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Abstract Two visual models of image secret sharing have been studied: visual cryptogra-
phy schemes (VCS), introduced by Naor and Shamir, and visual cryptograms of random
grids (VCRG), introduced by Kafri and Keren. VCRG has gained much attention in
academia than before to avoid the pixel expansion of VCS. Although there is a strict rela-
tion between VCRG and VCS, VCRG can still be improved to achieve a better result. In
this paper, based on new insight into linear algebraic technique to construct VCS, where we
are able to construct VCS by solving a linear system of more equations at a time, we put
forward a new construction of VCRG for general access structures. The effectiveness and
advantage of the proposed construction are formally analyzed and experimentally demon-
strated. With theoretical and practical interests, our construction exposes new possibilities
to the researches of visual models of image secret sharing.

Keywords Image secret sharing · Visual cryptography · Random grid · Linear algebra ·
General access structure

1 Introduction

With the rapid development and wide application of digital camera, scanner, mobile phone
and other digital products, images are easily obtained and transmitted. At the same time,
more and more attentions are paid to the secure protection of the image. To protect the secret
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image from the malicious behaviors, some technologies have been developed, such as image
secret sharing [29, 31] and steganography [1, 11, 23]. Image secret sharing (ISS) is about
encoding the secret image while steganography is about concealing the very existence of
the encoded image. Obviously, the conjunctive use of steganography and ISS is more secure
[18, 39]. In this paper, we focus on ISS.

In a conventional (k, n)-ISS scheme, a secret image is encoded intondifferent shadowsdis-
tributed to n participants such that any group of k participants can compute the secret image
using their shadows,while that of less than k ones cannot. The secret image is thus tolerant to
a loss of n−k shadow images. However, the complicated computations, i.e., Lagrange inter-
polations, are required in both encoding and decoding. In some circumstances where the
cost of computations may not be affordable or the decoding time should be instantly done
in a constant time, these computation-based ISS schemes become no longer appropriate.

Two visual models of ISS have been studied: visual cryptography scheme(VCS), intro-
duced by Naor and Shamir [22], and visual cryptograms of random grids (VCRG),
introduced by Kafri and Keren [16]. Such a (k, n) scheme is capabl1e of encoding a secret
image into n shadows. Any group of k or more shadows can visually recover the secret
image by printing the shadows on transparencies and stacking (Boolean OR operation) them
together. Whereas, any group of k − 1 or less shadows give no clue about the secret image.
The feature is that the decoding is done via human visual system instead of complicated
computations. With such an attractive feature, the above two models can be applied to pro-
tect online transactions against manipulation like online money transfers by Trojans [21],
realize visual voting while ensuring voter’s anonymity without counting process [9], design
secure display screen with controllable visual area against malicious peep while avoiding the
attacks of virus and electromagnetic leakage [19], and other application scenarios including
financial documents [12] and bar codes [36]. In addition, some new technologies, such as
google glass and flexible screen, also provide new opportunities for the application of the
above two models.

VCS useswhiteness to distinguish black color fromwhite color. Specifically, each pixel of
the black-and-white secret image is encoded intom subpixels, referred to as pixel expansion,
for each of the n shadows by designing two collections of n×mBooleanmatricesC0 andC1.
To share a white pixel, the dealer randomly chooses one of the matrices in C0, and to share a
black pixel, the dealer randomly chooses one of thematrices inC1. The chosenmatrix defines
the color of the m subpixels in each of the shadows. If any k or more shadows are stacked
together, our eyes canperceive the secret informationdue to the whiteness difference, referred
to as contrast, between black pixels and white pixels in the stacked result, while if fewer than
k shadows are superimposed it is impossible to perceive the secret information. Inspired
by Naor and Shamir’s work, many research papers have explored various aspects: general
access structure (GAS) [2, 3], pixel expansion [8, 28], contrast [4, 6], multiple secrets [24,
40], cheating prevention [14, 20], meaningful shadows [30, 35], color image [5, 13], aspect
ratio invariant [17, 38] and other applications [15, 33, 34]. However, a main drawback of
VCS is the large pixel expansion, which will increase storage and transmission bandwidth.

VCRG uses average light transmission to distinguish black areas from white areas. A
secret image is encoded into some size invariant random grids, each of which is a trans-
parency comprising a two-dimensional array of pixels that are chosen between white and
black with a probability. After VCRG was first introduced, many researchers focused their
attentions on it. Shyu gave a formal definition to VCRG to make VCRG applicable [25],
and devised algorithms for (k, n)-VCRG [27] and VCRG for GAS [24], respectively.
Similar works by other research groups could also be found in [10, 32]. The most essential
advantage of VCRG lies in that extra pixel expansion is not needed.
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At the same time, the relationship between VCS and VCRG was discussed [7, 37].
Especially, De Prisco and De Santis [7] showed that there is a close relation between
deterministic VCS and VCRG, and indicated that it allows to use results known for the
deterministic VCS in the VCRG and vice versa. In other words, the future works that deal
with VCRG and VCS should not ignore each other in comparison of contrast.

Recently, Adhikari [2] introduced a linear algebraic technique to construct VCS. In
addition, a simple and effective way to construct VCRG, as described in [7], is randomly
choosing a column from the corresponding encoding matrix of VCS. Hence, exploring
the algebraic aspects of VCS is worthy of study. For a future study, as posed in [2], tak-
ing more than two equations simultaneously to construct the encoding matrix should be
considered.

