
Adaptive image compression based on compressive sensing
for video sensor nodes

Xufan Zhang1 & Yong Wang1 & Dianhong Wang1 &

Yamin Li1

Received: 12 December 2016 /Revised: 20 June 2017 /Accepted: 22 June 2017 /
Published online: 1 July 2017
# Springer Science+Business Media, LLC 2017

Abstract Monitoring applications based on wireless video sensor networks are becoming
highly attractive. However, due to constrained resources such as energy budget, communica-
tion bandwidth and computing ability, it is imperative for video sensor nodes to compress
images before transmission via wireless networks. In this paper, we propose a novel image
compression scheme based on compressive sensing, which has low complexity and good
compression performance. The image quality can be adaptively adjusted by the residual energy
of sensor nodes and the link quality of network. Furthermore, the image compression
algorithm has been validated on the actual hardware platforms. The experimental results show
that the proposed scheme is suitable for resource-constrained video sensor nodes, and is
feasible for the practical application.

Keywords Wireless video sensor networks . compressive sensing . image communication .

image quality control

1 Introduction

Wireless video sensor networks (WVSNs) consist of micro video sensor nodes having
perception, computing and communication abilities [2, 14]. Compared with traditional wireless
sensor networks [1], WVSNs are able to capture, process and transmit image or video data for
visual monitoring applications. Thus WVSNs are becoming highly attractive during the past
few years. Nevertheless, there are some critical problems restricting applications of this
technology. For video sensor nodes, the energy, bandwidth and computing resources are
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limited, which leads to the fact that image communication in sensor networks becomes
difficult. Reducing the volume of data to be transmitted contributes to saving energy greatly
and overcoming the communication bottleneck. Therefore it is necessary to compress images
before transmission over WVSNs.

For some traditional image compression algorithms, such as JPEG [24] or JPEG2000 [7],
the key idea is to extract and retain only a bit of high-energy coefficients and encode them
while discarding the remaining ones. It has been proved that these methods can achieve good
compression performance at the cost of complex computation and high overhead. Besides,
these methods are unable to reconstruct the images when some important data packets are lost
[16, 20]. Although error correction mechanisms, such as forward error correction (FEC) [27]
and multiple description coding (MDC) [25] techniques, are adopted to deal with packet
losses, additional redundancy for transmission reliability incurs energy consumption and
transmission latency. Therefore, these approaches are not suitable to be applied directly to
the resource-constrained video sensor nodes [11, 15].

Compressive sensing (CS) [5, 9] has been proved to be effective in data compression.
According to CS theory, an image can be sampled and compressed with less computation cost.
Furthermore, the quality of recovered image only depends on the number of compressive
measurements, not on which of the measurements that are received. Thus, CS-based image
compression has a better robustness to packet losses over wireless sensor networks than those
conventional compression algorithms [8]. Many researches have studied the concept of CS in
image compression during the past years. Pudlewski et al. [17] made a case for why CS should
be used in video encoding for low power WVSN nodes. Gao et al. [13] proposed a CS-based
image compression algorithm, in which the input images are transformed into a sparse matrix
by using discrete cosine transform (DCT), and then two CS sampling schemes based respec-
tively on coefficient random permutation and energy contribution of DCT coefficients are
considered. Although the image can be successfully recovered, the quality of reconstructed
image is reduced because of the blocking artifacts from DCT. Zhang et al. [29] took advantage
of discrete wavelet transform (DWT) to replace DCT for thinning the original signal, which
results in the quality improvement of recovered images. In [12], Gan put forward block-based
compressive sensing (BCS) compression algorithm aiming to reduce the dimension of mea-
surement matrix and computational complexity. The image is firstly divided into non-
overlapping blocks with equal size, and then every block is processed in order by using the
same random sampling matrix. Since the length of coefficients and the dimension of mea-
surement matrix are decreased, this method requires less memory and has fast running speed.
However, a critical deficiency lies in the fact that the structure of image data is not utilized
completely. Yang et al. [28] introduced an additional weight matrix into the compressive
sampling. Qureshi et al. [19] proposed a strategy where DWT coefficients are arranged by
specific rules before compressive sampling. Experimental results indicate that the two methods
enable to improve the quality of recovered images. Especially, the coefficients arrangement in
[19] can further decrease the execution time and memory spaces. Nevertheless, the main
shortcoming of these algorithms mentioned above is that all of them utilize a fixed measure-
ment ratio (MR) to compress the whole image. In this case, it occurs a contradiction that a large
MR provides a higher recovered quality but consumes more energy, and vice versa. In fact, for
a natural image, the amount of information varies in different regions. More measurements
should be assigned to regions with rich information, and a handful of measurements are
enough to achieve good recovery quality for the other regions. According to this idea, Zhu
et al. [30] proposed an adaptive sampling method based on BCS, in which the original image is
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firstly divided into some same size blocks. Then different compressive measurements are
distributed to each block according to the amount of the specific statistic characteristic in this
block. However, this method is too complicated to apply to video sensor nodes in practice.

