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Abstract The sea surface vessel/ship classification is a challenging problem with enor-
mous implications to the world’s global supply chain and militaries. The problem is similar
to other well-studied problems in object recognition such as face recognition. However, it is
more complex since ships’ appearance is easily affected by external factors such as lighting
or weather conditions, viewing geometry and sea state. The large within-class variations in
some vessels also make ship classification more complicated and challenging. In this paper,
we propose an effective multiple features learning (MFL) framework for ship classification,
which contains three types of features: Gabor-based multi-scale completed local binary pat-
terns (MS-CLBP), patch-based MS-CLBP and Fisher vector, and combination of Bag of
visual words (BOVW) and spatial pyramid matching (SPM). After multiple feature learning,
feature-level fusion and decision-level fusion are both investigated for final classification.
In the proposed framework, typical support vector machine (SVM) classifier is employed
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to provide posterior-probability estimation. Experimental results on remote sensing ship
image datasets demonstrate that the proposed approach shows a consistent improvement on
performance when compared to some state-of-the-art methods.

Keywords Ship classification · Multiple features learning · Optical imagery ·
Feature-level fusion · Decision-level fusion

1 Introduction

Ship recognition and classification algorithms in ocean area are important to enhancing
maritime safety and security [12, 17]. The goal of vessel/ship classification is to recognize
the type of ships in a given image with as much details as possible. Beyond the typical
recognition challenges caused by partial occlusions and variations in scale [38], ships are
especially difficult to recognize since ships’ appearance is usually significantly affected by
external factors such as weather conditions (i.e., cloudy, sunny, etc), viewing geometry, and
sea state [29]. Moreover, wide variation within-class in some types of vessels also makes
vessels classification more complicated and challenging [2].

In recent years, numerous efforts have been investigated in the problem of vessel recog-
nition in optical remote sensing imagery, achieving many diverse solutions to the problem
[10, 11, 17]. In [15, 26], several well-studied feature extraction methods in facial recog-
nition were applied to a small set of ship images. The feature extraction methods include
global/holistic features: Principal Components Analysis (PCA) [25], Linear Discriminant
Analysis (LDA) [4], Independent Component Analysis (ICA) [3], Random Projections
(Rand) [42] and Multilinear PCA (MPCA) [25]; and local features: hierarchical multi-
scale Local Binary Pattern (HMLBP) [14] and Histogram of Oriented Gradients (HOG)
[9]. HMLBP operates on multiple gray-scale texture to obtain scale-invariant local spatial
structure and texture information of the image. HOG is essentially an image descriptor that
represents the image by the distribution of local intensity gradients or edge directions, to
capture the local object appearance and shape in the image. On the basis of previous work
in [15], Rainey et al. [35] explored the efficacy of several object recognition algorithms at
classifying ships and other ocean vessels in commercial panchromatic satellite imagery.

In addition to the above mentioned methods, the Bag of (visual) words (BOVW) [19],
as the one of the most popular approaches in image analysis and classification applications,
was also applied to ship classification. The BOVW, which is inspired by the bag of words
representation used in text classification tasks, represents an image as a histograms of fre-
quencies of a set of local descriptors such as Scale-Invariant Feature Transform(SIFT) [24].
In order to increase robustness of the feature, Rainey et al. [5] replaced Scale-Invariant Fea-
ture Transform (SIFT) descriptors in the BOVWmode with Pyramid of Histograms of visual
Words (PHOW [34]) descriptors, which are extracted on a dense grid of key points and pro-
vide greater accuracy on resized non-degraded data. An algorithm for vessel classification,
which combined BOW histograms with sparse representation based classification (SRC),
was proposed in [36]. The original BOW and BOWwith �2-normalized term frequency (TF)
weighting schemes were studied in [28] to the vessel type classification task in the maritime
domain. In [1], the Local Binary Patterns (LBP [21]), which has high distinctiveness and
low computational complexity, was developed.

According to the way of extracting features, these approaches can usually be partitioned
into two categories: global (holistic) and local. Global features usually describe the image
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using a lower-dimensional space or histogram, and form the feature space by utilizing the
entire image. Thus the global features are often easily implemented and have low compu-
tational cost, but their performances for classification are limited. Local features usually
use a set of local descriptors to characterize the ship image. However, when the shapes of
two classes are relatively similar, the local features are not discriminative enough to distin-
guish. Although the aforementioned feature extraction approaches (i.e., local features such
as BOVW, and global features such as MPCA) have achieved satisfying performances in
vessel classification, each type of feature has its own advantages and limitations. Moreover,
it is known that different features have their own characters to capture different information
of ships and certain features may be only suitable for one specific pattern. To this end, the
global feature, which is complementary to the local features, is utilized to represent more
discriminative information of a class.