In this paper, we pay attention to the construction of VCRG and improve VCRG by
exploiting the algebraic aspects of VCS. First, we consider the problem of characterizing
the set of access structures on n participants and put forward a characterization where we
can take more equations simultaneously. Second, based on the above knowledge, we pro-
pose a new construction of VCRG for general access structures, where a competitive visual
performance is achieved. Finally, we provide some experimental results and comparisons to
demonstrate the effectiveness and advantage of our construction.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries
including the models of VCS and VCRG. In Section 3, some related works, as well as our
motivation, are presented. In Section 4, we provide a characterization of the set of access
structures on a set of participants where we are able to take more equations simultaneously.
In Section 5, we give a new construction of VCRG for GAS based on the above character-
ization. Some experimental results and comparisons are presented in Section 6. Lastly we
conclude the paper in Section 7.

2 The model

2.1 GAS

Let P = {1, 2, . . . , n} be a set of n participants and 2P denoting the set of all subsets of
P . Let �Qual ⊆ 2P and �Forb ⊆ 2P , where �Qual ∩ �Forb = ∅. Members of �Qual are
referred to as qualified sets and members of �Forb are referred to as forbidden sets. The
pair (�Qual, �Forb) is called an access structure on P . A participant p ∈ P is an essential
participant if there exists a set X ⊆ P such that X ∪ {p} ∈ �Qual but X �∈ �Qual . In fact, a
non-essential participant does not need to participate “actively” in the reconstruction of the
secret image, since the information he has is not needed by any set in P in order to recover
the shared image. Therefore, unless otherwise specified, we assume that all participants are
essential throughout the paper.

Definition 1 [3] An access structure (�Qual, �Forb) on P = {1, 2, . . . , n} is said to be
strong if the following conditions are satisfied:

1. �Qual is monotone increasing. Formally, for each Q ∈ �Qual and Q ⊆ Q′ ⊆ P , we
have Q′ ∈ �Qual .

2. �Forb is monotone decreasing. Formally, for each F ∈ �Forb and F ′ ⊆ F ⊆ P , we
have F ′ ∈ �Forb.

3. �Qual ∪ �Forb = 2P .
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For a strong access structure (�Qual, �Forb), define �0 to consist of all the minimal
qualified sets:

�0 = {Q ∈ �Qual : Q′ /∈ �Qual f or all Q′ ⊂ Q} (1)

and ZM to consist of all the maximal forbidden sets:

ZM = {F ∈ �Forb : F ∪ {i} ∈ �Qual f or all i ∈ P \ F }. (2)

Because �Forb = 2P − �Qual , �0 is termed a basis, which completely determines its
corresponding strong access structure by

�Qual = {Q′ ⊆ P : Q ⊆ Q′ f or some Q ∈ �0}. (3)

As a special access structure, a (k, n) threshold structure is a strong access structure
(�Qual, �Forb) with the following constraints: �0 = {Q ⊆ P : |Q| = k} and �Forb =
{Q ⊆ P : |Q| ≤ k − 1}.

In this paper, unless otherwise specified, all the considered access structures are supposed
to be strong.

2.2 VCS and VCRG

Let D be an n × m Boolean matrix and X ⊆ P . Then D[X] denotes the |X| × m submatrix
obtained from D by considering its restriction to rows corresponding to the elements in X.
DX denotes the Boolean “OR” operation to the rows ofD[X]. ω(DX) denotes the whiteness
of the row vector DX , which is the number of 0’s in the vector DX .

Definition 2 [3] Let (�Qual, �Forb) be an access structure on a set of n participants. Two
n × m basis matrices S0 and S1, which generate the two collections of n × m Boolean
matrices C0 and C1 by permuting the columns of the corresponding basis matrix (S0 for C0,
and S1 for C1) in all possible ways, constitute a (�Qual, �Forb,m)-VCS if the following
conditions are satisfied:

1. If X = {i1, i2, . . . , ip} ∈ �Qual , ω(S0
X) > ω(S1

X).
2. If X = {i1, i2, . . . , ip} ∈ �Forb, ω(S0

X) = ω(S1
X).

For VCRG, a secret image S is encoded into n size invariant random grids
R1, R2, . . . , Rn. Let S(0) (resp. S(1)) denote the area of all the white (resp. black) pixels
in the secret image. RX denotes the Boolean “OR”ed result of the random grids of X ⊆ P .
Let RX[S(0)] (resp. RX[S(0)]) denote the corresponding area of all the white (resp. black)
pixels in the recovered secret image. The formal definition of VCRG is given by means of
the average light transmission.

Definition 3 [25] For a certain pixel s in a secret image S whose size is M × N , the
probability for s being transparent, say Prob(s = 0), is represented as the light transmission
of s, say T (s). The light transmission of a white (resp. black) pixel is defined as T (s) = 1
(resp. T (s) = 0). The average light transmission of S is defined as

T (S) = 1

M × N
×

M∑

i=1

N∑

j=1

T (S(i, j)), (4)

where S(i, j) denotes the secret pixel at position (i, j) of S.
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Definition 4 [24] Given an access structure (�Qual, �Forb) on a set of n participants, n ran-
dom grids R1, R2, . . . , Rn constitute a (�Qual, �Forb)-VCRG if the following conditions
are satisfied:

1. If X = {i1, i2, . . . , ip} ∈ �Qual , T (RX[S(0)]) > T (RX[S(1)]).
2. If X = {i1, i2, . . . , ip} ∈ �Forb, T (RX[S(0)]) = T (RX[S(1)]).