For image compressive transmission in WVSNs, except for the hardware resource con-
straints, the residual energy of nodes should also be taken into consideration because it is very
crucial for prolonging the network lifetime. Our earlier work [26] presented an image quality
control mechanism based on the residual energy of sensor nodes. Specifically, sensor nodes
with sufficient residual energy will be assigned a relatively large MR for the purpose of
exchanging for better image quality, in the meanwhile, the other nodes are assigned a small
MR so that less computation and measurements are used to prevent rapid depletion of the
residual energy, so as to balance the energy consumption among nodes. This method reaches a
good tradeoff between energy consumption and compression performance. Additionally, some
researches [3, 18] show that the link quality of network has a strong connection with the packet
loss rate (PLR). This means the link quality of network is also an important factor for image
transmission. For instance, data packets are subject to loss over the wireless channel when the
link quality of network gets worse, resulting in the poor image quality. Therefore, if the MR
correspondingly increases on this occasion, more measurements will be transmitted to the
receiver side and the image quality can be improved to some extent. As another example,
under the worst circumstance that the link quality is extremely poor, the number of received
measurements is too little to reconstruct the original image. In this case, it is not necessary for
sensor nodes to compress and transmit the image from the point of view of energy saving.
Thus it is crucial to choose a proper way to evaluate the link quality of network so as to
adaptively adjust MR according to the link quality. Preceding studies [4, 21] indicate that the
average link quality indicator (ALQI) can exactly and objectively reflect the link quality of
network. Thus ALQI is used as a metric to measure the link quality in our solution.

In this paper, we propose a low-complexity and energy-efficient image compression
algorithm for video sensor nodes. This BCS-based scheme gives consideration to both energy
saving and compression performance, and adaptively adjusts the image quality by combining
the residual energy of nodes with the link quality of network. The contributions of this paper
are summarized as follows:

1) We introduce BCS and coefficient rearrangement into image compression. BCS greatly
decreases the complexity of compression and promote the robustness of transmission.
Moreover, coefficient rearrangement can further reduce the dimension of measurement
matrix so that the compression procedure can run faster.

2) We design an image quality control strategy, which means the number of compressive
measurements can be adjusted according to the residual energy of nodes and the link
quality of network. The proposed scheme can balance energy consumption of nodes while
achieving good image quality.

3) We develop the prototype of video sensor nodes and establish a tiny star wireless sensor
network which consists of three video sensor nodes to evaluate the compression perfor-
mance under different conditions of the residual energy of nodes and the link quality of
network. Experimental results demonstrate that the proposed scheme is suitable and
feasible for resource-constrained video sensor nodes.

The rest of this paper is organized as follows. Section 2 briefly describes the approach
overview. Section 3 describes the image compression and transmission in detail. Section 4
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introduces the customized video sensor node and presents the experimental results. Section 5
concludes this paper and provides future directions.

2 Approach Overview

To improve the efficiency of image compression in video sensor nodes, we propose a novel
compression scheme that has good performance in lowering energy consumption and
guaranteeing image quality. The processing flow of the proposed scheme is illustrated in
Fig. 1. Firstly, the original image is divided into equal size and non-overlapping blocks, and
then these image blocks are processed block by block. Through doing this, the computational
complexity and memory requirements can be reduced greatly. Nevertheless, as the original
image blocks are not sparse, CS can not be straightforward applied on it. Thus Haar wavelet
transform (HWT) is used for the sparse representation of each image block, because it has the
simplest structure and keeps the computing efficiency. However, the coefficient matrix of each
block is still not fit for compressive sampling. The coefficient rearrangement, as stated earlier,
is introduced into our scheme. Unlike traditional methods in which the coefficients of every
block are arranged into a column vector, the rearrangement converts the coefficients into a
sparse matrix whose size is determined by the level of HWT and the size of image block. As a
result, the dimension of measurement matrix is reduced greatly. Subsequently, compressive
sampling is performed to compress HWT coefficients. Since different areas have different
amount of information, it is inappropriate to employ a fixed MR to each block. We design an
adaptive image quality control strategy, in which the residual energy of video sensor nodes and
the link quality of network are taken into consideration to strike a balance between the image
quality and energy consumption. Finally, since the traditional quantization schemes are not
suitable for compressive measurements [10], compressive measurements are directly grouped
into packets and transmitted to the host for image recovery.

