N
Multimed Tools Appl (2018) 77:13773-13798 @ CrossMark
DOI 10.1007/s11042-017-4991-4

Augmented songbook: an augmented reality educational
application for raising music awareness

Marcal Rusifiol! - Joseph Chazalon?? .
Katerine Diaz-Chito!

Received: 20 December 2016 / Revised: 24 May 2017 / Accepted: 28 June 2017/
Published online: 12 July 2017
© Springer Science+Business Media, LLC 2017

Abstract This paper presents the development of an Augmented Reality mobile applica-
tion which aims at sensibilizing young children to abstract concepts of music. Such concepts
are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented
Reality for education suggest that such technologies have multiple benefits for students,
including younger ones. As mobile document image acquisition and processing gains matu-
rity on mobile platforms, we explore how it is possible to build a markerless and real-time
application to augment the physical documents with didactic animations and interactive vir-
tual content. Given a standard image processing pipeline, we compare the performance of
different local descriptors at two key stages of the process. Results suggest alternatives to
the SIFT local descriptors, regarding result quality and computational efficiency, both for
document model identification and perspective transform estimation. All experiments are
performed on an original and public dataset we introduce here.
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1 Introduction

This paper presents the design and the solving of technical challenges related to the develop-
ment of an Augmented Reality (AR) mobile application which aims at raising awareness and
teaching younger children the musical notation, the relation between music, lyrics and ani-
mations, and popular songs. This application is called “Augmented Songbook”. AR presents
very attractive potential benefits for language learning. In our case, the developed applica-
tion explicits the links between: a document and its embedded message; the musical score,
the sound played by some instrument and the keys pressed on a virtual keyboard; the lyrics,
the music played, and animations related to the story of the song. Figure 1 illustrates how
augmented content is superimposed on a page of the songbook.

We focus in this paper on a key challenge for educational AR tools: the difficulty to
maintain superimposed information [3]. Our goal is to present an AR framework suitable
for building efficient applications, avoiding poor interaction design which can lead to “inef-
fective learning”, “disorientation” and “cognitive overload”, according to Yilmaz [37].
This requires to be able, at the same time, to identify which document (among a database
of known documents) the user is aiming at, and what is the position of such document on
the device’s screen. Such process must be tolerant to motion, perspective distortion and illu-
mination variations to face realistic usage conditions. Furthermore, a few extra constraints
related to the nature of the project are to be considered: we aim at avoiding marker-based
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Fig. 1 Illustration of the augmented contents of the proposed application. a User’s perspective, pointing the
mobile device towards one of the documents e.g. b, enables the augmented contents ¢: graphic animations,
position of the next note to play and assisted virtual keyboard to play the tune
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AR technologies to remove all distracting content for the children; and the technologies
used must be able to deal with documents containing little text and texture. Such conditions
usually hurt significantly the performance of existing image matching techniques.

This paper presents the following contributions, based on the observation that, while doc-
ument image matching using local descriptors is promising, little work has been published
to present how such architecture works and how it performs on real conditions (Section 2):

— we explain how a document image matching architecture can be used to implement an
AR platform which can run on mobile devices (Section 3);

— we detail the internals of each key component of this architecture, and present the local
descriptor methods under test (Section 4);

— we introduce a new public dataset designed to benchmark our AR platform and enable
reproducibility (Section 5);

— we benchmark several local descriptors on realistic data, providing guidance for
implementing such system (Section 6).

In order to illustrate how those contributions were integrated in the Augmented Songbook
project, we also present some of the deployment setups used to enable children and parents
to try out this pedagogical prototype (Section 7).

2 Background
2.1 Augmented reality in education

Recent studies in Augmented Reality for education [3] suggest that such technologies have
multiple benefits for students, including younger ones [8]. Both parents [8] and children [37]
consistently exhibit a positive attitude regarding well-designed educational applications.
Motivation, learning gains, interaction and collaboration are viewed as key advantages [3]
of such tools which enable “superimposing virtual information to real objects”.

During the last years, a number of the so called technology-enhanced learning applica-
tions have been presented for teaching diverse abstract concepts. For instance in [2], AR
technology is used to teach geometry concepts, in [S] an AR book is used to teach num-
ber to preschool children, in [11] an AR app introduces electronic fundamental concepts,
in [22] AR is used to learn about different animals, spatial visualization of calculus concepts
is introduced in [29] or the alphabet is presented through an AR app in [30].

Concerning the teaching of musical concepts, a few attempts have been proposed, basi-
cally to guide the user to play a certain tune through augmented or completely virtual
keyboards, as in [14, 16, 28, 36]. However, to our best knowledge, no AR application has
been presented up to now to teach more abstract musical concepts such as musical notation.

2.2 Content-based document image retrieval

In parallel, document image matching techniques have made strong progress over the past
years. Those approaches enable a fast identification of a document image (or a part of it)
against a database. Well-known local features have been used for this purpose, but the less-
textured nature of text documents and the repetitivity of character elements, usually entails a
lower performance in the case of matching text document images instead of natural scenes.
Some local-feature approaches specifically tailored for text documents have been proposed
over the years.
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A first notable work is the one of Jain et al. [17] who designed a scalable system for the
retrieval of scanned document image which mimics text retrieval, and adds image-specific
verifications. First SURF [4] keypoints are extracted from each images, and each descrip-
tor is stored in a hash table to speed-up lookup. Later, when an image is used as a query,
SUREF keypoints are extracted and matched in descriptor space against closer candidates, in
an approximate nearest neighbor fashion. Then, a geometric filtering step is performed to
improve precision, first by considering keypoint orientations, then by looking at all combi-
nations of 3 matching points. While limited to scanned documents, and somehow specific
to SURF descriptors, this approach exhibits interesting properties as is allows, at the same
time, to identify a matching document and to locate the part relevant to the query.

