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Fast periocular authentication in handheld devices
with reduced phase intensive local pattern

Sambit Bakshi1 ·Pankaj K. Sa1 ·Haoxiang Wang2,3 ·
Soubhagya Sankar Barpanda1 ·Banshidhar Majhi1

Abstract To ensure highest security in handheld devices, biometric authentication has
emerged as a reliable methodology. Deployment of mobile biometric authentication strug-
gles due to computational complexity. For a fast response from a mobile biometric
authentication method, it is desired that the feature extraction and matching should take
least time. In this article, the periocular region captured through frontal camera of a mobile
device is considered under investigation for its suitability to produce a reduced feature that
takes least time for feature extraction and matching. A recently developed feature Phase
Intensive Local Pattern (PILP) is subjected to reduction giving birth to a feature termed as
Reduced PILP (R-PILP), which yields a matching time speed-up of 1.56 times while the
vector is 20% reduced without much loss in authentication accuracy. The same is supported
by experiment on four publicly available databases. The performance is also compared with
one global feature: Phase Intensive Global Pattern, and three local features: Scale Invariant
Feature Transform, Speeded-up Robust Features, and PILP. The amount of reduction can be
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varied with the requirement of the system. The amount of reduction and the performance
of the system bears a trade-off. Proposed R-PILP attempts to make periocular suitable for
mobile devices.

Keywords Fast biometric matching · Biometric on mobile device · Periocular biometric ·
Phase intensive local pattern · Feature reduction

1 Introduction

Biometric has gained importance over two other classical authentication paradigms: token-
based and knowledge-based methods due to its less chance of being spoofed or stolen. Face
is the primitive way of human authentication and hence early researches have proven the
possibility of machine based recognition of human face. Further need of partial face recog-
nition, and the complexity of iris recognition, jointly advocated the research in the direction
of periocular (periphery of ocular) biometrics. Periocular biometric is observed to contain
gross features (prominent in visible spectrum) as well as subtle features (prominent in near-
infrared spectrum). Hence periocular region of a person can be useful for recognition either
in visible spectrum (VS) or near-infrared (NIR) imaging. Many researchers have applied
several global and local feature extraction techniques to evaluate performance of periocular
biometrics. In general, local features exhibit better performance than global feature based
recognition in case of periocular biometric. However the local features, with the benefit
of high accuracy of recognition, brings the overhead of large feature vector and slow fea-
ture extraction and matching. Among the latest local features, Phase Intensive Local Pattern
(PILP) [4] is observed to produce highest accuracy as it considers a combination of coarse-
to-fine features for recognition. PILP generates a large feature template, which needs huge
storage for a database with many subjects. The 1:1 matching of two such large templates
also requires huge amount of time. Hence it becomes compulsory to reduce the feature size
of PILP for authentication through handheld mobile devices. This article discusses a reduc-
tion method of PILP. The reduced feature vector is termed as R-PILP. The reduced feature is
tested on two NIR spectrum constrained databases: BATH, CASIAv3, and two VS spectrum
partially unconstrained databases: UBIRISv2, FERETv4. The objective of evaluation over
these four datasets is to evaluate its efficacy of recognition from subtle and gross features.

2 Related work

Last decade has seen a paradigm shift of research from highly-accurate constrained bio-
metric recognition towards achieving moderate accuracy in unconstrained scenarios, and
forwarding the latter to improve performance in terms of accuracy and time. Demand of
using biometric system for forensic identification and terrorism investigation is responsi-
ble for the lurch. In an unconstrained scenario, difficulty in achieving a desirable biometric
template can be broadly classified into two class of reasons:

1. Intrinsic limitation of imaging system: distant imaging, limitation of imaging spectrum,
out-of-focus blur, and motion blur