Inspired by this observation, a multiple features learning (MFL) framework is proposed
for ship classification in this work. The proposed method employs three types of features
to simultaneously capture global structures and local details information of various ships.
We employ Gabor-based multi-scale completed local binary pattern (MS-CLBP [7]), which
fuses the benefits of Gabor wavelet and CLBP descriptor, to extract the global feature from
images, and we treat it as the first type of features in our work. This global feature cap-
tures the scale-invariant and orientation-invariant spatial structure and texture information
from the entire image. The local feature extraction method based on patch-based MS-CLBP
and Fisher vector (FV [37]) is used to obtain a local feature representation of ship images
which is considered as the second type of features. The patch-based MS-CLBP and FV
has been demonstrated great success in image classification [16]. The BOVW, as a classi-
cal feature extract method in the object recognition domain, is employed in the proposed
algorithm. We further combine BOVW and spatial pyramid matching (SPM [20]) as the
third type of features, which is able to overcome the orderless of bag-of-features repre-
sentation and enhance the spatial order structure of local features. The FV and BOVW
are both visual code models, but the FV employs a soft assignment strategy while the
BOVW employs a hard assignment strategy. In the FV model, we use MS-CLBP opera-
tor to extract local texture information from image patches. The BOVW model utilizes the
SIFT descriptor to roughly represent edge information in an image patch. Note that both the
FV and BOVW are employed in order to obtain more comprehensive local features of ship
images.

In this paper, we simultaneously extract global and local features to comprehensively
capture the characteristics of ships. After feature extraction, fusion strategies are followed
for a final classification. It is well-known that the fusion strategies mainly include feature-
level and decision-level fusion. In our scheme, feature-level fusion and decision-level fusion
are both investigated in the proposed classification framework. Feature-level fusion com-
bines different feature vectors together into a single feature vector. Decision-level fusion,
which performs on probability outputs of each individual classification pipeline and com-
bines the distinct decisions into a final one, can be divided into two types: “hard” fusion at
the class-label level and “soft” fusion at the probability level. However, hard-fusion (e.g.,
majority voting (MV) rule [47]) may lead to a rough result. In this paper, we choose a
“soft” fusion scheme, namely logarithm opinion pool (LOGP [22]), and verify its effec-
tiveness by comparing it with the hard-fusion method (i.e., MV) in the experimental
analysis.

There are two main contributions of this work. First, a multiple feature learning (MFL)
method using three types of features including global and local features is proposed. In
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the proposed classification framework, feature-level and decision-level fusion are both
investigated. Second, Gabor-based MS-CLBP is employed to extract global feature to
compensate for the local feature, therefore taking full advantage of the complementary
nature between global and local features. The proposed method is extensively evaluated
using two public optical remote sensing ship image datasets. The experimental results
verify the effectiveness of our proposed method as compared to some state-of-the-art
algorithms.

The remainder of the paper is organized as follows. Section 2 describes the pro-
posed approach, including the three types of features extraction and the feature-level
as well as decision-level soft fusion strategy. Section 3 introduces two experimental
datasets (i.e., BCCT200−resize [35] and VAIS [48]). Section 4 reports the experimen-
tal results and provides some analysis. Finally, Section 5 makes several concluding
remarks.

2 Proposed classification framework

The flowchart of the proposed method is illustrated in Fig. 1. There are two fusion strategies
for the proposed classification framework, i.e., feature-level fusion and decision-level fusion
approaches, which are illustrated in Fig. 1a and b, respectively.

As shown in Fig. 1a, we first extract three kinds of features of the input image respec-
tively. The first one is Gabor-based MS-CLBP. We use multi-orientation (e.g., π/8, π/4,
π/2, etc.) Gabor filters to obtain multiple Gabor feature images, where the MS-CLBP is
then employed. The second one is a local feature which is extracted by patch-based MS-
CLBP and FV. We partition the image and its multi-scale versions into dense patches and
using the CLBP descriptor to extracts a set of local patch descriptors. Then, FV encod-
ing is used to encode the local patch descriptors into a discriminative representation. The
third one is the combination of BOVW and SPM. We employ the dense SIFT descrip-
tor by partitioning an image into small patches. Then k-means clustering is employed to
generate the codebook which presents the visual words of the BOVW. The SPM is fur-
ther employed to calculate the local features, which enhances the spatial order structure of
local features. Finally, we employ the typical support vector machine (SVM) classifier [6]
to obtain final classification performance. Details of the features extraction is presented in
Section 2.1.

The decision-level fusion framework is shown in Fig. 1b. For each input image,
three kinds of features are extracted separately. Then, for each of the three types of
features, the typical SVM classifier is employed to calculate the probability estimates,
respectively. Finally, the proposed method merges outputs of each individual classifica-
tion pipeline using decision-level soft-fusion (i.e., LOGP) to obtain final classification
result.