Moraleda and Moraleda and Hull [23, 24] followed another approach leveraging a text
retrieval engine. Their purpose is to enable content-based image retrieval of textual docu-
ment from low resolution cellphone images (OCR is not possible here). They associate to
each word bounding box a feature vector of variable length which is quantized and stored
as a synthetic word in the text retrieval engine. During the retrieval stage, the search engine
is used to match close neighbors while tolerating local alterations, and a geometric verifi-
cation of the relative position of the bounding boxes in retrieved documents is performed
to improve precision. While such approach can be partly embedded and can scale to a few
thousand images, it is limited to textual documents and required close-up captures with little
to no perspective.

Nakai et al. [26] proposed a technique which is very close to fulfill our needs. The
authors enable an efficient document image retrieval scheme using camera-captured images
as queries. Thanks to an original technique (named LLAH) for detecting and describ-
ing local arrangements of keypoints invariant to perspective distortion, a simple voting
system enables the retrieval of documents given a camera-captured excerpt of the origi-
nal document. The improvements proposed by Takeda et al. [33] unlocked the scaling of
their method to millions of images as well as locating precisely the part of the original
document images contained in the query (using the RANSAC [13] to find a geometric con-
sensus) for estimating the perspective transform. The authors even experimented some AR
techniques [34] on a smartphone to superimpose information on the document aimed at.
However, this approach has two main drawbacks which prevent using it for our project
which aims at retrieving graphical documents without any external dependency: first, the
local descriptor used is specific to text documents, and cannot cope with documents which
are mostly graphical and contain very little text; and second, the system architecture used
relies on a network connexion to query a distant computer in real time, in order to cope with
RAM limitations on a mobile device.

However, in an AR context we have to take into account that we will face several dif-
ficulties specific to camera-based document image processing due to device variability
(resolution, sensor quality, optical distortions) and the mobility situation (unpredictable light
conditions, perspective distortions, motion, out-of-focus blur), as reported by the organizers
of the SmartDoc competition [6, 27]. In addition, the above methods were designed to match
textual document images, and do not perform well in graphic-rich documents such as the
musical sheets. Due to their flexible matching properties, approaches based on local descrip-
tors are the most promising to face the challenges of the Augmented Songbook project. In
particular, such techniques can cope with partial occlusions, degraded document, and difficult
capture conditions: motion and out-of-focus blur, perspective, too much or too little light, etc.

In this paper, we are particularly interested in identifying a suitable architecture which
enables the simultaneous identification and location of the document under capture on a
mobile device, and evaluating the performance of such system under realistic conditions.
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3 Mobile document AR using local descriptors

This section introduces the architecture of the mobile document AR application. It is simple
and proposes a clear definition of its processing steps, hence enabling a precise evaluation
of each of them.

The architecture used in the Augmented Songbook project forms a real-time image pro-
cessing pipeline. On the mobile device, the camera subsystem generates a stream of video
frames which must be processed as quickly as possible in order to render smoothly the
appropriate augmented content over the scene under visualization.

Figure 2 provides a general view of the information flow between the main components
of the application:

— the Camera Module streams frames to all the other modules in real time;

— the Frame Processing Module checks for any known document in the scene, and
eventually locate its position;

— the AR Rendering Module uses information about document model and position to
render the animation with the appropriate timing and projection;

— the Display Module finally blends all the content (animation, widget, original frame)
in real time.

Each module runs independently of the others, enabling the Camera Module and the Display
Module to work at full speed at OS level (on mobile platform), while allowing the Frame
Processing Module and the AR Rendering Module to process content at their own pace.

In this paper, we are interested in the Frame Processing Module, though we will briefly
describe the AR Rendering Module, which is very rudimentary in our case.

3.1 Data flow at run time

Data processing and flow within the AR architecture is illustrated in Fig. 2. It presents
the main actions and objects at an abstract level. It also shows that the workload can be
distributed across several independent threads. As mentioned previously, such distribution
permits to provide the user with a real-time display even if Frame Processing and AR Ren-
dering are too slow to process every frame acquired by the camera. We detail here the
building blocks of the architecture, and will describe how they collaborate in real time in
Section 3.2 (Fig. 3).
At the operating system level, the following actions are performed.

Camera Frame Processing
E---------> Module E --------- Modu|e
scene presentation : :
<<flow>> frame : model id and perspective transform

I <<flow>> . <<flow>>
augmented scene v v
User <<flow>> Display AR Rendering
Module Module

' augmented scene H

<<flow>>

Fig. 2 Global information flow among the components of the application. Each module runs independently
of the others
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AR Workflow
OS Thread(s) Processing Thread AR Rendering Thread

image
+
.- index or time

Extract

Keypoints

Transform

Keypoints
only if
_| necessary
Identify -7
Document Model
<<datastore>> <<datastore>>
Models Model id Animations
Keypoints
Perspective
Transform
Estimate Render
Perspective AR Scene

Display \

AR Scene

Fig. 3 Data flow at run time. Control flow is removed for clarity. Actions are represented by rounded rect-
angles, and objects by squared ones. This illustration completes the one in Fig. 2 by detailing the content of
the Frame Processing Module and showing explicitly the distribution of actions across threads

— Read Frames to produce a continuous stream of images and their timestamps.
— Display the AR Scene to the user, blending animated content, original scene and
various widgets.