2. External environmental factors: non-cooperation of subjects, out-plane (non-
orthogonal) imaging, and illumination variance
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Periocular biometric emerged as a counterpart to the pre-established iris biometric to
support the following scenarios: to use the images categorized as ‘Failure to Acquire’ (full
or partial closed eyes occluding iris) by an iris biometric system, to find a minimal sub-
set of face biometric so that recognition from partial face images can take place, and to
achieve recognition in visible spectrum images. It has also been observed that even most
advanced preprocessing techniques are insufficient to bring unconstrained templates to
the standards of ideal constrained templates. Feature extraction hence plays an important
role to extract in-plane orthogonal transformation (viz. scaling and rotation) invariant fea-
tures from the less-informative noisy templates. Through last two decades, researchers have
established iris recognition systems which are highly accurate (in order of 99% in Iden-
tification mode) for NIR iris databases like BATH, CASIAv1, ICE, etc. The journey was
pioneered by experiments on constrained iris databases. Particularly it can be marked that
Proenca and Alexandre, in their work [24], have reported their system to perform with an
Equal Error Rate (EER) of 1.01% on CASIA while the EER increases to 2.83% on noisy
UBIRIS database. Likewise the work in [28] by Vatsa et al. operates with high accuracy
on constrained datasets, but the performance degrades comparatively on UBIRIS which is
a partially non-cooperative and noisy dataset. The cause behind this fall in accuracy had
been analysed by the researchers as: a. visible spectrum imaging and b. unconstrained
noises during acquisition for UBIRIS database. Hence an advanced research has pro-
ceeded to investigate whether recognition from unconstrained VS eye image is achievable.
Research began to trace the answer to the following question: Can addition of features
from the periphery region further improve the recognition accuracy already achieved solely
using iris? While researchers had been yet to establish the answer to this question, in [8],
Hollingsworth et al. had proposed the existence of features in periocular region in NIR
images through experiments with human subjects. In first step of his approach, some human
experts are shown a periocular image of a subject. In the next step the experts are shown few
periocular images and asked to recognize which image belongs to the same subject shown
in the first step. Subsequently accuracy is calculated depending on whether the experts
can identify a subject from periocular image. Moreover, the human experts involved in the
experiments are asked to mention which feature in the NIR image best helped their recog-
nition judgement. Further research by Hollingsworth et al. in [9] is extended to investigate
the existence of features in both NIR and VS periocular images through human expert
analysis and automated algorithms. The work by Miller et al. [15] achieves the highest accu-
racy in periocular recognition among landmark works in this domain [1, 8, 11, 14–17, 19,
20, 26, 27, 29, 30]. However, the test in his work has been experimented on FRGC face
database which constitutes VS images of high resolution of the order of 1704 × 2272 or
1200× 1600 and the number of pixels between centers of two eyes are 250. Patel et al. [21]
have discussed about periocular biometrics based kinship verification. Their proposed algo-
rithm is based on neighborhood repulsed metric learning (NRML). Zhao and Kumar [31]
have investigated about feature extraction from periocular region by employing semantics-
assisted convolutional neural networks (SCNN). The proposed method is claimed to have
superior performance compared to contemporary works with relatively smaller training set.
Ahuja et al. [2] have proposed a convolutional neural network (CNN) based hybrid tech-
nique for ocular smartphone based biometrics. Their developed method employs spervised
and unsupervised CNN augmented with Root SIFT model. However, test of recognition
from low resolution VS periocular has remained unverified.

Local features extraction using automatic scale selection has been investigated by
Chenhong and Zhaoyang [13] for normalized NIR acquired iris images. The technique deals
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with first filtering the given normalized iris image by employing a bank of Laplacian of
Gaussian (LoG) filters with many different scales and computes the normalized response
of every filter. The maxima of normalized response over scales for each point are selected
together as the optimal filter outputs of the given iris image. The iris feature is represented
in a vector comprises off location and scale information, which is further binary coded for
final presentation. In [3], conventional Local Binary Pattern (LBP) [18] followed by Scale
Invariant Feature Transform (SIFT) has been applied to extract features from periocular
region and tests the same on UBIRISv2 and FERETv4 databases. The accuracy of such
feature extraction technique has been found to be limited to approximately 85%, which
motivates further development of novel features that will pull up the accuracy for noisy VS
periocular recognition to a higher level. Section 3 illustrates the proposed PILP technique
along with its reduction to find R-PILP, which attempts to achieve periocular recognition
from low resolution VS images. We have converted the VS color images to grayscale and
the grayscale images (without separate color information) are subjected as input to the pro-
posed approach. Thus we have further made the input least favourable for recognition and
attempted to attain recognition through proposed R-PILP in this challenging scenario. As
comparative literature, we have considered a global feature PIGP [3] and widely used local
features: SIFT, SURF and PILP. SIFT and SURF are described in Sections 2.1 and 2.2
respectively. A detailed description of PILP is given in this article as the method of reduc-
ing PILP is very interlaced. PIGP is not described separately as PIGP comprises of finding
feature descriptor in the same way as PILP.

2.1 Scale invariant feature transform

A local feature descriptor termed as Scale Invariant Feature Transform (SIFT) [12] is used
as a comparative feature with the proposed one. SIFT provides stable set of features while
being less sensitive to geometric transformations of area of interest. The feature is extracted
with following steps: a. Keypoint Detection and b. Keypoint Descriptor Computation. SIFT
extracts keypoints using Difference of Gaussian and a distribution of gradient orientation
from a window around the interest point is described as descriptor. Finally Keypoints of one
image is matched to other to find a distance between the images. If the distance is higher
than a threshold, the two images are concluded to be captured from different subjects, else
they are concluded to be of same subject.