In Definitions 2 and 4, the first condition is related to the contrast of the reconstructed
secret image. It states that when a qualified set of participants stack their shares they can
perceive the secret information. The second condition is called security, since it implies
that, even by inspecting all their shares, a forbidden set of participants cannot gain any
information in deciding whether the shared pixel was white or black.

2.3 Visual performance

For a qualified set of participants, the secret image can be reconstructed and the visual
performance of the reconstructed secret image is mainly determined by the contrast.

For VCS, various definitions of contrast have been used. In the original model by Naor
and Shamir [22], the contrast is defined as

αNS = ω(S0
X) − ω(S1

X)

m
, (5)

while Eisen and Stinson [8] have proposed

αES = ω(S0
X) − ω(S1

X)

m + ω(S1
X)

. (6)

Both measurements favor a larger ω(S0
X)−ω(S1

X), yet the latter in addition prefers a smaller
(darker) ω(S1

X) due to the reason that a larger (brighter) ω(S1
X) weakens our visual recog-

nition between S1
X and S0

X (than a smaller (darker) one) under a same ω(S0
X) − ω(S1

X).
Therefore, αES , as pointed out in [6], is a better choice for measuring the contrast.

For VCRG, the contrast depends on the difference of the average light transmission
between the white and the black areas of the secret image. Papers [10, 25–27, 32] that dealt
with VCRG have used the following definition of contrast

αRG = T (RX[S(0)]) − T (RX[S(1)])
1 + T (RX[S(1)]) . (7)

Clearly, the use of the average light transmission is not restricted to reconstructions
obtained with VCRG but can be used also to evaluate VCS. In fact, it should not be hard to
see that

T (RX[S(0)]) = ω(S0
X)

m
(8)

and

T (RX[S(1)]) = ω(S1
X)

m
. (9)
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Hence, we have that

αES = ω(S0
X) − ω(S1

X)

m + ω(S1
X)

= T (RX[S(0)]) − T (RX[S(1)])
1 + T (RX[S(1)])

= αRG. (10)

This equivalence opens up a door between VCRG and VCS. As De Prisco and De Santis [7]
pointed out, the future works that deal with VCRG and VCS should not ignore each other
in comparison of contrast, which is defined by αES and αRG respectively.

The contrast α determines how well human visual system can recognize the recovered
secret image. It is lucid that for a valid scheme, α = 0 if X ∈ �Forb and α > 0 where
X ∈ �Qual . The contrast is expected to be as large as possible.

3 Related work and our motivation

In terms of the construction of VCRG for GAS, Wu and Sun [32] proposed one, which is
restated as Algorithm 1.

In Algorithm 1, it is easy to see that the steps 4–6 are the core that certifies the security
and contrast requirements for p random grids to constitute a (p, p)-VCRG [27]. The left
n − p random grids are randomly assigned. As proved in [32], any qualified set containing
the chosen minimal qualified set Q can recover the secret. When a set X is randomly chosen
from 2P , the chance for X being able to recover the secret (namely, X ⊇ Q) does exist
( d
|�0| , where d denotes the number of minimal qualified sets that elements in X can form).
Moreover, Wu and Sun [32] gave an accurate equation expressing the relation between the
contrast and the chance (please refer to [32] for details). The equation concludes that a larger
chance will lead to a better contrast of the recovered secret image. However, the chance for
X being able to recover the secret is small when |�0| is large, and then the contrast becomes
quite small.
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In this paper, we try to improve the contrast by increasing the chance for X being able
to recover the secret. A comprehensive idea to improve such a probability is to choose
more minimal qualified sets in the step 3 and assign them in the steps 4–6. This method
undoubtedly works since the value d is increased.

For the assignment to random grids of Q, Algorithm 1 actually accomplishes it by solv-
ing the following two linear equations over the binary field: xi1 + · · · + xip−1 + xip = 0 for
the white secret pixel (S(i, j) = 0) and xi1 +· · ·+xip−1 +xip = 1 for the black secret pixel
(S(i, j) = 1). Thereinto, Algorithm 1 randomly choose one from all possible solutions of
the first (resp. second) equation and assign it to the corresponding random grids of Q when
the shared secret pixel is white (resp. black).

Similar to Algorithm 1, we can accomplish the assignment to random grids of more
chosen minimal qualified sets by solving the following two systems of linear equations over
the binary field: Ax = 0 for the white secret pixel and Ax = 1 for the black secret pixel,
where A is a Boolean matrix of t rows determining t chosen minimal qualified sets, x is a
vector denoting an assignment to random grids of the t chosen minimal qualified sets, and
0 and 1 are t × 1 vectors of 0’s and 1’s respectively. If both systems are consistent, we can
randomly choose one from all possible solutions of the first (resp. second) system and assign
it to the corresponding random grids of the chosen minimal qualified sets when the shared
secret pixel is white (resp. black). Therefore, to explore the conditions for consistency or
inconsistency of both systems is the problem to be solved.

Recently, Adhikari [2] systematically explored the consistency or inconsistency of the
above systems. He utilized this linear algebraic technique to construct VCS, where all pos-
sible solutions of the first (resp. second) system form the basis matrix S0 (resp. S1). In other
words, to construct VCRG for the chosen minimal qualified sets, we can randomly choose
a column from the above basis matrices. If the number of chosen minimal qualified sets is
two, then we could solve a linear system of two equations to obtain the basis matrices in
accordance with Adhikari’s method [2]. However, Adhikari’s method is confined to taking a
system of two equations and cannot deal with more than two chosen minimal qualified sets.