2.1 Feature extraction

2.1.1 Gabor-based MS-CLBP

Inspired by the success of Gabor filters and LBP in computer vision applications, we
employ Gabor-based MS-CLBP as the first type of features in the proposed framework to
extract global features of ship images. The features extraction process is summarized in
Algorithm 1.
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(a)

(b)

Fig. 1 Flowchart of the proposed multiple features learning framework: a feature-level fusion, b decision-
level fusion
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A Gabor wavelet [8, 30] transform can be viewed as an orientation-dependent bandpass
filter. Its impulse response is defined by a sinusoidal wave multiplied by a Gaussian func-
tion. In 2-D (x, y) coordinate system, a Gabor filter, which includes a real component and
an imaginary term, can be defined as,

Gε,θ,ψ,σ,γ (x, y) = exp

(
−x′2 + γ 2y′2

2σ 2

)
exp

(
i

(
2π

x ′

λ
+ ψ

))
, (1)

where x′ = x cos θ + y sin θ , y′ = −x sin θ + y cos θ . Here, ε is the wavelength of the
sinusoidal factor, θ is the orientation separation angle (e.g., π/8, π/4, π/2, etc.) of Gabor
kernels, ψ represents the phase offset, σ is the standard derivation of the Gaussian enve-
lope, and γ is the spatial aspects ratio specifying the ellipticity of the support of the Gabor
function. Note that ψ = 0 and ψ = π/2 return the real and imaginary parts of the Gabor
filter, respectively. Parameter σ is determined by ε and spatial frequency bandwidth bw as,

σ = ε

π

√
ln 2

2

2bw + 1

2bw − 1
. (2)

The LBP [27] is a texture operator, which is able to characterize the spatial structure
information of local image texture, and it has been widely employed in object recognition
(e.g., texture classification, face recognition, etc). Given a pixel in the image, which gray
value is denoted as gc. Its neighboring pixels are equally spaced on a circle of radius. The
resulting LBP for gc in decimal number can be computed by comparing it with its neighbors,

LBPm,r (gc) =
m−1∑
p=0

s
(
gp − gc

)
2p =

m−1∑
p=0

s
(
dp

)
2p,

s(dp) =
{
1, dp ≥ 0
0, dp < 0

(3)

where gp is the gray value of the neighbors, dp = (gc − gp) represents the difference
between the center pixel and each neighbor, r represents the radius of a circle, and m is the
total number of involved neighbors. If the coordinate of gc is (0, 0), the coordinates of gp

are denoted as (−r sin(2πi/m), r cos(2πi/m)). After the LBP coded image is generated by
compute the LBP values of all pixels in the image, a histogram is calculated to represent the
texture image. Nevertheless, the LBP only uses the sign information of dp while ignoring
the magnitude information.
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In the improved CLBP [13], the sign and magnitude information, i.e., CLBP-Sign
(CLBP S) and CLBP-Magnitude (CLBP M), is complementary. The CLBP S is equivalent
to the traditional LBP operator and the CLBP M operator is expressed as,

CLBP Mm,r (gc) =
m−1∑
p=0

f
(∣∣gp − gc

∣∣ , η) =
m−1∑
p=0

f
(∣∣dp

∣∣ , η)
,

f (x, y) =
{
1, dp ≥ η

0, dp < η
(4)

where η is a threshold that is usually set to the mean value of
∣∣dp

∣∣. The syncretic CLBP can
describe both the spatial and depth information by mapping the CLBP S and CLBP M into
histograms. To make the feature scale invariant, the multi-scale representation of CLBP,
termed as MS-CLBP, is considered. In our work, the multi-scale CLBP representation is
formed by concatenated the CLBP S and CLBP M histogram features extracted at different
scales which are obtained by down-sampling the original image using the bicubic interpo-
lation [7]. An example of the implementation of a 3-scale CLBP operator is illustrated in
Fig. 2.

2.1.2 Patch-based MS-CLBP and FV

As noted in [6], image representation method based on patch-based MS-CLBP and FV can
well extract the local feature of image and has achieved great performance in remote sensing
image scene classification. In this work, we first use regular grid to partition an entire image
into B×B overlapped patches. For simplicity, the overlap between two patches is half of the
patch size (i.e., B/2) in both horizontal and vertical directions. For each patch, we employ
MS-CLBP with the second implementation capture the spatial pattern and the contrast of
local image texture. If M patches are extracted from the multi-scale images, we can obtain
a set of local patch descriptors and form a feature matrix denoted by H = [h1,h2, ..., hM ],
where hi is the CLBP histogram feature vector extracted from patch i.

After local feature extraction, FV encoding is used to encode the local patch descriptors
into a discriminative representation. Let X = {xi , i = 1, · · · , N} be the set of local patch

(a)

(b)

(c)

Fig. 2 An example of a 3-scale CLBP operator (m = 10, r = 1): a scale = 1, b scale = 1/2, c scale = 1/3
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descriptors extracted from an image. A Gaussian mixture model (GMM), which probability
density function is denoted as uλ with parameter λ, is trained on the training images using
Maximum Likelihood (ML) estimation [23]. The image can be characterized by gradient
vector,

GX
λ = 1

N
∇λ log uλ(X). (5)

The gradient of the log-likelihood describes the direction along which parameters are to
be adjusted to best fit the data. The GMM uλ can be represented as

uλ =
T∑

t=1

ωtut (x). (6)

We denote λ = {ωt , μt , �t , t = 1, ..., T }, where ωt , μt and �t are the mixture weight,
mean vector, and covariance matrix of Gaussian μt , and T is the number of Gaussian in the
GMM. Under an independence assumption, the covariance matrices are diagonal, i.e., �t =
diag(σ 2

t ). We make use of Fisher kernel (FK) of [18] to measure the similarity between two
samples x and y, and it is defined as,