2.1.1 Keypoint detection

The keypoints are detected from periocular image using cascade filtering approach. This
is done to search stable features across all possible scales. To define the scale space, input
periocular image (I ) is convolved with Gaussian kernel G(x, y, σ ) as defined by

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y) (1)

where ∗ is the convolution operation and σ defines the width of Gaussian filter. The Dif-
ference of Gaussian (DoG) images are computed from two nearby scales differentiated by
constant multiplicative factor k as:

D(x, y, σ ) = L(x, y, kσ ) − L(x, y, σ ) (2)
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DoG images are used to detect interest points with the help of local maxima and minima
across different scales. Each pixel in DoG image is compared to 8 neighbors in the same
scale and 9 neighbors in the scale above and below. The pixel is selected as a candidate
keypoint if it is local maxima or minima in 3 × 3 × 3 region.

2.1.2 Keypoint descriptor computation

Orientation is assigned to each keypoint location to achieve invariance to image rotations
as descriptor can be represented relative to orientation. To determine keypoint orientation, a
gradient orientation histogram is computed in the neighborhood of the keypoint. The scale
of keypoint is used to select Gaussian smoothed image L. For each Gaussian smoothed
image L(x, y), magnitude (m(x, y)) and orientation (θ(x, y)) are computed as given in (3).

m(x, y) =
√

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2 (3)

θ(x, y) = tan−1
[

L(x, y + 1) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)

]
(4)

Orientation histogram is then formed for gradient orientation around each keypoint. The
histogram has 36 bins for 360 degree range of orientations and each sample is weighted by
gradient magnitude and Gaussian weighted circular window with σ of 1.5 times of scale
of keypoint before adding it to histogram. Peaks in the histogram correspond to orientation
and any other local peak within 80% of largest peak is used to create keypoint with the
computed orientation. This is done to increase stability during matching [12].

Once orientation has been selected, the feature descriptor is computed as a set of ori-
entation histograms on 4 × 4 pixel neighborhoods. These histograms contain 8 bins each
and each descriptor contains an array of 16 histograms around the keypoint. This generates
SIFT feature descriptor of 4 × 4 × 8 = 128 elements. The descriptor vector is invariant to
rotation, scaling, and illumination.

2.1.3 Keypoint matching

To match two images, corresponding feature sets are subjected to nearest neighbour match-
ing and number of keypoints matched is considered as the parameter to interpret the degree
of matching.

2.2 Speeded up robust features

A local feature descriptor termed as Speeded Up Robust Features (SURF) [6] is used as a
comparative feature with the proposed one. SURF, like SIFT provides stable set of features
while being less sensitive to geometric transformations of area of interest. However, the
SURF descriptor is 64 dimensional while SIFT descriptor is 128 dimensional. The feature
is extracted with following steps: a. Keypoint Detection and b. Keypoint Descriptor Com-
putation. SURF extracts keypoints using Hessian matrix and a distribution of Haar wavelet
responses from a window around the interest point is described as descriptor. Finally Key-
points of one image is matched to other to find a distance between the images. If the distance
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is higher than a threshold, the two images are concluded to be captured from different
subjects, else they are concluded to be of same subject.

2.2.1 Keypoint detection

Hessian matrix based interest point (keypoint) detection is adopted in SURF. For detection
of keypoints, determinant of Hessian matrix is used for selecting location and scale. Given
a point P = (x, y) in an image I , the Hessian matrix H(P, σ) in P at scale σ (where σ is
the standard deviation of the Gaussian) can be found using (5).

H(P, σ) =
[

Lxx(P, σ ) Lxy(P, σ )

Lxy(P, σ ) Lyy(P, σ )

]
(5)

where Lxx(P, σ ) is obtained through convolution of the Gaussian second order deriva-

tive ( σ 2

σx2
g(σ )) with image I at point P . Likewise Lxy(P, σ ) and Lyy(P, σ ) can also be

derived. Dxx , Dxy , and Dyy are discretized version of Lxx , Lxy , and Lyy respectively. The
discretization is done to achieve different sized filter at different scales.

The approximation for Hessian determinant can be computed using (6).

Det(Happrox) = Dxx Dyy − (0.9Dxy)
2 (6)

The scale space construction starts with 9 × 9 filter and then filters with sizes 15 × 15,
21×21, and 27×27 are applied. The increment in filter size is doubled for every new octave.