Inspired by the above analysis, we are going to propose a new construction of VCRG
via the linear algebraic technique, where we are able to take a system of more than two
equations simultaneously.

4 New insight into linear algebraic technique to construct VCS

In this section, we propose an improved linear algebraic technique to construct basis matri-
ces of VCS for some specific access structures, where the access structure should meet some
constraints. Given such a specific access structure on a set of n participants, we construct
some suitable systems of linear equations over the binary field and the solutions of these
systems of linear equations will construct the basis matrices for the given access structure.
However, to understand what constraints the access structure should meet, we build our the-
ory from the reverse direction in this section. First, we start with the following two systems
of linear equations over the binary field,

Ax = 0 (11)

Ax = 1 (12)

where, A is a t × n known Boolean matrix of rank r , 0 < r ≤ t < n; x is an n × 1 vector of
unknowns; 0 and 1 are t × 1 vectors of 0’s and 1’s respectively; both the systems (11) and
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(12) are consistent. The difference from Adhikari’s systems [2] is the coefficient matrix A,
which does not have to be of full row rank.

Let S0 (resp. S1) be an n×2n−r Boolean matrix whose columns are all possible solutions
of the system (11) (resp. (12)). Then, to prove S0 and S1 can form the basis matrices of a
(�Qual, �Forb, m = 2n−r )-VCS, the following lemma is first given immediately since the
proof of Lemma 5 in Adhikari [2] also works for this lemma.

Lemma 1 Let X = {i1, i2, . . . , ip} ⊆ P = {1, 2, . . . , n}. Build a system of equations as
follows: (

A

BX

)
x =

(
1
0

)
(13)

where BX is a column permutation of the p × n Boolean matrix (Ip|0p×(n−p)) with unit
vectors of the identity matrix Ip , which is of order p, occupying columns indexed by
i1, i2, . . . , ip in BX . Then, for an access structure (�Qual, �Forb), S0 and S1 form the basis
matrices of a (�Qual, �Forb, m = 2n−r )-VCS if the following conditions are satisfied:

1. For X ∈ �Qual , the system (13) is inconsistent.
2. For X ∈ �Forb, the system (13) is consistent.

Next we are going to explore the conditions for consistency or inconsistency of the sys-
tem (13). Let rows of A1 (resp. A2) represent all possible sum of odd (resp. even) number
of rows in A. For a 1 × n Boolean row vector v = {v1, v2, . . . , vn}, let �v = {j |vj =
1, j = 1, 2, . . . , n}. Given two Boolean row vectors v1 and v2, define �v1 ⊕�v2 = �v1⊕v2 .
Denote �odd

0 as the “⊕”ed result of any odd number of elements of �0 and �even
0 as

the “⊕”ed result of any even number of elements of �0. Then we have the following
lemma.

Lemma 2 For an access structure (�Qual, �Forb), S0 and S1 form the basis matrices of a
(�Qual, �Forb, m = 2n−r )-VCS if the following conditions are satisfied:

1. For X ∈ �Qual , any row vector of A1 belongs to the row space of BX.
2. For X ∈ �Forb, A and BX are independent, or, any row vector of A2 belongs to the

row space of BX .

Proof In light of the system (13), there are two possibilities: the coefficient matrix A and
BX are either linearly independent or linearly dependent.

If they are independent, since the system (12) is consistent and BXx = 0 is consistent
(BX is of full row rank), the system (13) is consistent.

If they are linearly dependent, then there exists a vector u = (u1,u2) �= 0, where u1 and

u2 are 1 × t and 1 × p vectors respectively, such that u
(

A

BX

)
= 0 ⇔ u1A + u2BX = 0

over the binary field. Note that u1 is nonzero, otherwise this will imply linear dependence
of the rows of BX . Now u1A + u2BX = 0 ⇔ u1A ∈ the row space of BX . Also note that if
u1 has an odd (resp. even) number of 1’s then u1A will be a row of A1 (resp. A2). Then we
have that any row of A1 or A2 belongs to the row space of BX. On the right of the system

(13), u
(
1
0

)
= u11. If u1 has an odd (resp. even) number of 1’s, then the system (13) is

inconsistent (resp. consistent).
Based on the above discussions and Lemma 1, this lemma is proved.
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Until now, we have seen that given a suitable binary matrix A and a suitable access
structure (�Qual, �Forb), which satisfy the conditions of Lemma 2, we can construct a VCS
by solving the two linear systems (11) and (12). In other words, we have concluded the
sufficient conditions for constructing VCS by solving linear equations. Then, we are now
in a position to give a concrete structure of the coefficient matrix A. Towards this end, we
prove the following lemma.

Lemma 3 For an access structure (�Qual, �Forb) with �0 = {Q1,Q2, . . . , Qt }, let A =
(v1, v2, . . . , vt )

T of rank r and �vi
= Qi , i = 1, 2, . . . , t . S0 and S1 form the basis

matrices of a (�Qual, �Forb, m = 2n−r )-VCS if the following conditions are satisfied:

1. For any row v of A1, �v ∈ �Qual;
2. For any row v of A2, �v = ∅ or �v �⊆ Q ∈ �0.

Proof For X ∈ �Qual , because �v ∈ �Qual for any row v of A1, v obviously belongs to the
row space of BX.

