
Gang Wang1 & Yongfei Zhang1,2
& Bo Li1,2 & Rui Fan1

&

Mingliang Zhou1

Received: 20 November 2016 /Revised: 15 April 2017 /Accepted: 5 June 2017 /
Published online: 4 July 2017
# Springer Science+Business Media, LLC 2017

Abstract Coding optimizationmethods incorporating the just noticeable distortion (JND)model,
called perceptual video coding (PVC), have drawn much attention in recent years for better video
coding performance. To further remove perceptual redundancy in every channel and improve the
coding performance, this paper proposes a fast PVC scheme in the latest High Efficiency Video
Coding (HEVC) framework based on our proposed variable block-size transform-domain multi-
channel JND model. Firstly, through extensive experiments, we find out for the first time that the
contrast masking (CM) effects for chroma channels show a lowpass property in frequency, which
differs from the luma channel that has a bypass property. Based on this observation, CM effects in
chroma blue (Cb) and chroma red (Cr) channels are modeled as a continuous function for
variable-sized blocks, respectively. Secondly, since different characteristics of the human visual
system (HVS) exhibit quite distinct effects in luma and chroma channels and effects in chroma
channels were not well explored, we develop a new JND model through comprehensive
consideration for both luma and chroma channels of five typical HVS effects, with especial focus
on parameterizedmodeling of chroma channels in each effect. Finally, to incorporate the proposed
JND model into the latest HEVC coding framework, a multi-channel coefficients suppression
method based on JND thresholds and quantization parameter (QP) ranges is proposed in the
transform and quantization process, which can decrease the computational complexity. Extensive
experimental results show that the proposed PVC scheme implemented in HEVC reference
software (HM15.0) can yields significant bit saving of up to 25.91% and on average 9.42% with
similar subjective quality, compared to HM15.0, and consistently outperforms two PVC schemes
with much reduced bitrate and complexity overhead.
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1 Introduction

The high efficiency video coding (HEVC) standard has been standardized by the Joint
Collaborative Team on Video Coding (JCT-VC) [29–31, 36]. On the one hand, HEVC
standard provides higher compression efficiency in comparison to the video coding standard
H.264/AVC [16, 23, 32]. On the other hand, HEVC standard aims to be applied in the high-
quality video coding. As we all know, those video coding standards (e.g., H.264/AVC, HEVC
etc.) popularly adopt objective metrics to assess the encoder performance. More specifically,
the Sum of Squared Error (SSE) is used as a metric for computing the rate-distortion (RD)
costs. However, these objective metrics are not perfectly consistent in visual quality with the
perception characteristics of the human visual system (HVS) [4, 24, 26, 35]. Meanwhile, it is
hard to further remove statistical correlation redundancies of video signal, such as spatial,
temporal, and symbol redundancy, and improve the video coding efficiency in conventional
video coding frameworks, which has almost kept unchanged for decades. In HEVC, the
quantization matrix is designed by the contrast sensitivity function (CSF) -based quantization
which is shown in Fig. 1. The low frequency coefficients use a finer quantization step size,
while the higher frequency coefficients apply a larger quantization step size. However, since
the quantization of HEVC only coarsely considers the CSF factor in some larger transform
blocks, many characteristics of the HVS have not been sufficiently considered to further
enhance the encoding performance, with either reduced bitrate or improved visual quality.

Recently, perceptual video coding has been paid increasing attention to improve coding
efficiency by combining with the perception characteristics of the HVS. As far as computational
models for perceptual thresholds are concerned, PVC schemes can be coarsely classified into
three categories: ROI-based methods [8, 28], visual attention guided methods [10, 11, 15, 17, 37]
and JND-based methods [6, 14, 18, 20]. The ROI-based methods apply machine vision algo-
rithms to automatically detect regions-of-interest (ROI). Visual attention guided methods exploit
computational neuroscience models to predict the human attention regions. The JND models use
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knowledge about human psychophysics to compute the perceptual threshold. The JND-based
PVC scheme has shown better video coding performance in video compression application.