Keypoints are localized in scale and image space by applying a non-maximum suppres-
sion in 3 × 3 × 3 neighbourhood. The local maxima found on the determinant of Hessian
matrix are interpolated to image space.

2.2.2 Keypoint descriptor computation

Orientation of a circular window around every keypoint is found. The neighbourhood is split
into 4 × 4 sub-regions. Haar wavelet responses of this circular neighbourhood of interest
point is calculated for each sub-region. The size of wavelets are scale dependent. Haar
wavelet responses are calculated in x and y direction separately. The feature vector v of a
4 × 4 sub-region can be obtained using (7).

v =
∑

dx,
∑

dy,
∑

|dx |,
∑

|dy | (7)

where dx and dy are Haar responses obtained from the subregion in x and y direction
respectively.

Concatenating the feature vector for all 4 × 4 sub-regions results in a descriptor with
vector length of 4 × 4 × 4 = 64 which represents the keypoint. For all detected keypoints,
such 64-D feature vectors are extracted.

Multimed Tools Appl (2018) 77:17595–1762317600



2.2.3 Keypoint matching

The keypoint matching is same as followed by SIFT. To match two images, corresponding
feature sets are subjected to nearest neighbour matching and number of keypoints matched
is considered as the parameter to interpret the degree of matching.

3 Phase intensive local pattern

This section illustrates the Phase Intensive Local Pattern (PILP) which is formed to match
fine-to-coarse features in periocular VS image. A matching technique illustration follows
the feature extraction section which explains a matching technique used for matching two
patterns obtained through feature extraction.

3.1 Extraction of PILP feature

The feature extraction technique to achieve the final feature vector representing a periocular
image comprises of four sequential steps: a. Keypoint detection through Phase Intensive
Patterns, b. Edge feature removal, c.Oriented Histogram computation, and d. Feature vector
formation. These steps are elaborated hereafter.

3.1.1 Keypoint detection through phase intensive patterns

The first step of a local feature extraction technique is to choose from the periocular image
few points which holds the important features and are sufficient to uniquely describe the
image and make the image identifiable. Such points are termed as keypoints. First part of
keypoint generation (pattern generation) is exactly same as generation of patterns by PIGP
[3]. Still we elaborate the process in this article for completeness of readability.

We vary our scale (�) for feature detection from 3 to 9 with an increment of 2. Subse-
quently, we will use a filter to trace the pattern in each scale which will vary in size from
3 × 3 to 9 × 9. The justification of choosing this range of the scale lies as the variation in
distance of subject from camera is approximately three times of the minimum distance of
camera and subject. At a given scale �, the phase-intensive global pattern (PIGP) at a pixel
(xc, yc) with respect to its �2 − 1 neighbors considering a phase-tilt φ can be derived using
(8). At said pixel (xc, yc), this equation convolves s-function and assigns a weight to each
neighbouring pixel depending on its spatial location and the phase-tilt φ inclined to which

Fig. 1 An example how s-function works for PILP filter
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we are aiming to extract the pattern. For example, when � = 3, there are 32 − 1 = 8
neighbors to any pixel. To find the PIGP at a pixel (xc, yc) at angle φ = π

4 , the 3× 3 neigh-
bors around the pixel are operated with corresponding pixel and result is obtained. Figure 1

Fig. 2 Filter formation for PILP
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illustrates the working of s-function for � = 3, where the neighbors of center pixel are
labeled as 0 if they are less than the center pixel, else labeled as 1.

PIGP(xc, yc,�, φ) =

�2−1∑
n=1

s(in, ic).2
sin

(
tan−1

(
yn−yc
xn−xc

)
−φ

)

�2−1∑
n=1

2
sin

(
tan−1

(
yn−yc
xn−xc

)
−φ

)

=
�2−1∑
n=1

⎛
⎜⎜⎜⎝s(in − ic).

⎛
⎜⎜⎜⎝

2
sin

(
tan−1

(
yn−yc
xn−xc

)
−φ

)

�2−1∑
n=1

2
sin

(
tan−1

(
yn−yc
xn−xc

)
−φ

)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (8)

where,

s(in, ic) = 1, if in − ic ≥ 0
0, otherwise.

(9)

This process can be re-represented as a convolution with filter formed with the process
shown in Fig. 2. For each � the demonstrated process is repeated eight times varying the
value of φ from 0 to 7π

4 with an interval of π
4 . Figure 3 demonstrates the eight filters formed

in scale � = 3. We consider four unique filters out of these eight, as every two filters with
phase difference of π are having same structure (can be observed in Fig. 3). Figure 4 shows
four 3×3 filters in filter bank for � = 3. Similar filter banks are formed for other values of
�. Finally we obtain four filter banks (corresponding to � = 3, 5, 7, 9), each having four
filters within the bank. The spatial size of all four filters for scale � is � × �.