For X ∈ �Forb, there are three cases to be considered:
Case 1: For any row v of A1, �v ∈ �Qual ; for any row v of A2, �v = ∅.
In this case, any row vector of A2 belongs to the row space of BX immediately.
Case 2: For any row v of A1, �v ∈ �Qual ; for any row v of A2, �v �⊂ Q ∈ �0 and

�v ∈ �Forb.
In this case, any row vector of A2 also belongs to the row space of BX immediately.
Case 3: For any row v of A1, �v ∈ �Qual ; for any row v of A2, �v /∈ �0 and �v ∈

�Qual .
In this case, no row vector of A1 and A2 belongs to the row space of BX , namely, A and

BX are independent.

It should be noted that the sum operation “+” over the binary field is actually the Boolean
XOR operation “⊕”. Therefore, the sum of a number of row vectors, say v1, · · · , vi , of
the coefficient matrix A equals to v1 ⊕ · · · ⊕ vi . Since Qi = �vi

, we have �v1⊕···⊕vi
=

Q1 ⊕ · · · ⊕ Qi . So, for clarity, we restate Lemma 3 as follows, and hence omit its
proof.

Theorem 1 For an access structure (�Qual, �Forb) with �0 = {Q1,Q2, . . . , Qt }, if �0
satisfies the following two conditions:

1. The “⊕”ed result of any odd number of elements of �0 is an element of �Qual . Formally,
�odd
0 ∈ �Qual .

2. The “⊕”ed result of any even number of elements of �0 is an empty set, or not a subset
of any element of �0. Formally, �even

0 = ∅ or �even
0 �⊆ Q ∈ �0.

Then the basis matrices S0 and S1 of a (�Qual, �Forb,m = 2n−r )-VCS are composed of all
possible solutions of the systems (11) and (12) respectively, where A = (v1, v2, . . . , vt )

T of
rank r and �vi

= Qi , i = 1, 2, . . . , t .

Let us try to illustrate the above theory through the following example.

Example 1 Consider the following access structure (�Qual, �Forb) on a set of 4 participants
having �0 = {{1, 2}, {1, 3}, {1, 4}}. Obviously, this access structure satisfies the conditions
of Theorem 1. Then we can construct a (�Qual, �Forb,m = 2)-VCS with basis matrices S0
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and S1, which are obtained by solving the two systems of three linear equations over the
binary field as follows: ⎧

⎨

⎩

x1 + x2 = 0
x1 + x3 = 0
x1 + x4 = 0

(14)

and ⎧
⎨

⎩

x1 + x2 = 1
x1 + x3 = 1
x1 + x4 = 1

(15)

Let S0 and S1 be the Boolean matrices whose columns are just all possible solutions of

the above two systems of (14) and (15) respectively. Thus, S0 =

⎡

⎢⎢⎣

0 1
0 1
0 1
0 1

⎤

⎥⎥⎦ and S1 =

⎡

⎢⎢⎣

0 1
1 0
1 0
1 0

⎤

⎥⎥⎦.

Obviously, S0 and S1 satisfy the properties of basis matrices for the access structure
(�Qual, �Forb) determined by �0.

5 General construction of VCRG via linear algebraic technique

Based on the above knowledge, we are able to construct the basis matrices of VCS for more
chosen minimal qualified sets. Hence, we can construct VCRG for more chosen minimal
qualified sets by randomly choosing a column from the corresponding basis matrix. But the
conditions of Theorem 1 are not always met by any given strong access structure. Therefore,
we can only construct VCRG for some restricted access structures to share a secret pixel
at a time. As described in the motivation of this paper, to share a secret pixel, at least one
minimal qualified set should be randomly chosen from �0 and more minimal qualified
sets should be chosen at the same time. Meanwhile, the conditions of Theorem 1 should
be satisfied by the chosen minimal qualified sets so that we can apply the proposed linear
algebra technique to construct the corresponding basis matrices. Towards this end, we give
a choosing algorithm for GAS, which is described as Algorithm 2.
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In Algorithm 2, we choose collections of the largest number of minimal qualified sets
satisfying the conditions of Theorem 1. For |�0| ≥ 2, the worst case is that we can always
choose two minimal qualified sets from the basis since any two minimal qualified sets sat-
isfy the conditions of Theorem 1. Therefore, it is always possible to choose the collection
of sets needed to construct the scheme.

Then we construct VCRG for GAS (GAS-VCRG) based on the above choosing algo-
rithm. Diagram of the proposed VCRG for GAS is depicted in Fig. 1. The random grid
generation is a pixel-wise operation, and n random grids are constructed via the proposed
scheme for every given secret pixel. Simply, the proposed scheme consists of three com-
ponents: the selection of minimal qualified sets, the construction of basis matrices and the
assignment of random grids. In the selection of minimal qualified sets, Step 3 of Algorithm
2 is executed for every pixel, which will become time-consuming during encoding all pix-
els. However, for each chosen minimal qualified set Q from �0, the generated λ collections

An access structure

)Γ,Γ( ForbQual

The proposed choosing

algorithm for GAS

Construct basis matrices        

),( 10 SS for Γ by Theorem 1

S(i, j)=0

Assign the values of the chosen column to the corresponding random grids

Randomly choose a column 

from  0S
Randomly choose a column 

from  1S

Secret image

n random grids

•••

Fig. 1 Diagram of the proposed VCRG for GAS
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of minimal qualified sets �1
m, . . . , �λ

m from �0 are fixed since they are of the largest num-
ber of minimal qualified sets. Therefore, after the λ collections of minimal qualified sets
�1

m, . . . , �λ
m for a randomly chosen Q are first generated, we can store them so that we can

reuse them, instead of generating them again, when the same Q is chosen in next time. In
the construction of basis matrices, we are able to obtain the basis matrices S0 and S1 for the
collection � of chosen minimal qualified sets by solving the corresponding systems of lin-
ear equations. It should be noted that we could assign the non-essential participants shares
completely white (the value 0) and this assignment would not have an influence on the con-
trast and security conditions of the corresponding basis matrices (please refer to the paper
[3]). In the assignment of random grids, we assign the values to n random grids according
to the randomly chosen column from the corresponding S0 and S1. Detailed information on
the proposed scheme is described as Algorithm 3.