Among JND-based methods for PVC schemes, many previous works focused on improv-
ing JND models. Yang et al. [33, 34] developed a new spatial pixel-domain JND model with
the nonlinear additivity model for masking (NAMM) for color image/video in the YCbCr
space. Yang’s method takes count for the overlapping effect of luminance masking and texture
masking at three color channels. Besides, Yang’s model integrates temporal masking (TM) into
spatio-temporal JND model for the color video. However, the pixel-domain JND model is less
accurate compared with the transform-domain JND model for JND thresholds. Wei et al. [25]
proposed a spatio-temporal JND model for gray image/video in discrete cosine transform
(DCT) domain. In Wei’s model, a new luminance adaptation JND (LA-JND) model is
introduced by considering the gamma correction. And, a novel fixed block classification is
also proposed. Luo et al. [18] proposed a JND-based application which can adjust the
quantization by the JND threshold. Due to previous works in [18, 25] applied only to fixed
size blocks, Kim et al. [14] proposed an HEVC-compliant PVC scheme which can support
variable block-sized transform units. They applied the JND profile for monochrome images in
[1] to suppress transform coefficients. However, this method can only suppress luminance
component for adopting the single-channel JND model.

For JND-based PVC schemes, many approaches have been developed for different
encoding processes in previous studies. In [33, 34], PVC methods can be adopted to suppress
residues in pixel-domain before transform. Kim et al. [14] proposed a PVCmethod for variable
block-sized transform kernels after transform and before quantization. Chen et al. proposed a
foveation JND-based method that suppress transform coefficients by MB-level QP adjustment
[5] in the quantization process. Luo et al. [18] introduced a JND-based PVC scheme by tuning
the quantization using a JND-normalized error model after quantization.

In summary, conventional PVC schemes have at least the following limitations:

1) Conventional transform-domain JND-suppression PVC schemes directly apply luma JND
thresholds into chroma channels [18, 20, 27], which will result in underestimating or
overestimating JND thresholds in Cb and Cr channels. The HVS has different character-
istics in luma and chroma channels.

2) Previous traditional PVC schemes incorporate a fix-sized JND model (e.g., 4 × 4 [6, 18]
or 8 × 8 [25]) to remove perceptual redundancy which is not suitable for HEVC with
various block sizes form 4 × 4 to 32 × 32. The fix-sized JND model will also bring the
computational complexity for the block classification.

In order to fix the above problems of previous works, a new multi-channel JND model is
proposed in this paper. In HEVC, a coding tree unit (CTU) contains a luma coding tree block
(CTB) and two corresponding chroma coding tree block in HEVC. Then, each coding block
(CB) is partitioned into transform blocks (TBs) by the residual quadtree (RQT) structure [9]. In
practice, since perceptual redundancy exists not only in the luma channel but also in the
chroma channel. Therefore, the model is designed by not only considering the luminance
channel perceptual redundancy, but also introducing the chroma channel perceptual redundan-
cy. The JND threshold in each channel has five effects based on the perceptual characteristic of
the HVS. Moreover, this paper also proposes a fast perceptual video coding scheme which
applies the proposed JND model to further enhance the coding efficiency for HEVC. Our PVC
scheme can calculate JND thresholds for every channel by the JND model to suppress
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transform coefficients after transform and before quantization process in HEVC. The main
contributions of this work are summarized as follows:

& To simultaneously effectively remove perceptual redundancy in luma and chroma channel
for YCbCr video format in HEVC, a transform-domain multi-channel JND model in the
YCbCr space is proposed, which is based on different characteristics of the HVS in luma
and chroma channels. In contrast, JND thresholds of previous conventional PVC schemes
calculated in the luma channel guide to remove the perceptual redundancy in the luma or in
the chroma channel, thus leading to ineffectively remove chroma redundancy [18, 20].

& We find out for the first time that CM effects in two chroma channels show a lowpass
property in frequency, which differs from the luma channel that has a bypass property in
frequency. Based on this observation, we model a continuous function for CM effects in
Cb and Cr channels, respectively. By this method, the CM effect can support the variable
block-sized transform units of HEVC, which is in harmony with the luma channel
computation [1].