The overall flow of keypoint detection methodology is as follows. When the aforemen-
tioned four filters of a filter bank are convolved with the original image, four pattern images

Fig. 3 PILP filter bank
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are found. These four images are subjected to extrema detection, where each pixel of a pat-
tern image at phase φ is compared with its 27 neighbours (including the pixel itself) in same
phase and phase images of [(φ+π/4) mod 2π ] and [(φ−π/4) mod 2π ] (refer to Fig. 5).
These extrema are claimed as potential keypoints containing features.

To understand the whole feature extraction process mathematically, the following
symbols are introduced:

I : Original image
f�,iπ/4 Filter of size � × � corresponding to phase φ varying as iπ/4 (i = 0, 1, 2, 3)
F� Filter bank comprising four � × � filters, i.e., F� ≡ {f�,iπ/4 | i = 0, 1, 2, 3}
I�,iπ/4 Result of convolution of I with f�,iπ/4 and s-function
k�,iπ/4 keypoints found from local minima in I�,[i mod 4]π/4 with respect to itself and

neighbouring pixels in I�,[i mod 4]π/4, and I�,[i mod 4]π/4
K� Set of all keypoints in � × � scale, i.e., K� ≡ {k�,iπ/4 | i = 0, 1, 2, 3}
K Set of all keypoints from all scales, i.e., K ≡ ⋃

�=3,5,7,9
K�

The whole keypoint extraction procedure is given in Algorithm 1 which is further
schematically presented in Fig. 6. The algorithm is computation intensive as it involves con-
volution operation and pixel-wise extrema detection. However, the computation is worth as
it yields sufficient number of keypoints.
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Fig. 4 Intensity representation of PILP orthogonal filter bank

Fig. 5 Extrema detection method

Fig. 6 Keypoint extraction method
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3.1.2 Edge feature removal

It is necessary to determine keypoints belonging to edges and to remove them without fur-
ther processing. For a keypoint at (x, y) in image I�,iπ/4 where i = 0, 1, 2, 3, the magnitude
m�,iπ/4(x, y) is computed as given in (10). The value of m�,iπ/4(x, y) will be high if there
is any edge at (x, y), otherwise the value will be low.

m�,iπ/4(x, y) =
√

(I�,iπ/4(x + 1, y) − I�,iπ/4(x − 1, y))2+
(I�,iπ/4(x, y + 1) − I�,iπ/4(x, y − 1))2 (10)

A high value of m denotes a keypoint to be on edge and those keypoints are discarded
through proper thresholding and not considered in further processing [12].

3.1.3 Keypoint descriptor computation

Orientation is assigned to each valid keypoint location to achieve invariance to image
rotations as descriptor can be represented relative to orientation. To determine keypoint
orientation, a gradient orientation histogram is computed in the neighborhood of the key-
point. For a keypoint at (x, y) in image I�,iπ/4 where i = 0, 1, 2, 3, the orientation
θ�,iπ/4(x, y) is computed as given in (11).

θ�,iπ/4(x, y) = tan−1
[

I�,iπ/4(x, y + 1) − I�,iπ/4(x, y − 1)

I�,iπ/4(x + 1, y) − I�,iπ/4(x − 1, y)

]
(11)

For every detected keypoint (x, y) in I�,iπ/4, the orientation histogram is formed from
a 16 × 16 pixel block oriented at θ�,iπ/4(x, y) around each keypoint. The 16 × 16 pixel
block under consideration is further divided into 16 sub-blocks, each having 4 × 4 pixels.
For each sub-block, a histogram is formed which has 36 bins for 2π range of orientations.
Peaks in the histograms correspond to peak within 80% of largest peak. Each histogram is
represented with 8 of its most significant directional values (peaks). Hence 16 sub-blocks
will produce together 16 × 8 = 128 peaks which represents the orientation of the 16 × 16
window around the keypoint (x, y). These 128 dimensional value is used to represent the
detected keypoint in the feature vector.

As described, we obtain 128 values corresponding to each keypoint. Hence, we obtain a
vector of size 128×N where N is the number of detected keypoints. This PILP feature vec-
tor is claimed to represent each identification uniquely and capable of matching periocular
images.