3 Image Compression and Transmission

3.1 HWT and Coefficient Rearrangement

The CS theory indicates that it is possible to recover a signal from a small set of
linear measurements if the signal is sparse in spatial domain or a certain transform
domain. Nevertheless, it is undesirable for video sensor nodes to directly apply CS to
the whole image. The original image usually has high dimension, the storage space
for measurement matrix is huge and the corresponding computation is expensive for
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Fig. 1 The flowchart of the proposed scheme
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the resource-limited video sensor nodes. Therefore BCS [12] scheme is proposed to
solve this problem.

According to BCS, the original image of dimension M × N is divided into B sub-blocks
with the same size ofm ×m, where B = (M/m) × (N/m). Then these image blocks are processed
block by block through a random projection. For ith (i = 1,..., B) block, a l-level HWT is
applied independently and the wavelet coefficient matrix is denoted as bi. As well known,
though the detail coefficients in bi are nearly sparse, the approximation coefficients are not
sparse. In our solution, these coefficients can be rearranged in a similar way in [19] before
random projection. Firstly, bi is further divided into non-overlap small parts αt (t = 1, 2,..., Z) of
size mb × mb, where mb = m/(2^l), Z is the total number of small parts and is computed

byZ ¼ 1þ 3∑l
k¼14

k−1. Then we group the HWT coefficients to form the sparse vectors in the

following mannerx j ¼ α j
t

� �
, where α j

t is the jth component of αt, xj (j = 1,...,mb^2) is a sparse
vector of dimension Z × 1. As a result, the coefficient matrix bi of dimension m × m is
rearranged into a new matrix {xj} of dimension Z × (mb^2). For instance, Z and mb are
separately 64 and 2 under m = 16 and l = 3. The dimension of the rearranged matrix is 64 × 4.
For traditional methods based on BCS, the coefficient matrix is usually transformed into a
column vector of m2 × 1, i.e., 256 × 1. If MR is set to 0.5, the dimension of measurement
matrix of traditional methods and the proposed method are 128 × 256 and 32 × 64, respec-
tively. Comparatively, the dimension of measurement matrix reduces 16 times by using the
coefficient rearrangement. Moreover, it contributes to shortening the execution time of image
compression, as so to reduce energy consumption of video sensor nodes. All of these can be
confirmed from the experimental results described later.

For each column in the rearranged matrix {xj}, the compressive sampling can be realized
by the following random projection

y j ¼ Φx j ð1Þ
where Φ is the measurement matrix obeyed the restricted isometry property (RIP) [6],
and yj is the corresponding compressive measurements of the sparse column vector xj.
Subsequently, these measurements will be grouped into packets and transmitted to the
receiver side via the wireless channel. The recovery at the receiver side is formulated
by solving the following convex optimization problem

x j ¼ argmin x j
�� ��

ℓ1
s:t: y j−Φx j

�� �� < ε ð2Þ

where ε bounds the noise level in the measurements. In our solution, orthogonal matching
pursuit (OMP) [23] is utilized for reconstruction of the sparse vectorx j. Once the rearranged
matrix {x j} is obtained, all the small partsαtcan be reconstructed in reverse order as before.
Afterwards, we can get the coefficient matrix bi according to the combination of αt. Finally,
the original image blocks can be recovered by the inverse Haar wavelet transform (IHWT).