The core of the architecture is the frame processing comprised of the following actions
run sequentially.

— Extract Keypoints from frame images. This consists both in detecting salient and
robust points or regions, and computing a descriptor to characterize the related local
area of the image. Such descriptors must be as robust as possible to the common distor-
tions encountered during mobile document capture: perspective distortion, illumination
variations, out-of-focus blur and motion blur, in particular. The Keypoints object is
therefore a set of structures containing coordinates, a description vector, as well as a
few extra elements related to the implementation.

—  We then Identify the Document Model using a) the set of keypoints extracted from
the current frame; and b) the set of all keypoints extracted from every document model
image (named here “Models Keypoints™, which stores for each keypoint the id of the
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associated document model). The decision process leading to the selection of a single
document model will be detailed in Section 4.2.

— Finally, we Estimate the Perspective Transform making use of the correspondences
between: a) the set of keypoints extracted from the current frame; and b) the subset of
Models Keypoints which correspond to the model which was identified. It consists in
recovering the transformation matrix describing the perspective under which the docu-
ment model is viewed. It also serves as a geometric validation stage of the previously
matched document model, rejecting inconsistent solutions.

The identification of the document model is performed only when no document model has
been found yet, or when the perspective transform estimation fails for a given number of
frames, indicating that the document in the scene may have changed. Conversely, there is no
need for a specific model identification as long as the perspective model estimation succeeds
(indicating that the document model is still valid for the current frame).

AR Rendering, finally, can be reduced to a single action for the purpose of our pre-
sentation: Render the AR Scene. This action consists in superimposing the appropriate
animation for the current model, using the perspective transform previously found, on the
current frame. It uses a bank of animations (Animations) which contains images, sounds,
and other elements for each document model. The main challenge of this step is to maintain
a smooth animation display with a high frame rate while:

1. frame processing introduces a sensible delay between the moment when a frame is read,
and the moment when the perspective transform is available;

2. occasional failures in document model identification or perspective transform estima-
tion create gaps in the availability of the perspective transform.

To cope with those issues, the rendering has to keep track of the last valid model id and
perspective transform in order to avoid flickering effect (intermittent display of augmented
content). Furthermore, it is possible to improve the quality of the rendering by interpolating
the perspective transform using the frame timestamps and a fast motion estimation tech-
nique, like optical flow [21] for instance. As such technique introduces an extra computing
cost, it can have a negative impact on some configuration; and would therefore deserve a
dedicated study.

3.2 Control flow at run time

As frames have to be processed as quickly as possible, the frame processing and the AR
rendering perform a minimal amount of work at each cycle, as illustrated in Fig. 4.

For Frame Processing, keypoint extraction, document model identification and per-
spective transform estimation are performed sequentially. However, document model
identification is performed only when no document model is already available. The refer-
ence to the document model is kept as long as the geometrical validation of the perspective
transform estimation succeeds. If the perspective transform estimation fails for a sufficient
number of times, then the document model is invalidated as it may indicate that the user is
now aiming at a different document, and document model identification will be run on the
next iteration.

AR Rendering, on the other hand, only renders the animation when a perspective
transform is available. Like for document model identification, the last valid perspective
transform is stored and applied to later frames until a new transform is found, or until the
estimation failed for a sufficient number of times.
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ﬁ'ame Processing \

ﬂ? Rendering \
Extract .
Keypoints
oc.

c. Mdl. Read Last
yes vailable?. Frame Timestamp

ho
Identify ersp. Trans.
Document Model available?

Estimate
Perspective
Transform

Fig. 4 Activity diagrams of a frame processing and b AR rendering

The clear distinction between document model identification and perspective transform
estimation permits to reduce significantly the amount of time required to process a frame as
soon as a model is found and validated. Keypoint extraction is however a required operation
for each new frame to process. Figure 5 illustrates the benefit of such separation on a sample
session: as soon as the document model is found and validated, perspective transforms are
computed much faster, enabling a smoother AR rendering.

4 Implementation of the frame processing module

We now focus on the three main processes involved in the core of the architecture; the
frame processing. Keypoint extraction (Section 4.1) is the fundamental process which con-
sists in producing a set of local descriptors for each video frame. This set is latter matched
against either i) the full database of local descriptors (“Models Keypoints”) previously
extracted from all document models (during Document Model Identification, Section 4.2) or
ii) a subset of this database of local descriptors (during Perspective Transform Estimation,
Section 4.3).

This global process is very robust against occlusions or partial detections, due to missing
or invisible parts of the document, because of the nature of the set comparison techniques
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AR Timing ]

AR Render.Rendering

Update Perspective/Update Perspective
Idle m Transform
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Extracting Keypoints.
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No Doc. User aims at document
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Fig. 5 Timing diagram of a sample AR session. At the beginning, no document is visible in the frame and
document model identification fails. Starting from the fourth frame, a document in visible in each frame.
This enables the document model identification, and subsequently the perspective transform estimation, to
succeed. Once document model identification is confirmed by the geometrical validation of the perspective
transform estimation, there is no need to check for a new document model unless perspective transform
estimation fails for a sufficient number times. As soon as a valid perspective transform is available, the AR
rendering becomes active.

used to match the set of keypoints extracted from each frame against the set of keypoints
previously extracted from model images.