S(x, y) = Gx′
λ F

−1
λ Gx

λ, (7)

where Fλ is the Fisher information matrix of uλ: Fλ = E[∇λ log uλ(x)∇λ log uλ(x)′].
Following the diagonal closed-form approximation of [31], the FK can be rewritten as a
dot-product between normalized vectors Gλ with,

G
x
λ = F−1/2

λ Gx
λ. (8)

Let γi(t) be the occupancy probability, i.e., the probability of descriptor xi generated by
the Gaussian ut ,

γi(t) = ωtut (xi )

T∑
j=1

ωjuj (xi )

. (9)

LetGX
μ,t (resp.G

X
σ,t ) be the gradient with respect to the meanμt (resp. standard deviation

σt ) of Gaussian t . Mathematical derivations lead to,
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)
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and
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X
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N
√
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2

σt
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]
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The final gradient vector is just the concatenation of the G
X
μ,t and G

X
σ,t vectors for t =

1, ..., T . Therefore, the dimensionality of the FV is (2D +1)×T , where D denotes the size
of the local descriptors.

Each training image yields a feature matrix representing the local patch descriptors using
patch-based MS-CLBP operator. Then, all the feature matrices of the training data are used
to estimate the GMM parameters via the Maximum Likelihood (ML) algorithm. After that,
the FV is utilized to generate the final feature representation. The features extraction process
is summarized in Algorithm 2. Figure 3 illustrates the detailed procedure for generating
FV of training images. For the testing image, we use the patch-baesd MS-CLBP feature
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Fig. 3 Fisher vector representation of the training images

extraction method shown in the Fig. 3 to obtain local descriptors. Then the Fisher Kernel
representation is utilized based on the GMM which is estimated from the training data to
obtain the final FV feature. The detailed process for generating FV is shown in Fig. 4.

2.1.3 BOVW and SPM

In recent years, the BOVW model, which is a classical local feature representation method,
has demonstrated its outstanding performance in several object recognition tasks such as
face recognition. Since traditional BOVWmodel ignores spatial and structural information,
we affiliate SPM to the BOVW framework since the SPM can capture the spatial arrange-
ment of images. The BOVW features extraction process is summarized in Algorithm 3,
and the overall description of combination feature of BOVW and SPM is summarized in
Algorithm 4.
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Fig. 4 Fisher vector representation of a testing image

First of all, we partition image into small blocks using regular grid and then we extract
local descriptor utilizing the SIFT operator on each block whose center is viewed as a key
point. An entire image is partitioned into 
 ×
 overlapped blocks and the overlap between
two blocks is half of the block size (i.e., 
/2) in both horizontal and vertical directions.

In doing this, we can obtain a set of local descriptors. Then, k-means clustering is
employed to generate the codebook which presents the visual words of the BOVW. After
that, we encode the patches based on the codebook using vector quantization and calculate
the frequent histogram. The SPM is further employed to enhance the spatial order struc-
ture of local features. In the SPM framework, an image is partitioned into 2l × 2l segments
in different scales (e.g., l = 0, 1, 2), and the BOVW histogram within all the segments is
calculated respectively. The final feature representation of the image is the concatenation of
all the histograms. An example of the implementations of the SPM is illustrated in Fig. 5.
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Fig. 5 Example of a three-level spatial pyramid matching (l = 0, 1, 2)

2.2 Feature-level fusion

After feature extraction, feature-level fusion and decision-level fusion are both investigated
for final classification. Figure 1a illustrates the feature-level fusion [43] employed in this
work. For multiple feature learning, the Gabor-based MS-CLBP extracts spatial structure
and texture feature; the local feature extract method based on patch-based MS-CLBP and
FV is visual code model with soft assignment strategy; and another local feature extracts
method combined of BOVW and SPM is visual code model with hard assignment strategy.
For various classification tasks, these features have their own advantages and disadvantages,
and it is difficult to determine which one is always optimal [21]. Thus, we use feature-level
fusion strategy to fusion three types of features by straightforward stacking feature vectors
into a composite one. The specific implementation of feature fusion process is represented
in Algorithm 5. To modify the scale of feature values, feature normalization before feature
stacking is a necessary preprocessing step.
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2.3 Decision-level fusion

Decision-level fusion [32] is to merge results from each individual classification pipeline
and combines distinct classification results into a final decision which can improve the
accuracy of a single classifier that uses a certain type of features. Score level fusion [39,
45, 46] is a special case of decision-level fusion, and it is equivalent to the soft fusion of
decision-level fusion. The goal here is to utilize score level fusion combine the posterior-
probability estimations provided from each individual classification pipeline. In this paper,
we employ LOGP soft-fusion rule, also known as product rule [44] in score level fusion
scheme. The process is illustrated in Fig. 1b.

