-
ity reduction. An iterative procedure is provided to solve the trace ratio problem, due to
which the SOLDE-TR method is always faster than the SOLDE. The projection vectors
of the SOLDE-TR will always converge to a global solution, and the performances are
always better than that of the SOLDE. Experimental results on two public image databases
demonstrate the effectiveness and advantages of the proposed method.
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1 Introduction

Recently, the techniques for dimensionality reduction have received a lot of attentions in
the fields of computer vision and pattern recognition [9, 10, 12, 18, 24]. Real data are usu-
ally depicted in high dimensions, a common way to deal with the high-dimensional data
adequately and avoid the curse of dimensionality is to use the dimensionality reduction tech-
niques [8, 23]. Principal component analysis (PCA) [3, 16, 19], linear discriminant analysis
(LDA) [1, 20] and locality preserving projections (LPP) [6, 14] are the most widely used
techniques for reduced dimensionality. The high-dimensional data information in the real
world tend to lie on a smooth nonlinear low-dimensional manifold [2, 23]. However, both
PCA and LDA see only the global Euclidean structure and fail to discover the underlying
manifold structure [4, 23]. The LPP is proposed to uncover the essential manifold structures
by preserving the local structure of image samples [26].

Based on LPP, many related dimensionality reduction approaches including orthogo-
nal locality preserving projections (OLPP) [4], marginal fisher analysis (MFA) [7, 24] and
SOLDE [12], and Fast and Orthogonal Locality Preserving Projections (FOLPP) [22] have
been developed. In MFA, the intraclass compactness (similarity) of data was characterized
by minimizing the distance among nearby data belonging to same classes, and at the same
time the interclass separability of data was characterized by maximizing the distance among
nearby data belonging to different classes. Both the similarity and the interclass separability
are important for improving the algorithmic discriminating ability. However, the projec-
tion vectors obtained by LPP and MFA are mutually nonorthogonal. Some researchers [4,
7, 25] have pointed out that enforcing an orthogonality relationship between the projection
directions is more effective for preserving local geometry of data and improving the dis-
criminating ability. Thus, the OLPP was proposed by characterizing the similarity of data
and enforcing an orthogonality relationship between projection vectors, simultaneously.

Moreover, both MFA and OLPP characterize the similarity of data by minimizing the
sum of the distance among nearby data from the same class. Following this idea, nearby
data from the same class can be mapped to a single data point in the reduced space. In this
way, the intraclass separability (diversity) of data was completely ignored [12], which is also
important for preserving local geometry of data. Combining above analysis, we can see that
the above mentioned discriminant approaches ignore the diversity of data resulting in insta-
ble intrinsic structure representation [12]. Recently, the stable orthogonal local discriminant
embedding (SOLDE) was proposed, which takes the similarity, diversity, interclass separa-
bility and orthogonal constraint together into account, to preserve local geometry of data and
improve the algorithmic discriminating ability. And it shows a good performance for face
recognition compared with many prevalent approaches including LPP, OLPP, MFA, local-
ity sensitive discriminant analysis (LSDA) [5] and maximum margin criterion (MMC) [17].
However, it adopted a step-by-step procedure to obtain the orthogonal projection vectors
sequentially, due to which the algorithmic computation burden is seriously increased [4, 11].

We solve the problem in SOLDE using the trace ratio criterion. Due to the fact that there
is no closed form solution for solving the trace ratio problem, Wang et al. [21] proposed an
efficient algorithm, called iterative trace ratio (ITR) algorithm, to find the optimal solution
based on an iterative procedure. It is faster than the prevalent approach proposed by Guo et
al. [13] and will converge to global solutions. In this paper, we propose a stable and orthog-
onal local discriminant embedding using trace ratio criterion (SOLDE-TR), which is much
faster than SOLDE. Specially, we first generate the objective function of SOLDE to a trace
ratio maximization problem. Then, we adopt the ITR algorithm to solve the trace ratio max-
imization problem iteratively [15, 21]. By this procedure, the orthogonal projection vectors
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were optimized simultaneously, and will always converge to a global solution. Especially,
the solutions are always better than that of SOLDE.

The rest of this paper is organized as follows: Section 2 gives a brief review of SOLDE.
The SOLDE-TR is proposed in Section 3. Section 4 reports all experimental results, and
conclusion are drawn in Section 5.

2 Brief review of SOLDE

GivenN training data x1, x2, · · · , xN ∈ R
d fromC classes. Denote the training data matrix

by X = [x1, x2, · · · , xN ]. Then, three adjacency graphs Gg−s = {X,S}, Gg−v = {X,H }
and Gd = {X,F } are constructed over the training data to model the local similarity,
diversity and interclass separability. The elements Sij , i, j = 1, · · · , N in weight matrix
S ∈ R

N×N are defined as

Sij =
⎧
⎨

⎩

K(xi , xj ), if xi ∈ N s(xj ) or
xj ∈ N s(xi ), and τi = τj ,

0, otherwise,
(1)

where K(xi , xj ) = exp(−||xi − xj ||2/σ), σ > 0 is a proper parameter, ‖ · ‖ denotes the
�2-norm of a vector, N s(xi ) stands for the set of s nearest neighbors of xi and τi is the class
label of xi . This weight matrix S mainly characterizes the important similarity of patterns,
when the nearby points lie on a compact region.