3.2 Adaptive Compressive Sampling

For each image block, compressive sampling is used to reduce the number of data to
be transmitted. At present, conventional image compression algorithms based on BCS
usually adopt a fixed MR for every block, resulting in the fact that the overall quality
of the recovered image is limited. To overcome this problem, an adaptive compressive
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sampling scheme is designed to ensure that the diversities of blocks are considered.
Specifically, more compressive measurements are assigned to those blocks with rich
edge and texture information, while a handful of measurements are assigned to other
blocks which are relatively smooth. In our approach, the absolute sum of HWT
coefficients of each block that exhibits the amount of information is evaluated to
determine the corresponding MR. The idea behind this is that more measurements will
be assigned to those blocks containing large absolute coefficients. For bi (i = 1,...,B),
let bki (k = 1,..., m2) be the kth HWT coefficient, the absolute sum Si is calculated as

Si ¼ ∑
m2

k¼1
bki
�� �� ð3Þ

Then MR of the ith block, MRi, can be determined by

MRi ¼ MRpre � B� Si

∑
B

j¼1
S j

ð4Þ

where MRpre is the predefined MR that is evaluated according to the residual energy of sensor
nodes and the link quality of network, and the details will be described in the next section.
Note that, for convenience, the value of MRi is set in the range of 0.2 to 0.8. Accordingly, the
number of compressive measurements of the ith block is computed as Mi = [MRi × m2], where
[·] is the round operation.

3.3 Image Quality Control

Since energy consumption is of high priority on energy-constrained video sensor
nodes, an adaptive image quality control strategy is desired. The quality of recovered
images depends largely on the number of compressive measurements, thus it is
important for sensor nodes to achieve a tradeoff between the energy consumption
and image quality. To solve this problem, we propose to adaptively adjust MRpre

according to the residual energy of nodes so as to control image quality. That is, a
relatively large MRpre is predefined if a certain sensor node has sufficient residual
energy, and vice versa.

On the other hand, the link quality of network also has important effects on the
quality of image recovery. As mentioned before, the image quality decreases with the
decrease of ALQI. For the purpose of achieving good image quality, MRpre should
also be adjusted based on ALQI. Simply, a larger MRpre should be assigned when
ALQI decreases. Moreover, the link quality is extremely poor when ALQI drops
below a certain value. In this case, the number of received measurements at the host
is too small to recover the original image. In our solution, if ALQI is less than a
threshold, there is no need to compress images for sensor nodes. Conversely, the
network link becomes more stable as ALQI increases. A small MRpre that is adequate
for desirable image quality allows nodes to reduce the computation cost and commu-
nication overhead.

Considering the two factors mentioned above, we propose an image quality control
strategy, whose strength is that MRpre can be adaptively generated according to the residual
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energy of nodes and the link quality of network. For a certain video sensor node, its MRpre is
formulated as

MRpre ¼ 1−
ALQI−ALQIth
1−ALQIth

� �2Er
Eo ð5Þ

where Er and Eo denote the residual energy and initial energy of the sensor node, respectively.
Er/Eo is the ratio between them, and denotes the level of residual energy that is a key parameter
to adjust MRpre. Concretely, a value smaller than 0.5 corresponds to a low energy level, which
means the concerning point is energy saving and the image quality is secondary. On the
contrary, a value greater than 0.5 means a large MRpre can be assigned for better image quality
by the sacrifice of energy efficiency. Besides, ALQI theoretically ranging from 0 to 1 indicates
the current link qulity, and ALQIth is the specific threshold. Once MRpre is predetermined, MRi

can be designated according to (4).
The relationship curves of MRpre vs. ALQI under three different conditions of Er/Eo are

illustrated in Fig. 2. There are several points learned from this figure. Firstly, MRpre increases
with the decrease of ALQI in all situations. As a result, video sensor nodes will increase the
number of compressive measurements when the link quality of network gets worse. Through
doing this, a desirable image quality can be achieved at the receiver side. Secondly, MRpre

corresponding to a high value of Er/Eo is larger than that with low Er/Eo under the same ALQI.
For example, when ALQI is equal to 0.8, MRpre under three levels of residual energy are 0.29,
0.50 and 0.75, respectively. That is, a larger MRpre is assigned to a sensor node with sufficient
residual energy for better image quality. On the contrary, for a node with less residual energy,
MRpre is relatively small to prevent excessive energy consumption. This is very conducive to
balancing the energy of nodes and further prolonging the network lifetime.

Fig. 2 MRpre vs. ALQI curves under different Er/Eo
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3.4 Image transmission

After compressive sampling, all of measurements of each block are packeted for wireless
transmission without quantization and coding. ZigBee technology is utilized for data packets
transmission between nodes. Since the maximum packet size of physical layer is 127 bytes,
considering the overhead at the network, MAC and physical layers, we set the maximum
payload per packet to 70 bytes, in which nomore than 64 bytes for measurements and the fixed-
length 6 bytes for side information, such as total packet length and block position in the image.