3.1.4 Why reduction is needed?

It is evident from Section 3.1.3, if N keypoints are detected through PILP in a periocular
image, the corresponding feature vector size becomes N × 128. This feature size is large
when N is large, and feature extraction is time consuming. Furthermore, the feature match-
ing becomes time intensive. To reduce the feature size, we can adopt three mechanisms: a. to
prune number of keypoints (N ) b. to reduce the number of keypoints by applying clustering
technique and/or c. to reduce the dimension of features from 128 to some lower value.

Figure 7 shows the schematic diagram of the proposed mechanism. In the proposed
mechanism, if an image yields N × 128 PILP feature vector as shown in Fig. 7a (where N

is the number of keypoints detected), some keypoints among N will be pruned and finally
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Fig. 7 Feature reduction of PILP to obtain R-PILP feature set
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M (where M < N ) is retained in the reduced PILP feature set to yield a M × 128 feature
vector as shown in Fig. 7b.

There is an undoubted need of sequencing the features from high relevance to low rel-
evance in order to ensure pruning of least significant features. Pruning of least significant
features cannot hamper the recognition rate, whereas removal of any important feature can
lead to compromising final recognition accuracy.

3.1.5 Proposed methodology: reduced phase intensive local pattern (R-PILP)

Each SIFT and PILP descriptor contains an array of 16 histograms (each having 8 values)
around the keypoint, and hence each keypoint descriptor is of size 16 × 8 = 128. Hence
it is clear that set of every 8 values within 128 values are independent. Each set of 8 val-
ues do have cohesion among themselves but such two sets are purely uncorrelated. The
proposed method aims towards checking if every of these 8-value sequences are monotonic
(consistently increasing or decreasing in nature). If an 8-value sequence is non-monotonic
its differentiation can never produce zero values. However, if an 8-value sequence is mono-
tonic, it will certainly produce 50% zero values after finite number of differentiations. A
128-D feature with most of its parts as monotonic is of less significant than another 128-
D feature with most of its parts as non-monotonic. We thereby sequence the features and
remove least-significant features. The overall process is given in Algorithm 2.

One important issue to ensure in this reduction process is not to loose any significant fea-
ture as that will harm the recognition accuracy. Hence we have experimented to ensure with
how much reduction we can achieve almost similar accuracy as PILP. It is empirically found
that upto 20% reduction in PILP feature does not affect the recognition accuracy. However,
going beyond this limit and pruning more features degrade the recognition immediately.

An example of the reduction technique is demonstrated on a small region of an
UBIRISv2 image in Fig. 8. The proposed reduction technique can also be applied to SIFT
as well as SURF due to their similarity in nature of orientation histogram-based feature
extraction. The technique is scalable in terms of choosing number of features or degree of
reduction. Compromising on accuracy, degree of reduction can be tuned as per demand of
system to be developed. If a system is to be developed in which security is prime issue and

Fig. 8 Example of feature reduction on a sample UBIRISv2 periocular image
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no compromise on accuracy can be made, the reduction can be limited to very small portion
of total number of features. On the other hand, if a system is required to be developed that
needs minimal template storage but agree to compromise to recognition accuracy, then this
reduction technique can be applied to prune a high portion of input feature set.

3.2 Matching of proposed R-PILP feature

The matching algorithm plays a significant role in any biometric system. In local feature
matching, the total number of paired keypoints (similarity score) is considered to find the
authenticity of an individual. Let I be the set of all images available in the database. For
understanding, Im be a gallery iris image and In be a probe image where Im, Inε I . Let
Km be the set of p keypoints found in Im and Kn be the set of q keypoints found in
In by applying R-PILP local feature detector. Let Dm and Dn denote the set containing
keypoint descriptors for each keypoint in Km and Kn respectively. For each element in Dm

the Euclidean distance is found with every element in Dn. |Dm| denotes number of key-
point found in Im and |Dn| denotes number of keypoint found in In. The nearest neighbor
approach pairs the ith element in Dm with j th element in Dn, iff the descriptor dis-
tance between the two (after multiplying with a threshold) is minimum. The details of the
algorithm is given in Algorithm 3.

4 Experimental results

The performance of the proposed R-PILP feature is compared with two features developed
successively: PIGP and PILP. As R-PILP is a successor to these features, comparing with
them truly reflects the improvement achieved due to reduction. The comparison is made with
respect to accuracy yielded, template size (proportional to number of keypoints), and feature
extraction andmatching time. Two landmarkworks SIFT and SURF are also used for comparison.
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4.1 Performance measures

The following measures are employed to evaluate the performance of the proposed
biometric system:

1. False Acceptance Rate (FAR): FAR is the frequency of fraudulent access to imposter
claiming identity. This statistic is used to measure biometric performance when oper-
ating in the verification mode. A false accept occurs when the query template of an
individual is incorrectly matched to existing biometric template of another individual.