4.1 Keypoints extraction

The keypoint extraction process is based on two distinct stages:

1. adetection stage which identifies interest points or regions which exhibit saliency prop-
erties and should be stable under multiple viewing conditions: perspective, illumination,
motion, and focus in particular;

2. adescription stage which encodes visual information (texture, gradients, colors, etc.)
about the neighborhood of the interest element with a transform function which is
invariant to several of the previously mentioned distortions.

We considered four methods for keypoint detection and description for our analysis.

—  SIFT: Keypoint detector proposed by Lowe in [20] in which keypoints are extracted as
maxima of the Difference of Gaussians over a scale space analysis at different octaves
of the image. Dominant orientations are assigned to localized keypoints. The descriptor
coarsely describes edges appearing in keypoint frames by an orientation histogram over
the gradient image.

— SUREF: Keypoint detector proposed by Bay et al. in [4] which detects blobs based on
the determinant of the Hessian matrix. The descriptor is based on the computation of
Haar wavelet responses in a dense fashion within the keypoint frames.

— ORB: Keypoint detector proposed by Rublee et al. in [31] which uses an orientation-
based implementation of the FAST corner detection algorithm. The binary descriptor is
a rotation aware version of the BRIEF descriptor [7]. It basically encodes the intensity
differences among a set of pairs of pixels.
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— BRISK: Keypoint detector by proposed by Leutenegger et al. in [19] which analyses the
scale space using a saliency criterion. The binary descriptor is also based on a pair-wise
comparison of pixel intensities as in ORB.

It is worth noting that both SIFT and SUREF yield an integer-valued histogram while
ORB and BRISK produce binary strings. Such binary descriptors are matched against each
other with a Hamming distance which entails a much faster distance computation than the
Euclidean distance calculation done for SIFT and SURF descriptors. ORB and BRISK being
binary descriptors they are more suitable for a real-time applications in mobile devices since
they offer matching speeds that can yield several orders of magnitude in speed when com-
pared with integer-valued descriptors. In this paper we analyze their performances in order
to assess the performance loss in terms of accuracy when using such compact descriptors.

4.2 Document model identification

We followed a standard architecture for document matching with local descriptors [9, 32].
Given a set of model documents D = {d, d3, ..., djy} to index, we compute local detectors
to end up with N keypoints K = {ki, k2, ..., ky} for each model document from D. Given
the different detectors we tested, the keypoints from K are to some extent invariant to rota-
tion, scale, illumination and perspective changes. Each keypoint k; is then described by a
feature descriptor f; from one of the previously presented descriptors. Such descriptors are
then indexed in an inverted file efficiently implemented with the FLANN architecture [25],
which either uses KD-trees for integer descriptors (like SIFT and SURF) or LSH [1] for
binary descriptors (like BRISK and ORB). Each entry of the model database is composed
of keypoint information: coordinates, local descriptor value and original model identifier.

For any incoming frame from the mobile device camera, keypoints and local descrip-
tors are extracted and computed, and matched against the inverted file. In order to produce
reliable matches, we use the ratio-test proposed by Lowe [20], according to which a match
is considered to be correct if the ratio between the distance to the nearest and to the sec-
ond nearest local descriptors is above a certain threshold. An extra level of control would
be possible by considering reverse matches between descriptors from either the complete
database or only the selected document model and descriptors from the current frame, but
our experience showed that this tends to filter too many candidates, sometimes even degrad-
ing the final decision while adding a significant computational cost. The model selected as
appearing on the frame is the one for which more local descriptors have been matched with-
out ambiguity. For efficiency reasons, this architecture does not allow for more than one
document model to be matched.

4.3 Perspective transform estimation

Perspective transform estimation is performed during a second keypoint matching stage.
Once the document model is known, it is possible to reconsider all the local descriptors
extracted from the frame and match them against the ones from the same model in the model
database. A ratio test is also performed at this stage to filter ambiguous matches. From a set
of putative matches between keypoints of the selected document model and of the current
frame, a RANSAC [13] step is performed in order to filter out the outlier matches that to not
agree geometrically and to find the homography between the recognized model document
and its instance appearing in the scene. We found that a minimum of 15 inliers was required
to obtain stable results.
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This stage confirms the validity of the document model which was identified at the previ-
ous stage, and provides the AR rendering module with a transformation matrix which allows
to project the augmented synthetic content over the physical document in the current frame.

We separate this stage from document model identification as much as possible, in the
sense where we take all keypoints from the matched document model and match them
against all the keypoints of the frame. This solution is slower (as it requires a second approx-
imate nearest neighbor search, even if restricted to a subset of the model database) but
provides better results when compared to solutions which estimate the perspective transform
directly on keypoints correspondences obtained from the document model identification
stage. As previously mentioned, this separation is the key to a clear evaluation of this
architecture.

5 Public dataset for performance evaluation

This section first describes the content of the test database we created for this project,' and
then details the ground-truth creation process.

5.1 Database contents

In order to create our dataset, we built fifteen children musical sheet pages taking as a basis
the score sheets published in an official monograph from the education department of the
Goverment of Catalonia.? Our sheets contain the title of the song, the music score, the lyrics
of the song as well as some simple drawings depicting the main content of the song. We
show an example of each page in Fig. 6.