Moreover, when the nearby points lie on a sparse region, a weight matrix H ∈ R
N×N is

defined to characterize the important diversity of patterns. The elements of H are defined as

Hij =
⎧
⎨

⎩

1 − K(xi , xj ), if xi ∈ N s(xj ) or
xj ∈ N s(xi ), and τi = τj ,

0, otherwise.
(2)

In order to characterize the interclass separability of data in low dimensional representa-
tion, a weight matrix F ∈ R

N×N is defined, of which the elements are defined as

Fij =
⎧
⎨

⎩

K(xi, xj ), if xi ∈ N s(xj ) or
xj ∈ N s(xi ), and τi �= τj ,

0, otherwise.
(3)

Then, three objective functions of SOLDE are constructed to map the original high-
dimensional data to a line so that the nearby points with small distance in a same classes
can be mapped close in the reduced space, the nearby points with large distance in a same
classes can be mapped far, and at the same time the nearby points with small distance in the
different classes can be mapped far. The objective functions of SOLDE are defined as

min
∑

ij

(yi − yj )
2Sij = 2wT XLsX

T w, (4)

max
∑

ij

(yi − yj )
2H ij = 2wT XLvX

T w, (5)

max
∑

ij

(yi − yj )
2F ij = 2wT XLmXT w, (6)

where yi = wT xi is the one-dimensional representation of xi , w is a projection vector,
Ls = Ds − S, Ds is a diagonal matrix whose elements on diagonal are column sum of S,
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Lv = Dv −H , Dv is a diagonal matrix whose elements on diagonal are column sum of H ,
Lm = Dm − F , Dm is a diagonal matrix whose elements on diagonal are column sum of
F . After some simple algebraic steps, the optimal objective functions of (4), (5) and (6) are
integrated into the following objective function

w∗ = argmax
wT XLmXT w

wT XLdXT w
, (7)

where Ld = aLs − (1 − a)Lv , a is a suitable constant and 0.5 ≤ a ≤ 1.
Aiming to find a set of orthogonal projection vectors, the objective function of (7) can

be written as

w1 = argmax
w

wT XLmXT w

wT XLdXT w
, (8)

and

wk = argmax
w

wT XLmXT w

wT XLdXT w
, (9)

wT
k w1 = wT

k w2 = · · · = wT
k wk−1 = 0.

Motivated by [4, 11], the orthogonal projection vectors were obtained by adopting a
step-by-step procedure, because of which the algorithmic computation burden was seriously
increased. This step-by-step procedure is written as follows:

1. Compute w1 as the eigenvector of (XLdXT )−1XLmXT associated with the largest
eigenvalue.

2. Compute wk as the eigenvector of

M(k) = {I − (XLdXT )−1W k−1[Bk−1]−1[W k−1]T }
·(XLdXT )−1XLmXT , (10)

associated with the largest eigenvalue, where {w1,w2, · · · ,wk−1} are the first k − 1
projection vectors,

W k−1 = [w1,w2, · · · ,wk−1] and Bk−1 = [W k−1]T (XLdXT )−1W k−1.

3 Stable and orthogonal local discriminant embedding using trace ratio
criterion (SOLDE-TR)

In order to obtain a set of orthogonal projection vectors based on the adjacency graphs of
Gg−s = {X,S}, Gg−v = {X,H } and Gd = {X,F } with a relatively less computation
burden, we introduce a fast stable and orthogonal local discriminant analysis algorithm,
termed as SOLDE-TR.The objection functions of (8) and (9) can be generalized to the
following trace ratio maximization problem:

W ∗ = arg max
WT W=I

tr(W T SpW )

tr(W T SdW )
, (11)

and the optimum trace ratio value

λ∗ = tr(W T SpW )

tr(W T SdW )
, (12)

where W = [w1, w2, · · · ,wm], m is the desired lower feature dimension, Sp = XLmXT

and Sd = XLdXT . We firstly assume that the data xi , i = 1, · · · , N have been projected
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into the PCA subspace such that the matrix Sd is nonsingular. Thus, the denominator of the
objective function (11) is always positive for non-zero W , that is, Sd is positive definite.