Assume pi(yk |x ) be the conditional class probability of the ith classifier in class k(0 <

k ≤ C) (C is the number of classes and yk indicates the kth class to which a sample x
belongs.). The LOGP rule [33] utilizes individual conditional class probabilities of each
classifier to estimate a global membership function P(yk |x ), which is a weighted product
of these output probabilities. The final class label is given according to,

y∗ = arg max
k=1,...,C

= P(yk |x ), (12)

where the global membership function is defined as,

P(yk |x ) =
3∏

i=1

pi(yk |x )αi , (13)

or

logP(yk |x ) =
3∑

i=1

αipi(yk |x ), (14)

where {αi}3i=1 is the classifier weights uniformly distributed over all of the classifiers. The
overall description of decision-level fusion is summarized in Algorithm 6.
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3 Experimental datasets

To evaluate the efficacy of the proposed MFL approach for ship classification, we conduct
extensive experiments using optical image datasets. In the experiments, a library for SVM1

is employed for classification, which is able to provide posterior-probability estimation for
each type of features.

The first dataset is an overhead satellite scene referred to as BCCT200-resize which is
detailed in [35]. It consists of small grey-scale ship images chipped out of larger electro-
optical satellite images by the RAPIER Ship Detection System. The chips have been pre-
processed to be rotated and aligned to have uniform dimensions and orientation. The dataset
contains 4 different ship categories (i.e., barges, cargo ships, container ships, and tankers).
Each class contains 200 images of size 150×300 pixels. Examples of each class in this data
set can be seen in Fig. 6.

The second dataset is the original BCCT200 dataset, in which the images are unpro-
cessed and display ships under various orientations and resolutions. Such variations makes
the dataset more challenging. The dataset includes the following classes: barges, container
ships, cargo ships and tankers. 200 images have been collected from each class which are
of non-uniform size. Example images of each class are shown in Fig. 7.

In order to facilitate a fair comparison, we follow the same experimental setup reported
in [35] for the above two datasets. Five-fold cross-validation is performed, in which the
dataset is randomly partitioned into five equal and disjoint subsets. There are 40 images
from each ship class in a subset. For each run, a different subset is held out for testing and
the remaining four are used for training. The classification accuracy is average results over
the five cross-validation evaluations.

The third dataset used in our experiments, referred to as VAIS [48], is the world’s first
publicly available dataset of paired visible and infrared ship imagery. The dataset consists
of 2865 images (1623 visible and 1242 IR), of which there are 1088 corresponding pairs.
The dataset includes 6 coarse-grained categories: merchant ships, sailing ships, medium
passenger ships, medium “other” ships, tugboats and small boats. The area of the visible
bounding boxes ranged from 644 − 6350890 pixels, with a mean of 181319 pixels and a
median of 13064 pixels. Example bounding box images are shown in Fig. 8.

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 6 Example images from each class of the BCCT200-resize data: a barge, b cargo ship, c container ship,
and d tanker

Fig. 7 Example images from each class of the original BCCT200 data
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Fig. 8 Five visible image samples from each of the main categories of the VAIS data

The dataset is partitioned into “official” train and test splits. All images in this dataset
greedily assigned from each named ship to either partition. This resulted in 539 image pairs
and 334 singletons for training, and 549 image pairs and 358 singletons for testing. In our
experiments, we only use the visible ship imagery category. Followed the same pre-process
of image as deep convolutional neural network (CNN) algorithm in [48], we resize each
crop to the size using bicubic interpolation. Note that the original images in these two exper-
imental datasets are color images, the images are converted from the RGB color space to
the YCbCr color space, and the Y component (luminance) is used for ship classification.

4 Experimental results and analysis

4.1 Parameters setting

First of all, we investigate optimal parameters for each type of features. For the first one
(i.e., the Gabor-based MS-CLBP), according to [30], the orientations θ of Gabor filtering
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set as
[
0, π

8 , π
4 , 3π

8 , π
2 , 5π

8 , 3π
4 , 7π

8

]
and the spatial frequency bandwidth set 5 for both two

experimental datasets. The result of Gabor filtering of a sample image is shown in Fig. 9.
Then we estimate the optimal parameter pair (m, r) for the CLBP operator. In this exper-
iment, we vary the CLBP parameter sets, and fix parameters for others. The classification
results are listed in Tables 1 and 2 for two experimental datasets, respectively.

Since the number of neighbors (i.e., m) and the radius (i.e., r) directly impact the dimen-
sionality of the CLBP histogram features. For example, larger m will increase the feature
dimensionality and computational complexity. Based on the results in Tables 1, 2 and 3, we
choose (m, r) = (10, 6) for the BCCT200-resize dataset; (m, r) = (12, 7) for the original
BCCT200 dataset and (m, r) = (10, 5) for the VAIS dataset in terms of classification accu-
racy as well as computational complexity. Thus, the dimensionality of the CLBP features
(CLBP S and CLBP M histograms concatenated) for both the BCCT200-resize dataset and
the VAIS dataset is set to 216.