Each of those document models were printed using a laser-jet printer and we proceeded to
capture them using a Google Nexus 5 smartphone. We recorded small video clips of around
20 seconds for each of the fifteen documents in three different acquisition conditions pre-
senting severe perspective distortion, low contrast between background and musical sheet,
motion and out-of-focus blur, etc. The videos were recorded using Full HD 1920x1080 res-
olution at variable frame-rate. Since we captured the videos by hand-holding and moving
the smartphone, the video frames present realistic distortions such as focus and motion blur,
perspective and change of illumination. In addition of the video clips, we also captured an
8Mp picture of each of the documents to be used as models for the matching process. We
present an example of the different scenarios in Fig. 7. Summarizing, the database consists
of 45 video clips (of 18.7 seconds on average) comprising 21 048 frames.

For each frame of the dataset, one and only one instance of a document is fully visible:
no corner or side is “cut”, and the coordinates of each of the 4 corners of the page in the
frame referential are stored in the ground truth.

5.2 Semi-automatic groundtruthing
To evaluate the ability of the proposed approach to locate and accurately segment the

document pages in video feeds, we need a segmentation ground-truth of our collection con-
sisting in having a quadrilateral defined by the four corners of the paper sheets appearing

Thttp://www.cve.uab.cat/songbook/
Zhttp://ensenyament.gencat.cat/ca/departament/publicacions/monografies/cancons-populars

@ Springer


http://www.cvc.uab.cat/songbook/
http://ensenyament.gencat.cat/ca/departament/publicacions/monografies/cancons-populars

13784 Multimed Tools Appl (2018) 77:13773-13798
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01 “sol” 02 “lluna”
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04 “cargol” 05 “pedra” 06 “gegant”

@EN | AN PETIT @OLLES, OLLES @ QUINZE SON QUINZE

07 “jan” 09 “quinze”

@ LA SARDANA DE LAVELLANA

@ LA GALLINA PONICANA

IR

10 “sardana” 11 “tres” 12 “gallina”

@ 0ALT DEL COTXE @ AL CARRER MES ALT @ 50N DIA, NOSTRE PARE

13 “cotze” 14 “carrer” 15 “bondia”

Fig. 6 Sample documents used in our dataset

in the video frames. However, manually annotating such amount of frames, is a tedious and
error-prone task. We have used the semi-automatic ground-truthing approach previously
presented in [10]. We start with the assumption that the documents lie on a flat surface
and do not move from it. We surround the physical document with four color markers that
will be easily segmented. The ground-truth quadrilateral is inferred through computing the
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=

Pl

Scenario 01 Scenario 02 Scenario 03

Fig. 7 Example of the different acquisition scenarios

transformation that holds between the markers and the paper sheet. Such approach involves
a reduced human intervention.

The proposed semi-automatic approach works as follows. First color markers shown in
Fig. 8a have to be segmented. Given a video with n frames Fy, ..., Fj, ..., Fy—1, we show the
first frame Fy to the user that has to click on the four markers. The RGB color values in those
positions with a range tolerance are used as thresholds to segment the markers, as shown
in Fig. 8b. Such RBG values are update iteratively for each frame to tackle illumination
changes across the whole video, i.e. the RGB value of each of the markers centroid at the
ith frame is used to segment the i + 1th frame.

Being M; the polygon defined by the marker centroids M; = {A;, B;, Ci, D;} and P;
the quadrilateral defined by the four page corners P; = {W;, X;, Y;, Z;} for the ith frame
(Fig. 9), we define a reference coordinate system by four points M’ = {A’, B, C’, D’} in

(a) (b)

@ cARGoL, TREU BANYA

(d)

Fig. 8 Overview of the semi-automatic groundtruthing approach. a Original image. b Color marker seg-
mentation. ¢ Warped frame shown to the user to mark the four document corners. d Quadrilateral output and
inpainted markers
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A e e Ut
—— ! /
P — (700, 840)
p——— VV.' ‘X/
C; m o], A
F;

e — VA
— 0, 700,0

) 5 0.0) b — L, (700,0)

Fig. 9 Markers-to-corners approach. Marker centroids {A;, B;, C;, D;} are detected and H; mapping those
points to know coordinates {A’, B’, C’, D'} is computed. The page corners {W’, X', Y’, Z'} within this ref-
erential F’ are stable. The inverse transformation using Hz_l gives the real coordinates {W;, X;, Y;, Z;} of
the corners. (Image reprinted from [10])

order to compute for each frame a perspective transform [15] H; that converts the point set
M; to M’ using

M' = H;M;.

Hy is computed for the first frame of the video and we present the warped image F;
to the user. He then selects the four corners P’ = {W’, X', Y’, Z'} (Fig. 8c). Backwards
projecting the points from P’ using the inverse perspective transform Hi_l,

P=HP,

is used to find the corners of the page P; at any frame i.

With this approach, we annotated the whole dataset by needing eight clicks from the user
per video.

Finally, the marker segmentation mask is used in order to “erase” the markers from each
frame using an inpainting technique. This step is optional and is just used to provide mark-
erless and aesthetical video frames. We have used the approach by Telea [35]. We can see
the page segmentation and the marker inpainting results in Fig. 8d.