As previously mentioned, the quality of the recovered images relies on the number of
measurements. Even if there occurs packet losses during transmission, the degradation of
image quality is graceful. Since the side information can inform the receiver which part of
measurements is received, it is feasible to recover the original images. It is worth mention that
the measurement matrix should be regrouped by eliminating the rows corresponding to the lost
measurements.

4 Experiment Results

4.1 Video Sensor Nodes

As for wireless video sensor nodes, there are hardly standard solutions or off-the-shelf products
on the market as far as we know. Tavli et al. presented an overview of nine available video
sensor nodes, most of which are designed based on expensive commercial sensor platforms
[22]. Besides, for some video sensor nodes, there is no OS governing the operation of the
platforms. This adds up many difficulties to reprogram those platforms for different
applications.

Different from the existing video sensor nodes, we customize a wireless video sensor node
using a completely original architecture, as shown in Fig. 3. The node is designed to be a three-
tier structure to reduce the size. The bottom layer mainly integrates a high speed 32-bit ARM
processor, 128 MB external SDRAM and 2 MB FLASH storing image data and compression
code, respectively. In the middle layer, a ZigBee module (CC2530) is used as the transceiver
for networking and wireless communication. According to TI Z-Stack, a ZigBee compliant
protocol stack for IEEE 802.15.4, video sensor nodes can be easily deployed to form a star,
tree or mesh network. The top layer consists of sensing modules, i.e., a small size and low
power CMOS image sensor (OV9655) and two scalar sensors (microwave induction module
and pyroelectric infrared sensor). Note that only if the scalar sensors detect moving objects, the
processor is triggered to control the camera module to capture images. Otherwise, the
processor and the camera module stay inactive for energy saving. The rationale is not
addressed herein because the scalar sensors are not used in this paper. The entire video sensor
nodes can be powered by either 3.3 V battery, USB cable or 5 V DC power adapter. Embedded
Linux system and OpenCV library are transplanted into the platform to simplify the image
compression.

4.2 Performance Evaluation

The performance evaluation is conducted in terms of the quality of recovered images,
execution time and energy consumption. Since the peak signal to noise ratio (PSNR) has a
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good character to reflect the similarity of the two images with a low cost, it is used to evaluate
the image quality in our experiments. The higher PSNR the better image quality. PSNR is the
ratio of the peak signal energy to the mean squared error (MSE) between the recovered image
and the original image, and is usually expressed as

PSNR ¼ 10log10
2552

MSE

� �
ð6Þ

MSE ¼ 1

MN
∑
M

x¼1
∑
N

y¼1
I x; yð Þ−Ir x; yð Þ½ �2 ð7Þ

where I(x, y) and Ir(x, y) represent the value of pixel at (x, y) of the original image and the
recovered image, respectively. Besides, energy consumption E can be computed as E = VIt,
where V is the operating voltage, I is the current consumption and t is the execution time. The
proposed algorithm is implemented in C++ and successfully tested on video sensor nodes.
Note that the experimental results with respect to PSNR, E and t are the averaged value of 20
repeated tests, and the parameters used in our scheme are as follows: m = 16, l = 3, ε = 10 and
ALQIth = 0.6.

In this section, the compression algorithm is tested on a single video sensor node. We
analyze the compression performance under different conditions of the residual energy and
LAQI. In our experiments, all the real-world images (320 × 240) are captured by the
customized nodes and other several standard images (256 × 256) are previously stored in
the on-board SDRAM. Due to space constraints, only parts of experimental results are given
and discussed below.

4.2.1 Adaptive MR

We firstly compare the differences between adaptive MR and fixed MR. For a given MRpre,
adaptive MR denotes that MR of each block is determined according to (4), while fixed MR
means that all blocks adopt MRpre. In order to illustrate that image compression benefits from
adaptive MR, five real-world images are tested using the two different compression strategies.

Fig. 3 A prototype of wireless
video sensor node
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These images are the lake view pictures taken in the morning, noon, night, sunny day and rainy
day, respectively. The corresponding results under different values of MRpre are presented in
Table 1.