For the second type of features (i.e., patch-based MS-CLBP and FV), since the feature
extracts dense local patches, the size of patch (B×B) is studied. Varying patch sizesB result
varying number of local patches, therefore the number of Gaussians (i.e., K) in the GMM is
studied simultaneously. In the experiment,B is chosen from a reasonable region, and Fig. 10
illustrates the classification results with varying patch sizes B as well as different numbers

Fig. 9 Example of Gabor filter: a input image, b–i 8 Gabor filtered images corresponding to 8 different
orientations for the input image
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Table 1 Classification accuracy (%) of with the first feature different parameters (m, r) for the BCCT200-
resize dataset

r 1 2 3 4 5 6 7 8

m = 8 86.88 89.38 90.00 91.25 90.63 90.00 90.00 90.63

m = 10 88.75 88.75 90.00 90.00 91.25 93.13 91.88 91.88

m = 12 86.88 89.38 90.63 90.63 91.88 91.88 90.00 90.00

of Gaussians K in the GMM for the two experimental datasets. Optimal parameters of B

and K are further determined from the tuning results in Fig. 10. That is, the optimal patch
size B is 28 and the number of Gaussians K is 20 for the BCCT200-resize dataset; as for
the original BCCT200 dataset, the optimal patch sizes B is 22 and the number of Gaussians
K is 25. For the VAIS dataset, the optimal patch size B and the number of Gaussians K

both be set to 20. For the MS-CLBP parameters, the scale is set to 1/ [1 : 3] and another
parameter pair is chosen (m, r) = (6, 3), empirically.

For the third type of features (i.e., the BOVW and SPM), the size of block (i.e., 
 × 
 )
is studied for the dense SIFT descriptors. The experiment results with varying patch sizes
for the two experimental dataset are illustrated in Fig. 11. It is obvious that optimal block
size 
 is 24 for both BCCT200-resize dataset and original BCCT200 dataset, and 
 = 26
achieves the best classification performance for the VAIS dataset. For k-means clustering,
blocks are randomly selected and the codebook size is set to 1024.

4.2 Classification results and analysis

The proposed MFL strategy is compared with some state-of-the-art methods under the
same experimental setup to verify the effectiveness of the proposed multiple feature learn-
ing approach. That is, for the BCCT200-resize dataset, 80% of the images from each
class are used for training and the remaining images are used for testing; for the VAIS
dataset, its “official” train and test data is used for training and testing, respectively. For
the BCCT200-resize dataset, five-fold cross-validation is performed, in which the dataset
is randomly partitioned into five equal and disjoint subsets. For each run, a different sub-
set is held out for testing and the remaining four are used for training. The classification
accuracy is the average over the five cross-validation evaluations. Specifically, the pro-
posed method is compared with the feature fusion method that combines Gabor feature and
MS-CLBP feature. The improvement of the proposed method over the Gabor + MS-CLBP
and other existing methods verifies our multiple feature learning method is more effective.
The comparison result for the BCCT200-resize, BCCT200 and VAIS datasets are shown in
Tables 4, 5 and 6, respectively. Obviously, the proposed method achieves superior classifica-
tion performance over other existing methods, which demonstrates the effectiveness of the

Table 2 Classification accuracy (%) of with the first feature different parameters (m, r) for the original
BCCT200 dataset

r 1 2 3 4 5 6 7 8

m = 8 65.63 71.25 74.38 73.13 73.13 73.75 72.50 71.25

m = 10 63.13 68.13 68.13 69.38 70.63 71.25 72.50 75.50

m = 12 65.00 67.50 70.00 75.00 77.50 76.88 77.50 75.63
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Table 3 Classification accuracy (%) of with the first feature different parameters (m, r) for the VAIS dataset

r 1 2 3 4 5 6 7 8

m = 8 71.20 73.47 73.73 75.33 75.33 73.60 73.07 70.00

m = 10 73.20 74.53 75.20 76.27 77.73 77.47 76.27 74.40

m = 12 72.27 74.27 75.33 76.53 77.33 77.33 76.13 73.87

proposed MFL for vessel classification. Especially, for BCCT200-resize dataset, the MFL
gains about 10% higher overall accuracy than deep learning method and the MFL gains
about 4% higher overall accuracy for VAIS dataset than Convolutional Neural Networks
(CNN). Therefore, the proposed approach, which combines multiple hand-crafted features,
has obvious advantages. Moreover, excepting of typical SVM, we employ another classifier
(i.e. extreme learning machine, ELM [21]) under the MFL framework. We find a phe-
nomenon from Tables 4, 5 and 6 that the feature-level strategy is preferable for VAIS dataset
and the decision-level strategy is preferable for BCCT200-resize and BCCT200 datasets.
For various ship image datasets, the decision-level and feature-level strategies have their
own advantages and disadvantages, and it is hard to determine which one is always optimal.