Participants of any qualified set can visually reconstruct the secret image by stack-
ing their random grids together without the aid of any computational devices. Theoretical
analysis on the proposed construction is formulated as follows.

Lemma 4 Given a secret pixel s, an access structure (�Q, �F ) is determined by the collec-
tion � of chosen minimal qualified sets. For X ∈ �Q, we have T (RX[s = 0]) > T (RX[s =
1]). For X ∈ �F , we have T (RX[s = 0]) = T (RX[s = 1]).

Proof Given the collection � satisfying the conditions of Theorem 1, we could construct the
basis matrices S0 and S1 of (�Q, �F )-VCS according to Theorem 1. Because a column is
randomly chosen from the corresponding basis matrices and assigned to the corresponding

random grids, we have T (RX[s = 0]) = ω(S0
X)

m
and T (RX[s = 1]) = ω(S1

X)

m
. For X ∈ �Q,

we have ω(S0
X) > ω(S1

X) and therefore T (RX[s = 0]) > T (RX[s = 1]). For X ∈ �F , we
have ω(S0

X) = ω(S1
X) and therefore T (RX[s = 0]) = T (RX[s = 1]).

Theorem 2 Given a secret image S and a strong access structure (�Qual, �Forb), n random
grids are generated by the proposed Algorithm 3. Algorithm 3 is a valid construction for a
(�Qual, �Forb)-VCRG for GAS.
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Proof Given a secret image S and a strong access structure (�Qual, �Forb), let (�Q, �F ) be
an access structure determined by the set � of chosen minimal qualified sets when sharing
a secret pixel s. S0 and S1 denotes basis matrices of the corresponding (�Q, �F )-VCS.
Obviously, we have �Q ⊆ �Qual and �F ⊇ �Forb. For X = {i1, i2, . . . , ip} ∈ �Qual ,
suppose that the chance for X ∈ �Q is φ. We can conclude φ > 0 since the step 2 of
Algorithm 2 guarantees that at least one minimal qualified set is randomly chosen from �0
when sharing a secret pixel s. By Lemma 4, we have T (RX[s = 0]) − T (RX[s = 1]) =
φ(

ω(S0
X)

m
− ω(S1

X)

m
) > 0. For X ∈ �Forb, we immediately obtain X ∈ �F and then we have

T (RX[s = 0]) − T (RX[s = 1]) = 0 by Lemma 4. According to Definitions 3 and 4, it

Fig. 2 Experimental results of our (2, 4)-VCRG
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is easy to conclude that T (RX[S(0)]) > T (RX[S(1)]) for X ∈ �Qual and T (RX[S(0)]) =
T (RX[S(1)]) for X ∈ �Forb.

6 Experiment and comparison

Extensive experimental results by the proposed VCRG are presented in this section. More-
over, some comparisons and further discussions among the proposed VCRG and related
schemes are provided as well. Note that, it is quite complicated to choose collections of
of the largest number of minimal qualified sets satisfying the conditions of Theorem 1 in
Algorithm 2. Here we only give the choosing algorithm by computing search. The computer
programs are coded in Matlab 7.0 and run in a PC with MS windows.

6.1 Experimental results

To demonstrate the effectiveness of our VCRG, two experiments are conducted: Experi-
ment 1 focuses on threshold access structure, while Experiment 2 focuses on general access
structure.

Experiment 1 An experiment of the proposed (2,4)-VCRG is presented in Fig. 2, where
the basis of (2, 4) threshold access structure is

�0 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
and the set of forbidden sets is �Forb = {{1}, {2}, {3}, {4}}. The secret image is shown
in Fig. 2a and the four generated shares are exhibited in Fig. 2b–e. The stacked results of
two random grids are exhibited in Fig. 2f–k. The stacked results of three random grids are
exhibited in Fig. 2l–o. The stacked results of four random grids are exhibited in Fig. 2p.
Furthermore, the contrast for this experiment is listed in Table 1.

Experiment 2 An experiment of the proposed GAS-VCRG is presented in Fig. 3,
where �0 = {{1, 2, 3}, {1, 4}, {3, 4}} and the set of forbidden sets is �Forb =
{{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {2, 4}}. The secret image is shown in Fig. 3a and the
four generated shares are exhibited in Fig. 3b–e. The stacked results of two random grids are
exhibited in Fig. 3f–k. The stacked results of three random grids are exhibited in Fig. 3l–o.
The stacked results of four random grids are exhibited in Fig. 3p. Furthermore, the contrast
for this experiment is listed in Table 2.