For both strategies, we can observe from Table 1 that the larger MRpre and the longer the
execution time. This means that the runtime of compression depends largely on the number of
compressive measurements. Besides, the image quality increases with the increase of MRpre.
Comparatively, the PSNRs of adaptive MR outperforms those of fixed MR about 0.6 dB to
3.5 dB, mainly because adaptive MR assigns more measurements to image blocks with rich
feature information. Furthermore, adaptive MR runs more quickly than fixed MR in all
situations. Take the image Morning for example, compared to fixed MR, the execution time
of adaptive MR are separately reduced by 14.09 ms, 41.92 ms and 62.41 ms when MRpre is set
to 0.35, 0.5 and 0.65, respectively. Shortening the execution time helps reduce energy
consumption, thus adaptive MR prefers for video sensor nodes. In particular, for image Night,
the execution time of adaptive MR is approximately 99 ms less than that of fixed MR under
MRpre = 0.65. This is because that most of blocks in this image are smooth regions whose MRs
are assigned small values so that adaptive MR spends less computation time than fixed MR.
The experiment indicates that adaptive MR gets better results in terms of PSNR and execution
time.

The visual comparison is shown in Fig. 4, where the recovered images are generated under
MRpre = 0.5 and the columns from left to right separately correspond to original images, the
recovered images with adaptive MR and the recovered images with fixed MR. Obviously, the
recovered images of adaptive MR look more realistic than those of fixed MR. Specifically,
adaptive MR preserves more details of the pavilion and trees regions. The results further
validate that adaptive MR can achieve better image quality than fixed MR.

4.2.2 Image Compression Comparisons

We report the overall and extensive experimental results to evaluate compression efficiency of
our scheme in relation to two traditional algorithms. For convenience, the proposed scheme is

Table 1 Performance comparisons between adaptive MR and fixed MR

Images MRpre Adaptive MR Fixed MR

PSNR(dB) Time(ms) PSNR(dB) Time(ms)

Morning 0.65 23.2326 377.23 21.7716 439.64
0.5 22.0415 318.42 20.2217 360.34
0.35 20.0204 253.74 18.498 267.83

Noon 0.65 23.4812 384.09 22.7409 442.17
0.5 21.9851 324.73 21.1587 360.37
0.35 20.1916 241.69 19.4102 268.53

Night 0.65 26.7195 328.11 24.3802 427.22
0.5 25.7851 290.64 22.7501 347.53
0.35 23.9995 235.98 20.5426 260.41

Sunshine 0.65 23.4086 387.21 22.7586 443.31
0.5 21.9629 321.28 21.1201 364.08
0.35 20.0748 241.68 19.4321 268.4

Rain 0.65 24.7812 398.08 23.9979 457.79
0.5 23.4802 327.57 22.5628 367.89
0.35 21.7899 247.47 21.0277 274.48
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named as Scheme A. The algorithm presented in [12] is called as Scheme B, which is also
based on BCS. Like conventional methods, it converts the coefficients of every block into a
column after DWTand assigns the sameMR to each block. The algorithmmentioned in [19] is
called as Scheme C, in which the similar coefficient rearrangement is utilized, but DWT and
the coefficient rearrangement are operated on the whole image. Besides, an extra weight matrix
is introduced into compressive sampling to promote the image quality. Three standard images

Fig. 4 Recovered images under MRpre = 0.5 (a) Original image, (b) Adaptive MR, (c) Fixed MR

Multimed Tools Appl (2018) 77:13679–13699 13689



(Baboon, Lena and Fruits), and three real-word images (Camera, Lab and Testbed) are used in
the experiments.

The comparisons of PSNR, execution time and energy consumption are displayed in Table 2
under three different MRpre conditions. From Table 2, we can see that PSNRs of Scheme A are
larger than those of Scheme B for all images. For example, the PSNR of Scheme A
outperforms Scheme B about 1.1 dB for image Camera under MRpre = 0.65. The reason for
this is that Scheme A adopts adaptive MR, whereas Scheme B uses the fixed MR. As a result,
the image quality of Scheme A is improved under the same MRpre. However, we can also find
that Scheme C is superior to our scheme in PSNR. The rationale behind this is easy to
understand. According to the reference, Scheme C introduces a weight matrix that calculated
from the transformed coefficients into the compressive sampling. Through a new measurement
matrix generated by combining the weight matrix with a Gaussian matrix, higher weights are
assigned to low-frequency components that represent the important features of an image,
which leads to the improvement of image quality. Nevertheless, this procedure increases the
computational complexity greatly. Moreover, unlike Scheme A in which the measurement
matrix is a preset Bernoulli matrix, the new measurement matrix adopted in Scheme C varies
for different images. This requires that the new measurement matrix should be transmitted to
the host accompanied with the compressive measurements. Once some of the data packets
corresponding to the new matrix are lost, which is likely to occur during transmission via the
lossy channel, the original image can not be recovered according to the received measure-
ments. Therefore, except for reducing communication overhead, Scheme A also has better
robustness to packet losses than Scheme C.