Fig. 10 Parameter tuning of and for the second feature using three experimental data sets: a the BCCT200-
resize, b the original BCCT200, c the VAIS
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Fig. 11 Classification accuracy (%) versus varying block sizes for the three experimental dataset

In addition, to demonstrate the enhanced discriminative power of multiple features fusion
strategy, we compare the classification performance of the proposed multiple feature learn-
ing approach with the performance of methods that use each individual features in this
framework with LIBSVM classifier. The accuracy per class from the aforementioned meth-
ods is reported in Tables 7, 8 and 9. It is apparent that the proposed MFL outperforms all
the individual feature based approaches. For the BCCT200-resize dataset, the global feature
representation method, i.e., Gabor + MS-CLBP, achieves highest accuracy for cargo cate-
gory. The first local feature representation method, i.e., MS-CLBP+FV, achieves maximum
accuracy for container category in the original BCCT200 dataset. For the VAIS dataset, the
second local feature representation method, i.e., BOVW+SPM, achieves maximum accu-
racy for Medium passenger category. Nevertheless, the proposed MFL obtains superior
accuracy for others classes and also the highest overall accuracy for both two experimental
datasets.

Confusion matrix of the proposed MFL with feature-level fusion strategy for the
BCCT200-resize dataset is listed in Table 10, and that of the proposed MFL with decision-
level fusion strategy is listed in Table 11. The confusion matrixes also are the average
over the five cross-validation evaluations. The major confusion occurs between class 2 (i.e.,
cargo) and class 3 (i.e., container), since some cargo images is similar to the container
images. Tables 12 and 13 show the confusion matrix of feature-level fusion and decision-
level fusion for the original dataset, respectively. It is obvious that the major confusion
occurs within class 3 (i.e., container), class 4 (i.e., tanker), and class 2 (i.e., cargo). Tables 14
and 15 display the confusion matrix of feature-level fusion and decision-level fusion for
the VAIS dataset, respectively. It is observed that the major confusion occurs within class
2 (i.e., sailing), class 1 (i.e., merchant), class 3 (i.e., Medium passenger), and class 5 (i.e.,
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Table 4 Comparison of
classification accuracy (%) with
some state-of-the-art methods for
the BCCT200-resize dataset

Method Accuracy(%)

PCA + SVM [35] 77.1

LDA + SVM [35] 74.1

ICA + SVM [35] 77.4

MPCA +SVM [35] 79.1

BOW + SVM [35] 76.8

HOG +SVM [35] 81.6

hierarchical multiscale LBP (HMLBP) [35] 90.8

Sparse Representation with Feature Vectors(SRFV) [36] 78.25

HyperNEAT [40] 75.00

Deep Learning HyperNEAT [41] 83.70

Gabor + MS-CLBP 90.63

MFL (feature-level) + ELM 94.38

MFL (decision-level) + ELM 94.63

MFL (feature-level) + SVM 94.00

MFL (decision-level) + SVM 94.63

Table 5 Comparison of
classification accuracy (%) with
some state-of-the-art methods for
the original BCCT200 dataset

Method Accuracy(%)

PCA + NN [40] 74.5

V-BOW [28] 78.50

BOW + SVM [35] 76.3

BOW + SRC-L0 [35] 74.8

BOW + SRC-L1 [35] 75.6

Gabor + MS-CLBP 76.00

MFL (feature-level) + ELM 85.88

MFL (decision-level) + ELM 85.88

MFL (feature-level) + SVM 85.88

MFL (decision-level) + SVM 86.87

Table 6 Comparison of
classification accuracy (%) with
some state-of-the-art methods for
the VAIS dataset

Method Accuracy(%)

Gnostic Field [48] 82.4

CNN [48] 81.9

Gnostic Field + CNN [48] 81.0

Gabor + MS-CLBP 77.73

MFL (feature-level) + ELM 87.60

MFL (decision-level) + ELM 85.07

MFL (feature-level) + SVM 85.33

MFL (decision-level) + SVM 85.07
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Table 7 Classification accuracy (%) per class for the BCCT200-resize dataset

class Classification methods

Gabor + MS-CLBP MS-CLBP + FV BOVW + SPM MFL (feature-level) MFL (decision-level)

Barge 98.00 99.50 100 100 99.50

Cargo 85.00 81.50 78.50 82.00 83.50

Container 87.50 94.50 96.50 97.00 97.00

Tanker 92.00 97.00 94.50 97.00 98.50

OA (%) 90.63 93.13 92.38 94.00 94.63

Table 8 Classification accuracy (%) per class for the original BCCT200 dataset

class Classification methods

Gabor + MS-CLBP MS-CLBP + FV BOVW + SPM MFL (feature-level) MFL (decision-level)

Barge 84.00 94.50 89.00 94.50 95.00

Cargo 68.00 72.00 61.00 74.00 76.00

Container 79.50 88.50 84.50 85.50 87.50

Tanker 72.50 87.50 80.00 89.50 89.00

OA (%) 76.00 85.62 78.63 85.88 86.87

Table 9 Classification accuracy (%) per class for the VAIS dataset

class Classification methods

Gabor + MS-CLBPMS-CLBP + FV BOVW + SPMMFL (feature-level) MFL (decision-level)

Merchant 73.24 70.42 67.61 78.87 77.46

Sailing 41.86 50.00 48.84 51.16 44.19

Medium 47.19 61.29 95.16 77.42 82.26

passenger

Medium 90.40 89.39 94.95 96.97 96.97

other

Tug 83.07 86.58 90.73 91.69 92.65

Small 50.00 60.00 65.00 65.00 60.00

OA (%) 77.73 78.80 84.53 85.33 85.07

Table 10 Confusion matrix of
the proposed MFL (feature-level
fusion) for the BCCT200-resize
dataset