In order to solve the trace ratio maximization problem (11), we resort to solve the
following trace different problem iteratively [21]

W ∗ = arg max
WT W=I

tr[W T (Sp − λtSd)W ], (13)

where λt is the trace ratio value calculated from the projection matrix W t−1 of the previous
step, i.e.,

λt = tr
(
W T

t−1SpW t−1
)

tr
(
W T

t−1SdW t−1
) . (14)

Then, we propose our fast stable and orthogonal local discriminant analysis method to
solve the trace ratio maximization problem (11). The algorithmic procedure of the proposed
algorithm is stated as follows:

1. PCA Projection: Project the data xi , i = 1, · · · , N into the PCA subspace such that the
matrix Sd = XLdXT is nonsingular. And denote the transformation matrix of PCA by
WPCA.

2. Construct the Adjacency Graphs and Choose Weights: Construct the adjacency graphs
of Gg−s = {X,S}, Gg−v = {X,H } and Gd = {X, F }. Compute the weight matrices
S, H , and F according to (1), (2) and (3), respectively.

3. Compute the Orthogonal Projection Vectors:

(a) Initialize W 0 as an arbitrary matrix whose columns are orthogonal and normalized,
t = 1;

(b) Compute the trace ratio value λt from the projection matrix W t−1 according to

λt = tr
(
W T

t−1SpW t−1
)

tr
(
W T

t−1SdW t−1
) . (15)

(c) Compute the eigenvalue decomposition of (Sp − λtSd) as:

(Sp − λtSd)wt
k = ρt

kw
t
k, (16)

where ρt
k is the kth largest eigenvalue of (Sp − λtSd) with the corresponding

eigenvector wt
k .

(d) Set W t = [
wt

1,w
t
2, · · · ,wt

m

]
, where m is the desired lower feature dimensions.

(e) If | λt+1 − λt |< ε (0 < ε < 10−6), go to (f); else set t = t + 1, go to (b).
(f) Output W SOLDE−T R = W t .

4. Orthogonal Embedding: Thus, the embedding is given as follows:

x → y = W T x W = WPCAW SOLDE−T R,

where y is a m dimensional representation of the data x, and W is the transformation
matrix.

In each step, a trace difference problem argmaxW tr[W T (Sp − λtSd)W ] is solved with
λt being the trace ratio value computed from the previous step. The projection matrix of
our proposed approach will converge to a global solution [21]. And the trace ratio value
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will monotonic increase, which have been proved based on point-to-set map theories [21].
Due to the fact that the intrinsic structure of real data is complex, and the testing data are
usually different from the training data for a same subject, only similarity or diversity is
not sufficient to guarantee the algorithmic generalization capability and stableness. Thus,
the proposed SOLDE-TR is more stable and robust than the prevalent OLPP and MFA for
testing data.

4 Experimental results

In this section, several experiments were carried out to show the effectiveness of the pro-
posed method on the ORL database and the AR database. More details of the two databases
include:

1. ORL Database: ORL consists of 400 facial images from 40 subjects. For each subject,
the images were taken at different times. The facial expressions and occlusion also vary.
The images were taken with a tolerance for fitting and rotation up to 20 degrees. Each
subject contributes 10 different images. All images are grayscale and normalized to the
size of 64 × 64.

2. AR Database: AR consists of over 4000 color face images of 126 people (70 men and
56 women). The images of the most persons (65 men and 55 women) are taken in two
sessions (separated by two weeks). Each session contained 13 gray scale images for
each subject, which have been normalized to the size of 50 × 40. The images from
each session consist of three images with illumination variations, three images with
wearing scarf, three images with wearing sun glasses, and four images with expression
variations.

We compare the proposed method with the LPP, OLPP and SOLDE for face recognition
problem. Without loss generality, a nearest neighbor classifier was used for classifica-
tion [4]. Likewise, the data vectors was firstly normalized to unit length [4]. In all
experiments, the parameter σ was set to the mean distance of the normalized data vectors
and the parameters a to 0.9. The weight matrix S was computed according to the fixed σ

for each database. In the following experiments, the best recognition accuracies in Tables 1,
2 and the training time of the SOLDE and SOLDE-TR in Table 3 have been emphasized
with the bold numbers.

4.1 Face recognition on the ORL database

For the ORL database, four random subsets with (l = 2, 3, 4, 5) images per individual were
taken with labels to form the training sets. The rest of the database were considered to be
the testing sets.

Table 1 Best recognition
accuracies (%) on the ORL
database

LPP OLPP SOLDE SOLDE-TR

2 Train 62.34 68.44 71.75 76.69

3 Train 69.52 78.84 83.45 86.77

4 Train 80.44 83.75 90.90 91.29

5 Train 84.93 87.83 95.03 95.03
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Table 2 Best recognition
accuracies (%) on the AR
database

LPP OLPP SOLDE SOLDE-TR

3 Train 58.63 80.83 75.83 80.83

7 Train 76.43 78.21 78.93 80.71

13 Train 73.35 75.68 75.58 75.96

First, we compare the best recognition accuracies of the LPP, OLPP, SOLDE and
our proposed SOLDE-TR on the ORL database. Table 1 summarises the best recogni-
tion accuracies of the four methods with the subsets of (l = 2, 3, 4, 5). The projection
dimension was set to 100, expect for the training set (l = 2), in which the projec-
tion dimension was set to 50. For each given l, we averaged the results over 20 random
splits. As can be seen, the SOLDE-TR performs the best in most training sets (l =
2, 3, 4). As to the last training set (l = 5), SOLDE-TR performs an equal level with
SOLDE.