& A multi-channel summation effect function of SΩ(L) is proposed by deriving the proba-
bility summation model. Since the summation effect of the luma channel has lower JND
thresholds than chroma channel, two chroma summation effects for Cb and Cr channels
are obtained by designed psychophysical experiments to maintain the same distortion for
the 4 × 4 to 16 × 16 transform block size. In previous color JND models [5, 21], a fixed
value for the summation effects is only used for single-size transform units.

& To achieve fast video coding, a multi-channel coefficients suppression method based on
JND thresholds and QP ranges is proposed in the transform and quantization process,
which can decrease the computational complexity. In previous PVC schemes [14, 25],
transform coefficients are only considered the relationship between the luma component
and JND thresholds. Moreover, we propose a frame-level texture complexity for TBs to
decrease the computational complexity.

This paper is organized as follows: In Section 2, we briefly address the system overview of
our proposed fast multi-channel JND-based PVC scheme for HEVC. The Section 3 elaborates
the proposed transform-domain multi-channel JND model in the YCbCr space, and describes
the computation of summation effects for various block-sized transforms kernels in luminance
and chroma channels. In Section 4, we propose a fast and HEVC-compatible perceptual video
coding scheme which applies the proposed JND model to further enhance the coding
efficiency. And the experiment results of our proposed JND model and PVC scheme are given
in Section 5. Finally, the conclusion is drawn in Section 6.

2 System overview of the proposed multi-channel JND-based PVC scheme

Figure 2 shows the framework of proposed multi-channel JND-based PVC scheme. As shown
in the top-shaded box of Fig. 2, our multi-channel JND model can independently compute
JND thresholds for input video frames in the luma channel, the Cb channel and the Cr channel.
In the transform and quantization process, JND profiles will determine whether residual
transform coefficients will be suppressed further in every channel. The proposed transform-
domain multi-channel JND model in YCbCr space will be elaborated in Section 3. Besides,
our proposed PVC scheme is faster than the state-of-the-art PVC scheme by adopting the
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frame-level Sobel operation and JND-based multi-channel quantization approaches in blue
rectangles of Fig. 2. It is also noted in Fig. 2 that, since our PVC scheme suppresses residual
transform coefficients without adjusting coding parameters of HEVC, the output result is the
standard HEVC-compatible bitstreams. Please refer to Section 4 for our developed fast and
HEVC-compatible PVC scheme based on the proposed JND model in Section 3.

3 The proposed transform-domain multi-channel JND model in YCbCr
space

Since different characteristics of the HVS exhibit quite distinct effects in luma and chroma
channels and effects in chroma channels were not well explored, in this section, we
developed a new JND model through comprehensive consideration of both luma and
chroma channels of five typical effects, with especial focus on parameterized modeling of
each effect in chroma channels.

+ Transform
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Multi-channel
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Transform+

ME/MC Intra Prediction

In-loop filter

Entropy coding

Luma channel

Cb channel

Cr channel
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CSF LA CM TMJND S T T T T
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Cr Cr Cr Cr Cr Cr
CSF LA CM TMJND S T T T T

-
Input video
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edge pixel density for CM

Fig. 2 The framework of the proposed multi-channel JND-based
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The proposed transform-domain multi-channel JND model in the YCbCr space is
formulated as product form of five factors based on the perceptual characteristic of the
HVS by introducing these factors of the typical luma JND model into the chroma JND
model: the CSF function, LA effect, CM effect, TM effect and the summation effect,
which is expressed by

JNDΩ
spatio−temporal n;ωi; j;φi; j;μp; τ

� �

¼ SΩ Lð Þ⋅TΩ
CSF ωi; j;φi; j

� �
⋅TΩ

LA n;μp

� �
⋅TΩ

CM n;ωi; j; τ
� �

⋅TΩ
TM n;ωi; j;mv

� � Ω∈ Y ;Cb;Crf g ð1Þ

where Ω is Y, Cb or Cr channel, n is the index of a TB, φi , j is the directional angle of the (i, j)-
th DCT coefficient of a DCT block [18] and mv is the motion vector of a TB. In Eq. (1), ωi , j

indicates the spatial frequency in cycles per degree for the (i, j)-th transform coefficient of a
TB, which is given by