Class 1 2 3 4 Recall(%)

Barge (1) 40 0 0 0 100

Cargo (2) 1.2 32.8 4.4 1.6 82.00

Container (3) 0.8 0.4 38.8 0 97.00

Tanker (4) 0.8 0 0.4 38.8 97.00

Precision (%) 93.46 98.80 88.99 96.04
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Table 11 Confusion matrix of
the proposed MFL
(decision-level fusion) for the
BCCT200-resize dataset

Class 1 2 3 4 Recall(%)

Barge (1) 39.8 0 0 0.2 99.50

Cargo (2) 0.8 33.4 3.6 2.2 83.50

Container (3) 0.6 0.6 38.8 0 97.00

Tanker (4) 0.2 0.2 0.2 39.4 98.50

Precision (%) 96.14 97.66 91.08 94.26

Table 12 Confusion matrix of
the proposed MFL (feature-level
fusion) for the original BCCT200
dataset

Class 1 2 3 4 Recall(%)

Barge (1) 37.8 0 0.6 1.6 94.50

Cargo (2) 1 29.6 4.6 4.8 74.00

Container (3) 1 2 34.2 2.8 85.50

Tanker (4) 1.2 2.4 0.6 35.8 89.50

Precision (%) 92.2 87.06 85.5 79.56

Table 13 Confusion matrix of
the proposed MFL
(decision-level fusion) for the
original BCCT200 dataset

Class 1 2 3 4 Recall(%)

Barge (1) 38 0 0.4 1.6 95.00

Cargo (2) 1.4 30.4 4 4.2 76.00

Container (3) 0.8 2.4 35 1.8 87.50

Tanker (4) 1.4 2.2 0.8 35.6 89.00

Precision (%) 91.35 86.86 87.06 82.41

Table 14 Confusion matrix of the proposed MFL (feature-level fusion) for the VAIS dataset

Class 1 2 3 4 5 6 Recall(%)

Merchant(1) 56 2 1 2 3 7 78.87

Sailing(2) 9 44 14 4 14 1 51.16

Medium passenger(3) 3 2 48 0 4 5 77.42

Medium other(4) 0 2 0 192 4 0 96.97

Tug(5) 1 6 16 2 287 1 91.69

Small(6) 0 1 6 0 0 13 65.00

Precision (%) 81.16 77.19 56.47 96.00 91.99 48.15

Table 15 Confusion matrix of the proposed MFL (decision-level fusion) for the VAIS dataset

Class 1 2 3 4 5 6 Recall(%)

Merchant(1) 55 1 1 3 4 7 77.46

Sailing(2) 11 38 11 5 20 1 44.19

Medium passenger(3) 4 0 51 0 5 2 82.26

Medium other(4) 0 1 0 192 5 0 96.97

Tug(5) 1 4 15 2 290 1 92.65

Small(6) 0 0 6 0 2 12 60.00

Precision (%) 77.46 86.36 60.71 95.05 88.96 52.17



Multimed Tools Appl (2018) 77:13363–13389 13385

Table 16 Classification
accuracy (%) of the proposed
MFL using different fusion rules

Fusion rule Data

BCCT200-resize BCCT200 VAIS

MV (hard fusion) 94.00 85.75 84.13

LOGP (soft fusion) 94.63 86.87 85.07

tug), or between class 6 (i.e., small) and class 3 (i.e., Medium passenger). Sailing ships con-
tain small sails up, small sails down and large sails down. Some sails down ships are similar
to merchant ships. The small ships include speedboat, jet-ski, smaller pleasure and larger
pleasure. Thus some small ships and medium passenger ships have relatively high similarity.

To evaluate the effectiveness of the decision-level fusion strategy (i.e., LOGP) of the
proposed framework, we compare it with a popular hard fusion rule of majority voting [21].
Table 16 provides the classification results comparison between these two fusion schemes
(i.e., LOGP and MV) using two experimental datasets. As evident from the results, the soft
fusion strategy provides slightly better performance than the hard fusion rule of MV. The
reason is that the fusion at the posterior probability level provides more flexibility than the
hard counting, especially for multi-class classification tasks.

5 Conclusion

In this paper, we proposed a multiple features learning classification framework for ship
classification in optical remote sensing imagery. The overall classification framework con-
sists of multiple features including Gabor-based MS-CLBP, patch-based MS-CLBP and
Fisher Vector, and combination of the BOVW and SPM. These global and local features
are complementary to each other and the combination of them is a powerful and compre-
hensive representation of ship images. It was found that the proposed method became more
discriminative than the entire individual feature based approaches. Experimental results on
two optical vessel dataset verified that the proposed decision-level soft fusion classification
method consistently achieves superior classification performance over other state-of-the-art
algorithms.

Given the recent tremendous success of deep learning technique, especially CNN, in
image classification, a combine of deep learning features and hand crafted features for ship
classification will be investigated in our future work.
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