As seen from the above experimental results, visually and quantitatively, the stacked
results of random grids owned by forbidden sets of participants reveal nothing about

Table 1 Contrast for
Experiment 1 R1 R2 R3 R4 R{1,2}

Contrast 0 0 0 0 0.287

R{1,3} R{2,3} R{1,4} R{2,4} R{3,4}
Contrast 0.28 0.284 0.283 0.289 0.286

R{1,2,3} R{1,2,4} R{1,3,4} R{2,3,4} R{1,2,3,4}
Contrast 0.499 0.499 0.499 0.499 0.499
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Fig. 3 Experimental results of our VCRG for an access structure determined by �0 = {{1, 2, 3}, {1, 4},
{3, 4}}

Table 2 Contrast for
Experiment 2 R1 R2 R3 R4 R{1,2}

Contrast 0 0 0 0 0

R{1,3} R{2,3} R{1,4} R{2,4} R{3,4}
Contrast 0 0 0.303 0 0.307

R{1,2,3} R{1,2,4} R{1,3,4} R{2,3,4} R{1,2,3,4}
Contrast 0.141 0.226 0.331 0.229 0.331
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the secret image while the stacked results of random grids owned by qualified sets of
participants reveal the secret information to our eyes.

6.2 Visual performance

Contrast is a measurement to evaluate the visual performance of the recovered secret image.
Because De Prisco and De Santis [7] pointed out the future works that deal with VCRG and

Table 3 Comparison of contrast among the proposed (k, n)-VCRG, Shyu’s Algorithm 4 [27] and Guo
et al.’s VCRG [10] for 2 ≤ k ≤ n ≤ 7

No. (k, n) Our Shyu’s Algorithm 4 [27] Guo et al.’s VCRG [10]

1 (2, 2) α2 = 0.5 α2 = 0.5 α2 = 0.5

2 (2, 3) α2 = 0.288, α3 = 0.499 α2 = 0.288, α3 = 0.501 α2 = 0.146, α3 = 0.25

3 (2, 4) α2 = 0.287, α3 = 0.499 α2 = 0.282, α3 = 0.5 α2 = 0.141, α3 = 0.25

α4 = 0.499 α4 = 0.5 α4 = 0.25

4 (2, 5) α2 = 0.246, α3 = 0.426 α2 = 0.252, α3 = 0.432 α2 = 0.085, α3 = 0.145

α4 = 0, 5, α5 = 0.5 α4 = 0, 5, α5 = 0.5 α4 = 0.151, α5 = 0.126

5 (2, 6) α2 = 0.251, α3 = 0.425 α2 = 0.247, α3 = 0.428 α2 = 0.087, α3 = 0.144

α4 = 0.5, α5 = 0.5 α4 = 0.498, α5 = 0.498 α4 = 0.15, α5 = 0.125

α6 = 0.5 α6 = 0.498 α6 = 0.125

6 (2, 7) α2 = 0.237, α3 = 0.404 α2 = 0.234, α3 = 0.402 α2 = 0.062, α3 = 0.1

α4 = 0.479, α5 = 0.5 α4 = 0.479, α5 = 0.5 α4 = 0.105, α5 = 0.089

α6 = 0.5, α7 = 0.5 α6 = 0.5, α7 = 0.5 α6 = 0.071, α7 = 0.062

7 (3, 3) α3 = 0.25 α3 = 0.25 α3 = 0.25

8 (3, 4) α3 = 0.112, α4 = 0.25 α3 = 0.111, α4 = 0.249 α3 = 0.055, α4 = 0.125

9 (3, 5) α3 = 0.09, α4 = 0.191 α3 = 0.082, α4 = 0.187 α3 = 0.023, α4 = 0.048

α5 = 0.251 α5 = 0.249 α5 = 0.061

10 (3, 6) α3 = 0.09, α4 = 0.190 α3 = 0.086, α4 = 0.191 α3 = 0.022, α4 = 0.05

α5 = 0.249, α6 = 0.249 α5 = 0.251, α6 = 0.251 α5 = 0.064, α6 = 0.064

11 (3, 7) α3 = 0.073, α4 = 0.16 α3 = 0.073, α4 = 0.161 α3 = 0.014, α4 = 0.027

α5 = 0.222, α6 = 0.25 α5 = 0.223, α6 = 0.251 α5 = 0.036, α6 = 0.036

α7 = 0.25 α7 = 0.251 α7 = 0.031

12 (4, 4) α4 = 0.125 α4 = 0.125 α4 = 0.125

13 (4, 5) α4 = 0.044, α5 = 0.124 α4 = 0.047, α5 = 0.125 α4 = 0.023, α5 = 0.064

14 (4, 6) α4 = 0.028, α5 = 0.077 α4 = 0.032, α5 = 0.079 α4 = 0.005, α5 = 0.018

α6 = 0.124 α6 = 0.125 α6 = 0.031

15 (4, 7) α4 = 0.031, α5 = 0.072 α4 = 0.024, α5 = 0.066 α4 = 0.003, α5 = 0.01

α6 = 0.108, α7 = 0.125 α6 = 0.103, α7 = 0.125 α6 = 0.013, α7 = 0.016

16 (5, 5) α5 = 0.063 α5 = 0.063 α5 = 0.063

17 (5, 6) α5 = 0.02, α6 = 0.062 α5 = 0.021, α6 = 0.062 α5 = 0.009, α6 = 0.031

18 (5, 7) α5 = 0.011, α6 = 0.036 α5 = 0.009, α6 = 0.033 α5 = 0.003, α6 = 0.008

α7 = 0.063 α7 = 0.062 α7 = 0.016

19 (6, 6) α6 = 0.031 α6 = 0.031 α6 = 0.031

20 (6, 7) α6 = 0.009, α7 = 0.032 α6 = 0.009, α7 = 0.032 α6 = 0.004, α7 = 0.016

21 (7, 7) α7 = 0.016 α7 = 0.016 α7 = 0.016
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VCS should not ignore each other in comparison of contrast defined by αES for VCS and
αRG for VCRG, we are going to provide comparison of contrast between our VCRG and
other schemes to demonstrate the advantage of our construction. Furthermore, to make the
comparison clearer, we give the definition of average contrast α as follows:

α =
∑

X∈�Qual
αX

|�Qual | , (16)

where αX denotes the contrast of recovered secret image by the qualified set X.
For threshold access structures, Table 3 presents the contrasts of Shyu’s Algorithm 4

[27], Guo et al.’ scheme [10] and the proposed construction, where 2 ≤ k ≤ n ≤ 7. Note
that, αp denotes the contrast of recovered secret image by stacking p random grids since
any p random grids achieve the same contrast. Figure 4 illustrates the average contrast
for Table 3. From Table 3 and Fig. 4, we find that our contrast is larger than Guo et al.’s
contrast [10]. Moreover, our contrast is almost the same as the contrast achieved by Shyu’s
Algorithm 4 [27]. However, Shyu’s Algorithm 4 [27] is confined to threshold schemes. Also
note that, Shyu compared his method with the existing VCSs in contrast, and concluded that
the contrast of his (k, n)-VCRG is competitive to that of the existing (k, n)-VCSs (please
refer to the paper [27]). Hence, we herein omit the comparison of contrast between our
VCRG and the existing (k, n)-VCSs.

For general access structures, Table 4 presents the comparison of contrast among the
proposed VCRG, Wu and Sun’s GAS-VCRG [32] and Shyu’s VCRG [26], and Table 5
presents the comparison of contrast among the proposed VCRG, Ateniese et al.’s GAS-
VCS [3] and Adhikari’s GAS-VCS [2]. In the above two tables, different access structures
are adopted, the contrast of recovered secret image by the qualified set {i1, i2, . . . , ip} is
represented by αi1,i2,...,ip , CA denotes the Ateniese et al.’s construction using cumulative
array and SS denotes the Ateniese et al.’s construction using smaller schemes [3]. Note that,
because both of Shyu’s method [26] and Ateniese et al.’s CA [3] achieve a constant contrast
for an access structure, we omit the subscript {i1, i2, . . . , ip} in αi1,i2,...,ip . Figures 5 and 6
illustrate the average contrast for Tables 4 and 5, respectively. From Table 4 and Fig. 5,
we find that our contrast is larger than those of Wu and Sun’s method [32] and Shyu’s two

Fig. 4 Average contrast for Table 3
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Fig. 5 Average contrast for Table 4

methods [26]. From Table 5 and Fig. 6, we also find that our contrast is larger than those of
Ateniese et al.’s CA and SS [3] and Adhikari’s contrast [2]. Moreover, the constant contrast
achieved by Shyu’s Algorithm 3 [26] and Ateniese et al.’s CA [3] is 1

2|Zm |−1 , so the contrast
is too small when |Zm| is large. For example, when the access structure is (3, 5) threshold
case, the contrast of Shyu’s Algorithm 3 [26] and Ateniese et al.’s CA [3] is 1

512 ≈ 0.002
while our average contrast is 0.132. Therefore, our construction is preferable when |Zm| is
large. In summary, we achieve a better visual performance in the sense that the contrast of
our VCRG is larger than those of the existing schemes for GAS.

Fig. 6 Average contrast for Table 5
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Table 6 Comparison of functionality among the proposed construction and related methods

Methods Functionalities

Pixel expansion Access structure Enhanced contrast Utility

Our No GAS Yes VCS and VCRG

Shyu [27] No (k,n) Yes VCRG

Shyu [26] No GAS No VCRG

Guo et al. [10] No (k,n) No VCRG

Wu and Sun [32] No GAS No VCRG

Ateniese et al. [3] Yes GAS No VCS

Adhikari [2] Yes GAS No VCS

6.3 Functionality

Functionality comparison among the proposed construction and related methods is demon-
strated in Table 6. According to Table 6, major advantages of our construction are

– Flexible sharing strategy. General access structure can be implemented by the proposed
construction, more complicated sharing strategy in real world can be conducted. It is
superior to the threshold methods [10, 27].

– Enhanced contrast. Contrast is expected to be as large as possible so that human eyes
can identify the visual information easily. Our contrast is enhanced in comparison with
the methods [2, 3, 10, 26, 32].

– No pixel expansion. Our construction does not expand any pixel while the conventional
VCSs [2, 3] take large pixel expansions which will increase storage and transmission
bandwidth.

– Wide utility. The methods [10, 26, 27, 32] are elaborately designed for VCRG while
the methods [2, 3] are elaborately designed for VCS. However, Theorem 1, supporting
our construction, can be better applied to not only VCRG but also VCS. For exam-
ple, any given access structure can be divided into several certain access structures,
each of which satisfies the conditions of Theorem 1. Then we can construct VCS for
every access group through solving linear equations and all constructed VCSs consti-
tute a final VCS for the given access structure. The above method to construct VCS, as
pointed out in [2], may minimize the pixel expansion of VCS.

7 Conclusion

In this paper, we exploit the algebraic aspects of VCS and propose an construction of VCRG
based on the proposed linear algebraic technique. The experimental results demonstrate the
feasibility and advantage of our construction. Moreover, our theory lays a sound and inno-
vate foundation for the construction of VCS and VCRG from the theoretical point of view.
There are some further researches including could we put forward an accurate expression
of contrast, how does the content of the image affect the visual performance besides the
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contrast, and so on. For practical applications, our construction would be very useful to
develop a good contrast progressive scheme like [15].
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