A final manual revision of the ground-truth polygons was conducted. Inspecting the
ground-truth we found that for a few clips for which color marker segmentation failed, a
manual correction was necessary and introduced an extra edition cost. This was detected
thanks to a frame by frame inspection of the final video clips (after inpainting). The aver-
aged total time needed to generate the ground truth for a given video clip and its inpainted
counterpart is 6 minutes. This includes the capture, the automated processing time, and the
manual inspection and correction of all frames to ensure a precise result. This makes our
approach very competitive to generate realistic datasets with little constraints.
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Table 1 Comparison of memory

occupation for storing a Method Bits per Number of Total descriptor
descriptor dimension dimensions size (bytes)
BRISK 8 64 64
ORB 8 32 32
SIFT 32 128 512
SURF 32 64 256

6 Benchmark descriptors

In this section we will evaluate the performance of the different local descriptors both for
the document model identification and for the perspective transform estimation tasks.

We will first start this section by providing some practical details about each local
descriptor method used in the benchmark. Then, for each task we will present the evaluation
metrics and evaluation protocol to end up presenting and discussing the results.

6.1 Local descriptors analysis

The results presented in the rest of this section should be interpreted while keeping in mind
the actual amount of local descriptor used to perform each task, and the real memory impact
of each method. Table 1 summarizes the memory occupation required to store a single
descriptor with each of the techniques we studied. Table 2 indicates the average amount of
keypoints extracted either from each model, or from each video frame to be processed. It
also provides a rough estimation (not including indexation structure) of the average memory
occupation required to store model and frame descriptors at run time. It is worth mentioning
here that the model image size is slightly smaller than the one of the video frames to improve
the matching (because actual documents rarely cover the whole video frames in the test set).

As we can see, ORB and BRISK exhibit much lower memory impact at run time. Another
interesting point to mention is that there are important variations in the number of keypoints
extracted by each methods, ORB and SIFT producing more elements to match. This obvi-
ously has an important impact on both the quality of the results and the actual processing
speed. Regarding ORB and BRISK, the two methods which appear as the most suitable for
an embedded solution, we can ask ourselves whether ORB (which produced a target num-
ber of keypoints) supports are representative enough for matching frame and model content,
and BRISK lacks some of them, or on the contrary if ORB introduces noise and BRISK is
well-focused on the essential supports. As we will see in the following of this paper, the
results are clearly in favor of using ORB in favor of BRISK for the task we defined.

Table 2 Comparison of actual

number of descriptors used and Method Keypoints count Memory usage (in KiB)

associated memory occupation at

runtime Per model Per frame For all 15 models Per frame Total
BRISK 369 492 346 31 377
ORB 1,020 1,010 478 32 510
SIFT 935 1,570 7,013 785 7,798
SURF 522 855 1,958 214 2,171
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6.2 Document model identification

The document model identification task is defined as the process of associating to a given
frame from the test set the appropriate document model identifier, given a database of
keypoints for all document models.

We considered each frame as an independent event, in the sense where we did not imple-
ment a solution which made use of the label associated to previous frames in a stream, in
order to compare the impact of the choice of local detectors and descriptors, and not regu-
larization techniques (which should be studied separately). However the evaluation model
is compatible with more elaborate modules which would take past history into account.

6.2.1 Metrics

Formally, each method is evaluated according to two metrics:

1. its accuracy on the identification task consisting in association to a random frame the
appropriate document model identifier among the fifteen possible ones in the dataset;
2. its average frame processing time.

The identification accuracy is defined as the number of frames correctly labeled,
normalized by the total number of frames.

6.2.2 Protocol

This experiment compares the metrics obtained for each pair of local detectors and descrip-
tors presented in Section 4.1. The experiments were run on a desktop machine (as opposed
to mobile devices) for practical reasons. This has no impact on the accuracy metric, but
the average frame processing time can be reduced, therefore this last metric should be
interpreted relatively.

6.2.3 Results and discussion

We report in Table 3 the obtained identification accuracies and the required processing times
for all the local keypoint detectors and descriptors. Even if SIFT outperforms the rest of
local descriptors in terms of identification accuracy, it is worth noting that it is the most
computing demanding one. ORB achieves comparable identification results while being
much faster. We experience a slight drop in performance when using SURF, while BRISK
performs poorly on this task despite being the fastest method. The speed difference between
BRISK or ORB is explained by the different amount of keypoints that are extracted from
each frame and each model, as presented in Table 2. From these results we conclude that for

Table 3 Performance summary

on the document model Method Accuracy Average FPS Average time
identification task (%) per frame (s)
BRISK 87.3 19.6 0.051
ORB 99.5 4.1 0.241
SIFT 99.9 0.4 2.669
SURF 94.7 0.9 1.083
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Table 4 Document ]
identification accuracy per Scenario BRISK ORB SIFT SURF

acquisition scenarios

01 79.9 99.9 100.0 92.2
02 90.5 99.0 99.7 98.8
03 91.5 99.6 99.9 93.2
All 87.3 99.5 99.9 94.7

a real-time application ORB would be the preferred choice for its speed and identification
accuracy.

We report in Tables 4 and 5 the averaged identification accuracies for the different acqui-
sition scenarios and document types respectively. On the one hand we can see that for both
SIFT and ORB, the second scenario is the one that causes more failures, since it is the sce-
nario with the most difficult acquisition conditions (perspective, blur and low contrast). On
the other hand, by looking at the different document types, we can see the strong variance
for BRISK: for some documents (e.g. “10 sardana”, “12 gallina” or “15 bondia”) it per-
forms quite similarly to ORB, while for some others its performance drops dramatically
(e.g. “02 lluna”). The same applies between SIFT and SURF, which perform poorly on a
couple of documents. Again, there are no significant differences between SIFT and ORB,
but SIFT steadily delivers slightly better accuracies.