ωi; j ¼ 1=2Lð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i=θxð Þ2 þ j=θy

� �2q
ð2Þ

where θx and θy are horizontal and vertical visual angles of a pixel, respectively, and L is the
size of a TB. In Eq. (1), μp is the average pixel intensity of a TB. In Eq. (1), τ indicates an edge
pixel density as a texture complexity metric in a TB, which is calculated by

τ ¼ 1=L2
� �

∑
N

y
∑
N

x
edge x; yð Þ ð3Þ

edge(x, y) is an edge flag which is 0 for non-edge and 1 for edge computed by a 3 × 3 Sobel
edge operator at (x, y) position.

In Eq. (1), TΩ
CSF ωi; j;φi; j

� �
is the CSF at ωi , j and φi , j, TΩ

LA n;μp

� �
is the factor for the LA

effect, TΩ
CM n;ωi; j; τ

� �
is the factor for the CM effect, TΩ

TM n;ωi; j;mv
� �

is the factor for the TM

effect and SΩ(L) accounts for the spatial summation effect of the L × LTB in a Ω channel. For
these five effects in the luma channel, we adopt the exiting parameters for luma JND
thresholds [14, 20, 25].

Our new JND model through comprehensive consideration of both luma and chroma
channels of five typical effects, with especial focus on parameterized modeling of each
effect in chroma channels. These detailed experiments will be addressed in the following
remainder of this section.

3.1 Contrast sensitivity function for the luma and chroma TBs

The CSF function quantifies how well the human vision perceives a contrast sensitivity
in the spatial frequency domain. The luma CSF expresses high-pass characteristics in the
transform domain while the chroma CSF shows low-pass characteristics [6]. The HVS is
more sensitive to luma contrast variation in the mid-band frequency than those in low-
frequency and high-frequency bands. However, the HVS is less sensitive to chroma
contrast changes than the luma sensitivity in the whole frequency band. As the spatial
frequency increases, the chroma CSF would decrease. So, we will develop the CSF
formula for two chroma TBs and adopt the typical CSF for the luma TB according to
CSF characteristics.
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For the luma effect of a TB, we adopt the typical spatial CSF, which is calculated by [25]:

TY
CSF ωi; j;φi; j

� �
¼ 1

ϕiϕ j
⋅
exp cwij

� �
= aþ bwij
� �

r þ 1−rð Þ⋅cos2φij
ð4Þ

where ϕi and ϕj are normalization factors for transform coefficients, the term 1/(r + (1 − r) ⋅
cos2φij) describes the oblique effect, where r is empirically set to 0.6 and φij stands for the
directional angle of corresponding transform coefficients.

Since [1, 14] use the 8 × 8 DCT block for experiments, this paper uses parameter values of
a = 1.33, b = 0.11 and c = 0.18 in [25] which are obtained by the 8 × 8 DCT block based on the
fitting method.

According to typical contrast sensitivity functions for chroma channels in [6], we develop
the CSF formula for two chroma TBs which is given by

TCb=Cr
CSF ωi; j;φi; j

� �
¼ exp cwij

� �
= aþ bwij
� � ð5Þ

To estimate parameter values in Eq. (5), we adopt the least mean squared error solution as
the fitting method, and a = 0.13, b = 0.11 and c = 0.2 are obtained for Cr channel while a = 0.1,
b = 0.11 and c = 0.21 for Cb channel.

3.2 The luminance adaptation effect for chroma TBs

The HVS has different visibility to different background luminance values [12]. According to
Weber-Fechner law, the HVS is less sensitive in the dark or bright environment than the middle
range of intensities, which can be called the luminance adaptation (LA) effect. Therefore, HVS
luminance sensitive characteristics would be utilized by incorporating the LA effect into the

JND model. As in Eq. (1), TΩ
LA n;μp

� �
reflects the LA effect of a TB for every channel which

can be calculated by a quasi-parabola curve [33].
For chroma TBs, human eyes perceive images/videos in Cr or Cb channel which is also

influenced by the luminance sensitivity mechanism [6]. This due to the fact that the YCbCr
space is a non-uniform space. So, our proposed JND model considers the LA effect for Cr or
Cb TBs by adopting the LA-JND model for luma TBs, which is given by