2. False Rejection Rate (FRR): FRR is the frequency of rejections relative to people who
should be correctly verified. This statistics is used to measure biometric performance
when operating in the verification mode. A false reject occurs when an individual is not
matched correctly to his/her own existing biometric template.

3. Accuracy (Acc): Accuracy of a biometric system is defined as the rate of true accep-
tance and true rejection. Particularly accuracy of a biometric system can be defined as
illustrated in (12).

Acc =
(
100 − FAR + FRR

2

)
% (12)

4. Receiver Operating Characteristic (ROC): ROC curve depicts the dependence of FRR
with GAR [Genuine Acceptance Rate (GAR) = 1 − FRR] for change in the value
of threshold. The curve is plotted using linear, logarithmic or semi-logarithmic scales.
ROC can also be represented by plotting FRR against FAR for change in the threshold
value.

5. Cumulative Match Characteristic (CMC): The rank-k identification indicates the num-
ber of correct identification that occur in top k matches. Let Rk denote the number
of elements of probe set in top k, then the probability of identification is given by
I = Rk/N . CMC curve represents the probability of identification (I ) at various ranks
k.

6. Decidability index or d ′ index: d ′ index [10] measures the separation between the arith-
metic means of the genuine and imposter probability distribution in standard deviation
units as defined in (13).

d ′ =
√
2 |μgenuine − μimposter |√

σ 2
genuine + σ 2

imposter

(13)

4.2 Databases used

The proposed R-PILP is tested on publicly available BATH and CASIAv3 database to
demonstrate its accuracy on subtle features available in NIR images. To evaluate the
performance of R-PILP on gross features, noisy unconstrained images of UBIRISv2 and
periocular region cropped from FERETv4 are used. A detail of these databases can be found
in Table 1.

4.3 Experiment 1: evaluation of performance on subtle features

In this experiment, the proposed reduction approach is applied to PILP features obtained
from a high resolution NIR image. Testing of this experiment is made on BATH and
CASIAv3 databases which contains high resolution intensity-variation compensated NIR
images of ocular region captured in orthogonal view. The performance results (Accuracy
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Fig. 9 Performance of R-PILP with NN matching technique on BATH database
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Fig. 10 Performance of R-PILP with NN matching technique on CASIAv3 database
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curve, ROC curve, Score distribution, and CMC curve) of R-PILP on BATH and CASIAv3
databases are shown in Figs. 9 and 10 respectively. Further quantitative results can be found
in Table 2, which justifies that R-PILP can perform equally well for NIR databases as PILP.

4.4 Experiment 2: evaluation of performance on gross features

In this experiment, the proposed reduction approach is applied to PILP features obtained
from a low resolution VS image. Testing of this experiment is made on UBIRISv2 and FER-
ETv4 databases which contains low resolution color VS images of ocular region captured
in unconstrained view from a distance.

The performance results (Accuracy curve, ROC curve, Score distribution, and CMC
curve) of R-PILP on UBIRISv2 and FERETv4 databases are shown in Figs. 11 and 12
respectively. Further quantitative results can be found in Table 2, which justifies that R-PILP
can perform equally well for VS databases as PILP.

4.5 Comparative analysis of R-PILP with PIGP and PILP

The discussed post-reduction technique takes as input feature vector F of size N × 128
from PILP and reduces its keypoints to 0.8N so that the reduced feature vector F ′ has size
0.8N ×128. In case of PILP, if two images (one gallery and one probe) with feature vectors
of size N1 × 128 and N2 × 128 are to be matched, Nearest Neighbour (NN) matching
technique will operate N1 × N2 distance calculations. If one 128-D disctance calculation
costs t time, then total NN distance calculation will consume tP ILP = (N1 × N2) × t time.

However, if the same process is executed on the same images with the proposed reduc-
tion technique, the gallery and probe image will have feature vectors of size 0.8N1 × 128
and 0.8N2 × 128 after reduction. Hence NN matching needs only 0.8N1 × 0.8N2 distance
calculations. So, the total NN distance calculation in this case will consume tR−PILP =
(0.8N1 × 0.8N2) × t time.

Hence, obtained speed-up of R-PILP with respect to PILP (Speed-up R-PILP
PILP ) achieved

through the reduction can be calculated as shown in (14).