6.3 Perspective transform estimation

The perspective transform estimation task consists in finding the best possible perspec-
tive transform, given a document model image and a video frame, which will project the

Table 5 Document

identification accuracy per Document BRISK ORB SIFT SURF

document
01 sol 98.8 99.5 100.0 99.9
02 1luna 57.6 100.0 99.8 72.8
03 plou 84.9 99.2 99.6 99.6
04 cargol 93.4 99.6 99.9 100.0
05 pedra 59.7 100.0 100.0 100.0
06 gegant 87.9 99.1 100.0 100.0
07 jan 100.0 100.0 100.0 100.0
08 olles 90.4 98.2 100.0 98.3
09 quinze 69.9 100.0 99.6 50.3
10 sardana 99.2 99.5 100.0 100.0
11 tres 99.1 100.0 100.0 100.0
12 gallina 99.1 99.3 100.0 100.0
13 cotxe 76.9 99.8 99.9 100.0
14 carrer 93.8 99.4 99.5 99.7
15 bondia 99.3 99.4 100.0 100.0
All 87.3 99.5 99.9 94.7

@ Springer



13790 Multimed Tools Appl (2018) 77:13773-13798

synthetic augmented content on the physical document with as little overlapping error as
possible.

Here we start from the already known document model, in order to avoid any bias from
this prior step.

6.3.1 Metrics

As for document model identification, we consider two metrics:

1. perspective estimation quality;
2. average frame processing time.

To evaluate perspective estimation quality, we used the Jaccard index measure [12] that
summarizes the ability of the different methods at correctly segmenting page outlines while
also incorporating penalties for methods that do not detect the presence of a document object
in some frames. Here we add a preliminary step to project (“‘dewarp”) point coordinates
into the document referential, so as to be able to compare values obtained for different
frames.

The evaluation procedure works as follows. Using the document size and its coordinates
in each frame as stored in the ground truth, we start by transforming the coordinates of
the result quadrilateral S and of the ground-truth G to undo the perspective transform and
obtain the corrected quadrilaterals " and G, as illustrated in Fig. 10. Such transform makes
all the evaluation measures comparable within the document referential, or, said differently,
it projects the expected and detected frame regions into a space where each pixel accounts
for the same physical surface. For each frame F, we compute the Jaccard index (JI) that
measures the goodness of overlapping of the corrected quadrilaterals as follows:

__area(G'NY’)
" area(G' U S")

where G’ N S’ defines the polygon resulting as the intersection of the detected and ground-
truth document quadrilaterals and G’ U S’ the polygon of their union. As the dataset contains
only clips where every frame represents one (and only one) of the documents, the case where
G’ U S’ = ¥ never occurs, thus ensuring the metric is always defined in the experiments we
conducted.

Finally, the overall score for each method will be the average of the frame score, for all
the frames in the test dataset.

Fig. 10 To ensure that expected (G) and result (S) surfaces are comparable among frames, surface com-
parisons are performed within the referential of the document, leading to new quadrilaterals G" and S’ after
dewarping the coordinated using the homography H associated to the current frame F, as described in Fig. 9
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6.3.2 Protocol

This experiment compares the metrics obtained for each local descriptor presented in
Section 4.1: BRISK, ORB, SIFT and SURF. As for the previous experiment, this experiment
was run on a desktop machine so the average frame processing time should be interpreted
relatively.

6.3.3 Results and discussion

We report in Table 6 the quality of perspective transform estimation and the associated
average frame processing time for each local descriptor. While SIFT outperforms other
methods from a quality perspective, ORB achieves comparable results with a fraction of
the computing power required: processing a frame with ORB is more than 16 times faster,
while using 16 times less memory to store the same amount of descriptors. SURF performs
just a little less well that ORB and SIFT, but at the price of an important processing time,
making it less attractive than ORB. BRISK, finally, is very fast, but leads to poor results and
is unusable for this task.

During our tests, we realized that methods for which the Jaccard index drops below 95%
do not perform well enough for the document augmentation task, as the detected region
misses too much information from the document and has a visible overlapping difference for
the user. This lets us with only two viable options, SIFT and ORB, out of the four methods
we considered. SIFT should be preferred when computational power is not a concern and
quality is of prime interest. ORB should be preferred for mobile applications when real-
time image processing is performed on the device. Figure 11 provides a more detailed view
of the actual distribution of the values of the metric.

Finally, the comparison of the performance of each method against acquisition scenar-
ios and documents of the dataset can reveal some additional information. Table 7 details the
results for perspective transform estimation for each acquisition scenarios. The second sce-
nario tends to contain more blurry frames, due to a pale background and a lower ambient
light which are more challenging for the autofocus. It also contains frames with more per-
spective distortion. With the exception of BRISK, the methods seem to be more impacted
by such factors. It is interesting to note that the overall ranking remains the same when
capture conditions change: SIFT performs slightly better than ORB, SURF then performs
reasonably before BRISK for which performance is too low. Table 8 details the results for
each document of the dataset. Some documents, like “09 quinze” contain little texture infor-
mation and are challenging for all methods. Depending on documents, and maybe also on
acquisition samples, the order between SIFT and ORB can be switched, and also sometimes
between ORB and SURF. SIFT however always performs better than SURF. BRISK, on

Table 6 Performance summary

on the perspective transform Method Mean Jaccard Average FPS Average time
estimation task Index (%) per frame (s)
BRISK 77.7+0.54 13.5 0.074
ORB 98.4 +0.09 9.6 0.104
SIFT 98.8 +0.06 0.6 1.741
SURF 97.5+0.11 1.1 0.886
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Fig. 11 Boxplot visualization of the distribution of Jaccard index values (in percentages) for each method
over all test frames, truncated at 90%

its side, constantly performs worse despite its great variance: it can provide decent results
for some documents like “10 sardana”, with 97.0% average JI, and unusable ones for
documents likes “09 quinze”, with 20.8% average JI.