Then, we concentrate on the convergence speed of the SOLDE-TR on the ORL database.
Figure 1 shows the increasing trend of the trace ratio value in (15) vs. the iterative numbers.
The projection dimension was set to 100 for the ORL training set (l = 5). As can be
seen, the trace ratio value approximated the maximum after 3th iteration. And our proposed
method empirically converged from 6 to 9 iterations.

Next, we show the recognition accuracies versus dimensions on the ORL database.
Figure 2 shows the classification performance of the SOLDE, LPP, OLPP and SOLDE-TR
on the subset (l = 3) of the ORL database. We averaged the results over 20 random splits.
As can be seen, the SOLDE-TR outperformed the other methods distinctly.

4.2 Face recognition on the AR database

For the AR database, we randomly selected 20 men and 20 women that had partic-
ipated in two sessions with each individual having 13 images in each session. Then,
three subsets with (l = 3, 7, 13) images per individual from the first session were
selected for the training subsets. The first subset (l = 3) was composed of the images
with merely illumination variations. The second subset (l = 7) was composed of the
images with merely expression variations and the images of the first subset. The third
subset (l = 13) was composed of the total images from the first session. And the
corresponding images from the second session of each individual composed the testing
sets.

Table 3 Training time in
seconds required by LPP, OLPP,
SOLDE and SOLDE-TR on the
AR database

Dimension LPP OLPP SOLDE SOLDE-TR

100 9.1 s 33.2 s 74.5 s 35.7 s

200 35.3 s 267.1 s 502.4 s 98.8 s

300 59.3 s 838.1s 1582.3 s 180.9 s

400 111.7 s 2757.5 s 4690.5 s 346.4 s

500 179.8 s 7764.4 s 9949.3 s 602.1 s
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Fig. 1 Trace ratio value vs.
iterative numbers on ORL
database
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First, we compare the best recognition accuracies of the LPP, OLPP, SOLDE and our pro-

posed SOLDE-TR on the AR database. Table 2 summarizes the best recognition accuracies
of the four methods with the subsets of (l = 3, 7, 13). It is shown that the SOLDE-TR
performs the best in most training sets (l = 7, 13). As to the first training set (l = 3),
SOLDE-TR performs an equal level with OLPP.

Then, we show the recognition accuracies versus dimensions on the AR database.
Figure 3 shows recognition accuracies of the SOLDE, LPP, OLPP and SOLDE-TR on the
subset (l = 3) of the AR database. We averaged the results over 20 random splits. As can
be seen, the SOLDE-TR outperformed the other methods in most cases.

Next, we concentrate on the time consumption of the LPP, OLPP, SOLDE and SOLDE-
TR on the AR database. Table 3 summarises the average CPU time consumption of the
training procedure with projection dimensions ranging from100 to 500, measured in sec-
onds, required by LPP, OLPP, SOLDE and SOLDE-TR method on the subset (l = 13) of
the AR database. All algorithms have been implemented on Matlab R2014a and a computer
with Intel I7 2600 CPU (3.5Ghz) and 8 GB RAM. As can be seen, the SOLDE-TR out-
performs the SOLDE distinctly. Thus, the computation burden of SOLDE-TR is evidently
alleviated compared with SOLDE.

Fig. 2 Recognition accuracy vs.
dimensions on the ORL database
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Fig. 3 Recognition accuracy vs.
dimensions on the AR database
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5 Conclusion

Stable orthogonal local discriminant embedding (SOLDE) is a recently proposed dimen-
sionality reduction method. However, it solves the orthogonal projection vectors through a
step-by-step procedure, and is thus computationally expensive. In this paper, a stable and
orthogonal local discriminant embedding using trace ratio criterion (SOLDE-TR) method
was proposed for dimensionality reduction. The objective function of SOLDE was firstly
generalized to a trace ratio maximization problem. Then, the ITR algorithm was provided
to optimize the orthogonal projection vectors simultaneously resulting in global solutions.
Therefore, the new SOLDE-TR method usually leads to a better solution for face recog-
nition in contrast to the conventional LPP, OLPP and SOLDE. Especially, the solutions of
our proposed method are always faster than that of SOLDE. Experimental results on the
ORL databases and the AR databases demonstrate the effectiveness and advantages of the
proposed method.
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