TCb=Cr
LA n;μp

� �
¼

−μp A−1ð Þ=Bþ A
1

μp−C
� �

D−1ð Þ= 2Q−1−C
� �þ 1

8<
:

μp≤B
B < μp < C

μp≥C
ð6Þ

In Eq. (6), the values of A, B, C and D are parameter values of the LA-JND model. And Q
indicates bit-depth. To find optimal parameter values in Eq. (6), we perform a chroma LA-JND
experiment by the JND suppression in Cb and Cr channels, respectively. According to Weber’s
U-shape curve, we adjust values of A, B, C and D by selecting all HM test sequence to code 10
frames [14, 20, 25]. Finally A = 3, B = 85, C = 90 and D = 3 are obtained with similar
subjective visual qualities compared to those without JND-suppression.

3.3 Proposed transform-domain CM-JND model for chroma TBs in YCbCr space

The CM effect indicates that the visibility threshold for non-uniform areas is obviously higher
than that of uniform areas. In other words, the HVS is more sensitive to the smooth regions
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than the edge and texture region. Therefore, the CM effect can be incorporated into the
transform-domain JND model (CM-JND) which takes account into the spatial frequency
and the texture complexity.

In previous works for color videos/images with JND-suppression, most of the approaches
directly apply luma JND thresholds into chroma channels [20, 27], which will result in
underestimating or overestimating JND thresholds in Cb and Cr channels. Chen et al. [6]
proposed a chroma CM-JND model in DCT-domain. Since Chen’s method only simply
considers the CM effect related to DCT coefficients in a 4 × 4 DCT block, the JND model
can hardly accurately estimate HVS thresholds in DCT domain for few frequency samples.
Obviously, the method is not suitable in HEVC where different sizes of TBs are used for the
transform processing.

In this paper, we propose separately a CM-JND model for Cr and Cb TBs in the YCbCr
space with the lowpass property. For each chroma channel, the CM effect for a TB will be
modeled as a continuous 2-D function of the spatial frequency and texture complexity. By this
way, the proposed CM-JND model can also be used for variable block-sized TBs in HEVC. To
obtain the CM effect of every chroma TB, we design a method based on elaborate psycho-
physical experiments with the 8 × 8 DCT block size, which can compute the contrast masking
effect for different texture patterns to improve the accuracy, in chroma channels. The 8 × 8
DCT block size can obtain more sufficient frequency samples than the 4 × 4 DCT block to
improve the accuracy of HVS thresholds.

We perform psychophysical experiments to characterize the CM effect for chroma JND in
DCT domain with respect to DCT frequency and edge pixel density. Table 1 shows the test
conditions for psychophysical experiments. The detailed experimental procedure for detecting
distortion is described as follows:

Initialization: Monitor shows a test color image resided in parafovea regions. (R2 in Fig. 3)

Step 1: A subject is notified where the distortion will be injected by making the R2 region
dark. (Fig. 3a)

Step 2: The subject gradually increases the inject noise value for a designated DCT coeffi-
cient in the Cb/Cr channel until the viewer starts to perceive the resulting distortion
(See in Fig. 3b).

Step 3: Step 1 and Step 2 are iteratively operated by returning to Step 1 with a different
participant until all test participants are finished.

Table 1 Expermental setup

Test condition Value

DI1) Display Lenovo LT2452p
Type and size LED 24″ Wide
Resolution 1920 × 1200

Number of subjects 10
Viewing distance 0.03dpp2)(≈1.3 m)
Ambient illumination 300 lx
Test color image size 256 × 256 pixels
Test color patch size 32 × 32 pixels
Bit depth of the test patch 8 bit

1) DI: Display information; 2) dpp: visual angle of a pixel (degree per pixel)
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We select the 8 × 8 DCT block size for every chroma channel as the test patch DCT
transform size. In psychophysical experiments, the perceptual sensitivity of DCT coeffi-
cients is symmetric for upper and lower triangular components. Therefore, we choose 15
DCT chroma coefficients sparsely for perceptual chroma CM-JND measurements in a
lower triangle frequency zone of 8 × 8 DCT block [1]. Fig. 3 shows a test color patch
exemplar with a central color image patch where distortion is supposed to be injected in a
Cb channel.