To conclude, SIFT is a clear winner, but ORB is the method of choice for mobile applica-
tions, with a small quality loss. However, under more challenging conditions like low light,
motion and defocus blur, or occlusions, the situation may change and this ranking could
be more severe. In our experience, we observed that SIFT can handle difficult cases where
ORB performance drops, before giving up on its turn.

7 Application details and implementations

We built a prototype of the application in Java using the OpenCV’s wrapper for Android.
The app automatically detects the music score we are pointing at from a reduced dataset
of three indexed scores. At this stage, the black and white drawings from the music score
documents are augmented with a colorized version. The user can select either to use a piano,
a violin, a flute or a saxophone as playing instrument and a virtual keyboard appears. The
user is then guided to play the song by marking both the key to play from the keyboard and

Table 7 Quality of the

perspective transform estimation Scenario BRISK ORB SIFT SURF
detailed by acquisition scenario
01 71.9 98.9 99.1 98.3
02 79.8 97.7 98.3 96.4
03 81.4 98.6 98.9 97.9
All 71.7 98.4 98.8 97.5
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Table 8 Quality of the
perspective transform estimation ~ Document BRISK ORB SIFT SURF

detailed by document

01 sol 83.8 98.1 98.6 97.8
02 lluna 60.8 98.7 98.4 96.3
03 plou 75.3 97.7 98.4 96.5
04 cargol 88.5 98.5 98.8 98.6
05 pedra 41.7 98.9 98.6 98.0
06 gegant 86.3 98.4 99.2 98.1
07 jan 92.4 98.8 98.9 98.4
08 olles 824 97.0 98.8 94.3
09 quinze 20.8 98.6 98.5 95.9
10 sardana 97.0 98.8 99.1 98.7
11 tres 86.6 99.0 99.2 98.3
12 gallina 91.7 98.1 98.8 98.3
13 cotxe 75.6 98.9 99.2 98.4
14 carrer 87.9 97.7 98.0 96.4
15 bondia 96.2 98.8 99.2 98.8
All 71.7 98.4 98.8 97.5

the corresponding note from the staff. Once the correct key has been played, the next key and
note is displayed. This aims thus at acquiring abstract musical concepts by a manipulative
and interactive application. We can see an example of our prototype in Figs. 1 and 12. A
couple of videos of the usage of the app can be seen in the website of this project.

Fig. 12 An example of usage of the developed AR prototype
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Fig. 13 Permanent installation in the Volpalleres Library Living Lab. a Whole system, b projector and the
two cameras, ¢ detail of the physical/virtual content integration

The processing thread in the current non-optimized version? of the prototype runs at 7 fps
in a Google Nexus 7 tablet. Such latency might not be enough for a pleasant use, since the
users will experiment a lag. However, by having two separate threads, one for processing,
and one for the camera grabbing and display modules, as explained in Section 3, provides
the user an enjoyable experience with a 23 fps feedback sensation.

Finally, we have a permanent installation of the system, Fig. 13, in the Volpalleres Library
Living Lab in the town of Sant Cugat, Spain, for the general public to test it [18]. The
augmented reality engine is the same than the one we built for the mobile. The complete
system has however a few particularities. The system involves a projector that projects the
virtual contents into the physical documents, a camera in charge of providing the images
for the detection of the physical document and an infrared camera in charge of detecting the
human interactions with the virtual and physical contents. Thus, a calibration step is needed
in order to model the disparities among those three elements. Some videos of the usage of
this instalation can be seen in the Library Living Lab website.*

3Just avoiding the OpenCV’s Java wrapper and program it in C++ will already entail an important speedup.
“http://librarylivinglab.cvc.uab.cat/calendar/prototypes-and-apps-for-musical-language-learning/?lang=en
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It would be very interesing to really assess and evaluate how such new learning applica-
tions are perceived by the users and if they actually contribute in raising awareness of the
musical notation to young children, and to ease the learning of abstract concepts. Although
we have tested its use with several kids aged around 6 years old, receiving positive reactions,
we have not yet conducted such in-depth evaluation.

8 Conclusions

In this paper we described the architecture and the internals of a mobile educative applica-
tion devoted to raise awareness of the musical notation to young children. The application
allows the superimposition of augmented contents over pages of a predefined songbook in
real time, without specific markers, and with all the processing done on the mobile device.

We have benchmarked the performance of local detector and descriptor methodologies
for the tasks of document model identification and perspective transform estimation. This
benchmark provides a baseline for the particular use case of augmented documents on
mobile devices. In order to conduct those experiments, we introduced an original and pub-
lic dataset precisely ground-truthed consisting of a total of 21 048 frames. Results show
that the performance yielded by the ORB feature descriptor is comparable with the more
computationally demanding SIFT descriptor.

The mobile prototype is able to run the display in real time, with an adjustment of the aug-
mented content position at a rate of 7 fps, thanks to a separation of the document matching
process and the AR rendering process. We tested the prototype in real environments under
different setups and with several parents and their children, obtaining a positive reactions.
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