Furthermore, Scheme A has special advantages over other two schemes in execution time
and energy consumption. For instance, for image Baboon under MRpre = 0.65, Scheme A runs
faster than Scheme B and Scheme C about 496 ms and 149 ms, respectively. Besides, Scheme
A separately saves energy around 148.8 mJ and 44.7 mJ relative to Scheme B and Scheme C,
which demonstrates that our scheme conforms to the goal of saving energy. Likewise, the
execution time and energy consumption of Scheme A are still are predominant for other
images in other conditions. The reasons for this come from two aspects. Firstly, compared to
Scheme B, Scheme A utilizes the coefficient rearrangement and adaptive MR, which leads to
the reduction in computational overhead. Secondly, since Scheme C adopts the weight matrix
and directly processes the whole image instead of block division, the computational complex-
ity will significantly increase.

For visual observation, the recovered images under MRpre = 0.5 are shown in Fig. 5, where
the original image, the recovered images of Scheme A, B and C are given from left to right. We
can see from this figure that Scheme A is better than Scheme B while slightly worse than
Scheme C in terms of image quality. However, as mentioned earlier, our scheme achieves a
good trade-off between energy consumption and compression performance. From this point of
view, it is clear that Scheme A is the most suitable for the source-constrained video sensor
nodes.

4.2.3 Image Quality Control

In this experiment, we focus on how the residual energy of nodes and the link quality of
network affect image quality. Once Er/Eo and ALQI are preset, video sensor nodes can
automatically generate their respective MRpre using (5). To simulate the packet loss during
wireless transmission, we bring in the relationship between PLR and ALQI, as described in
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[21]. The relationship points out that PLR gradually reduces as ALQI increases, and the data
packets begin to be received only if ALQI exceeds 0.6. Thus only PSNRs under ALQI from
0.675 to 0.95 are shown in Table 3, and three representative values of Er/Eo are discussed due
to space constraints. According to the PSNRs under different conditions, it is concluded that
the proposed scheme achieves the image quality control as expected.

Fig. 5 Recovered image under MRpre = 0.5 (a) Original image, (b) Scheme A, (c) Scheme B, (d) Scheme C
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There are a few points we can learn from Table 3. First, the larger Er/Eo and the
better the image quality under the same ALQI. We analyze the results in Table 3 with
the example of Lena. Compared with Er/Eo = 1, PSNRs decrease by 2.89 dB at most
under Er/Eo = 0.5. When Er/Eo further reduces to 0.25, the maximum reduction of
PSNRs reaches to 5.1 dB. This means that a sensor node with sufficient residual
energy will be assigned a large MRpre, which leads to better image quality. On the
contrary, if the node has less residual energy, it will be assigned a small MRpre to
reduce computational overhead and communication consumption. Second, for all test
images, PSNRs have a maximum value and always hold a relatively high level in a
certain range of ALQI. Specifically, for image Lena, PSNRs are almost equal when
ALQI varies from 0.75 to 0.85 under Er/Eo = 0.25, which accounts for approximately
25% of the effective range of ALQI. Besides, we can get the similar conclusions in
other two situations. It is the consequence of the unique control scheme by which the
image quality can be adaptively adjusted based on the link quality of network. It
indicates that a large MRpre should be assigned to video sensor nodes for the purpose
of promoting the image quality when the link quality is poor. On the other hand, a
relative small MRpre that is enough for desirable image quality can be used to reduce
energy consumption of sensor nodes when the network is stable.

Furthermore, Fig. 6 shows the relationship curves of PSNR versus ALQI and Er/
Eo. In the beginning, PSNRs stay at a low level and nearly equal to each other
because of the unstable link quality. Under this circumstance, a high PLR results in
the poor image quality despite of the residual energy. In the middle of curves, the
image quality has a gradual increase and keeps stable within a certain ALQI range, as
aforementioned. In the end, PSNRs decreases with the continuous increase of ALQI,
which means we put more weight on reducing energy consumption when PLR is low.