Speed-upR−PILP
PILP = 1/tR−PILP

1/tP ILP

= tP ILP

tR−PILP

= (N1 × N2) × t

(0.8N1 × 0.8N2) × t

= 1

0.8 × 0.8
= 1.5625 (14)

Though this reduction technique consumes time for reducing the PILP feature, but that
process takes place only once. The reduced feature R-PILP speeds up matching process
with a factor of 1.56 with respect to PILP which is significant as matching process executes
every time a live query comes. Moreover, reduction of these 20% keypoints does not affect
in performance of R-PILP comparing with its predecessor PILP.

To advocate this theoretical analysis, Table 3 presents the number of keypoints found
in an image through SIFT, SURF, PILP, and R-PILP. The table presents the number of
keypoints as a range in [Q1 - Q3], where, N/4 images yield < Q1 keypoints and N/4
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Fig. 11 Performance of R-PILP with NN matching technique on UBIRISv2 database
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Fig. 12 Performance of R-PILP with NN matching technique on FERETv4 database
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Table 3 Comparison of time of feature extraction by SIFT, SURF, PILP, and proposed R-PILP on BATH,
CASIAv3, UBIRISv2, and FERETv4 databases

Approaches → SIFT SURF PILP Proposed R-PILP

Databases ↓ Number
of key-
points/image

Number
of key-
points/image

Number
of key-
points/image

Number
of key-
points/image

NIR Databases BATH [75 – 250] [50 – 226] [525 – 825] [400 – 675]

CASIAv3 [575 – 900] [325 – 650] [1375 – 2150] [1100 – 1750]

VS Databases UBIRISv2 [500 – 725] [200 – 450] [1250 – 2100] [975 – 1675]

FERETv4 [425 – 650] [150 – 325] [1050 – 1850] [825 – 1500]

Table 4 Comparison of number of keypoints extracted by SIFT, SURF, PILP, and proposed R-PILP on
BATH, CASIAv3, UBIRISv2, and FERETv4 databases

Approaches → SIFT SURF PILP Proposed R-PILP

Databases ↓ Average time
for feature
extraction (s)

Average time
for feature
extraction (s)

Average time
for feature
extraction (s)

Average time
for feature
extraction (s)

NIR Databases BATH 0.54 0.28 1.97 4.27

CASIAv3 1.52 0.49 6.40 14.33

VS Databases UBIRISv2 1.39 0.46 5.99 14.28

FERETv4 1.37 0.44 5.78 13.04

Table 5 Comparison of time of feature matching by SIFT, SURF, PILP, and proposed R-PILP on BATH,
CASIAv3, UBIRISv2, and FERETv4 databases

Approaches → SIFT SURF PILP Proposed R-PILP

Databases ↓ Average time for
feature matching
(s)

Average time for
feature matching
(s)

Average time for
feature matching
(s)

Average time for
feature matching
(s)

NIR Databases BATH 0.61 0.42 3.81 2.38

CASIAv3 1.54 0.73 3.59 2.28

VS Databases UBIRISv2 1.2 0.68 3.75 2.41

FERETv4 0.99 0.62 2.69 1.71
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images yield > Q3 keypoints when a feature extraction method is applied on a database of
size N . However, from Table 4, it is clear that R-PILP takes more time for feature extraction
than SIFT, SURF, and PILP.

As feature matching time is theoretically proportional to the number of keypoints, in
Table 5 it can be observed that matching time for R-PILP is less than that of PILP by a
factor of 63%, which supports our theoretical analysis.

5 Conclusion

R-PILP, having 20% reduction from PILP, delivers approximately the same performance as
PILP, as confirmed by testing on four datasets. However, reduction beyond this 20% margin
degrades the performance as found experimentally. We have hence empirically limited our
reduction to 20% of existing keypoints only. The reduction, while maintaining approxi-
mately the same accuracy as PILP, offers two additional benefits: a. a low template size
resulting in reduction of the whole database and query communication cost for a networked
biometric system and b. reduced matching time making the response to user query faster.
The matching time of R-PILP is theoretically analysed to speed up 1.56 times than match-
ing time of PILP. The analysis has been supported by experimentation where 63% reduction
in matching time of R-PILP with respect to PILP is obtained. This reduction in matching
time, with help of removal of outlier features, surely places R-PILP as a candidate feature
for mobile biometric authentication systems.

Abbreviations used

ACC : Accuracy
CMC : Cumulative Match Characteristics
FAR : False Acceptance Rate
FRR : False Rejection Rate
PIGP : Phase Intensive Global Pattern
PILP : Phase Intensive Local Pattern
R-PILP : Reduced Phase Intensive Local Pattern
ROC : Receiver Operating Characteristic
RR : Recognition Rate
SIFT : Scale Invariant Feature Transform
SURF : Speeded Up Robust Features
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