Fig. 6 PSNR curves of Lena with respect to ALQI and Er/Eo
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4.3 Realistic Application

In order to validate that the proposed scheme is feasible for the practical application,
we build a tiny scale wireless video network which consists of three video sensor
nodes. For simplicity, three nodes are separately named as node 1, node 2 and node
3. According to TI Z-Stack, node 2 and node 3 are configured as the end devices
which monitor a specific area from different orientations. For another, node 1 is
configured as the coordinator which is approximately 2 and 5 m from node 2 and
node 3, respectively. Besides, it connects to a host by USB interface to send
commands to sensor nodes and receive data packets from them. Finally, these data
packets are utilized to reconstruct the original images via the host software. In this
experiment, all of the sensor nodes are powered by two rechargeable 3.3 V 3200 mAh
lithium cells connected in parallel. On-board CC2530 chip operating at 2.4 GHz is
used to implement networking and wireless communication, the MAC protocol is
IEEE 802.15.4 and the physical layer data rate is 250 kbps. Fig. 7 shows the
recovered images of node 2 (left) and node 3 (right) at two different moments with
about 7 h of time difference.

We can see from Fig. 7 that both of the two video sensor nodes have good image
quality, and PSNRs of node 2 are slightly higher than those of node 3 at the same
moment. This is because that node 2 has more residual energy and better link quality

Fig. 7 Recovered images on the host (a) node 2: Er/Eo = 0.95, ALQI = 0.88, PSNR = 22.56 dB, Energy
consumption = 96.39 mJ, node 3: Er/Eo = 0.91, ALQI = 0.76, PSNR = 21.79 dB, Energy
consumption = 140.51 mJ, (b) node 2: Er/Eo = 0.58, ALQI = 0.89, PSNR = 21.28 dB, Energy
consumption = 73.01 mJ, node 3: Er/Eo = 0.49, ALQI = 0.75, PSNR = 20.19 dB, Energy
consumption = 112.77 mJ

Multimed Tools Appl (2018) 77:13679–13699 13695



than node 3. For example, from Fig. 7 (a), the corresponding Er/Eo of node 2 and
node 3 are separately 0.95 and 0.91, plus their ALQIs are separately 0.88 and 0.76.
Besides, the PSNRs in Fig. 7 (b) respectively decrease by about 1.28 dB and 1.6 dB,
compared to Fig. 7 (a). For the same node, since the link quality of network is almost
unchanged during the experiment, MRpre for image recovery is mainly determined by
the residual energy. For the two nodes, the residual energy in Fig. 7 (b) is less than
that in Fig. 7 (a), which indicates that the image quality indeed decreases as the
residual energy of sensor nodes reduces.

Furthermore, there are two things we can learn from the view of energy consumption.
Firstly, the energy consumption of node 3 is much less than that of node 2. From Fig. 7, node 2
respectively consumes 44.12 mJ and 39.76 mJ less than node 3 at two moments. The reason
for this may be that node 3 has a worse link quality than node 2, that is, node 3 is more likely to
lose data packets during wireless transmission. To avoid the effect on the image quality, node 3
generates and transmits more compressive measurements, which results in the increase of
energy consumption. Secondly, the sensor node with insufficient residual energy will consume
less energy. As for node 2, the energy consumptions at two moments are 96.39 mJ and
73.01 mJ, respectively. Comparatively, the energy consumption at the second moment reduces
by about 24.3%. It is because that MRpre automatically decreases according to our scheme.
Based on (5), we can notice that MRpre of the first moment is 0.63, and it reduces to 0.49 at the
second moment. This means that the proposed scheme enables to prolong the lifetime of
sensor nodes by degrading image quality as the residual energy gradually declines.

5 Conclusions

In this paper, a new energy-efficient image compression algorithm for video sensor nodes is
proposed. The algorithm includes HWT, coefficient rearrangement and adaptive image quality
control based on the residual energy of video sensor nodes and the link quality of network. As
a result, our algorithm runs faster and achieves a good tradeoff between energy consumption
and compression performance. Furthermore, the image quality control scheme achieves a
stable compression performance in a range of the link quality of network, demonstrating that
the proposed method has a better robustness to combat packet loss. The test results and
practical application indicate that the proposed scheme is suitable for the resource-limited
video sensor nodes. In the future, we will conduct researches centering on some key issues for
image compression and communication in WVSN, such as data routing strategy, in-network
image processing and error resilience. Besides, we intend to find the exactly relationship
between ALQI and PLR to further optimize MR assignment.
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