In this paper, we use average pixel intensity metric and edge pixel density metric for
modeling the CM-JND in Cb and Cr channels, respectively. Average pixel intensity metric can
be calculated as

μpixel ¼ 1=kL2
� �

∑
N

y
∑
N

x
I x; yð Þ ð7Þ

where k is the dynamic range of pixel values (255 for 8 bit-depth image), L is DCT block size
and I(x, y) is the pixel intensity at (x,y). Edge pixel density metric employs τ in Eq. (3). We
select 7 patches from some test video sequences with YCbCr420 format. To eliminate the LA
effect, these patches will be selected of which average pixel intensity values are between 0.35
to 0.8 in two chroma channels, as shown in Table 2.

R2

R1

R2

R1

(0,0)

(1,1)

(0,2) (2,2)

(2,3)

(4,4)

(0,5) (2,5) (4,5)

(5,6) (6,6)

(0,7) (2,7) (4,7) (7,7)

Fig. 3 A test color patch case. (a) a test color patch in a fovea region; (b) visible chroma distortion by increasing
the noise values of the (4,4)-th coefficients of all 8 × 8 DCTs in the patch for Cb channel; (c) positions of the
selected 15 DCT basis functions

Table 2 Sequence patches used in chroma JND measurements for CM effects

Sequences

Cb channel Cr channel

Patches

SlideShow 0 0.8 0 0.5

RaceHorses 0.21 0.55 0.23 0.39

RaceHorses 0.12 0.58 0.17 0.59

RaceHorses 0.08 0.7 0.12 0.54

RaceHorses 0.14 0.44 0.15 0.47

BQMall 0.2 0.43 0.18 0.47

RaceHorses 0.09 0.35 0.08 0.47
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The chroma CM-JND is modeled as a normalization factor which is given by

TCb=Cr
CM n;ωi; j; τ

� � ¼ JNDCb=Cr
CM n;ωi; j; τ

� �
=JNDCb=Cr

CM n;ωi; j; τ ¼ 0
� � ð8Þ

JNDCMCb/Cr(n, ωi , j, τ) is the JND value of Cb or Cr channel for the CM effect at (ωi ,

j, τ). In Eq. (8), JNDCMCb/Cr(n, ωi , j, τ = 0) is only related to CSF which is excluded from
LA and CM effects.

Figure 4a and b show the measured TCb
CM values from psychophysical experiments. For

the range of edge pixel density metric τ between 0 and 0.1 in Fig. 4a, it is seen that

TCb
CM n;ωi; j; τ

� �
is decreased as τ increases. TCb

CM n;ωi; j; τ
� �

is increased as τ increases in

the range of edge between 0.1 and 0.2. For τ> 0.2, TCb
CM n;ωi; j; τ

� �
decreases gradually. It

is also observed in Fig. 4b that TCb
CM n;ωi; j; τ

� �
performs as a low pass filter, which shows

larger TCb
CM values in the range of ω between 0 and 5 cpd. So, based on the measured

TCb
CM values in Fig. 4a and b, a 2-D TCb

CM is model as a continuous 2-D function of ω
and τ which is given by

TCb
CM n;ωi; j; τ

� � ¼ gτ¼0:1−1ð Þ τð Þ=0:1þ 1
10 gτ¼0:2−gτ¼0:1ð Þ τ−0:1ð Þ þ gτ¼0:1

gτ¼0:2 þ gτ¼0:1−gτ¼0:2ð Þ τ−0:2ð Þ=0:05

8<
:

0≤τ < 0:1
0:1≤τ < 0:2

0:2≤τ
ð9Þ

where gτCM(ω) is modeled in a gamma probability density function which is given by

gCMτ ωð Þ ¼ mv=Γ 0:5ð Þω n−1ð Þexp −mωð Þ
� �

pþ t ð10Þ
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Fig. 4 Psychophysical experiment results and modeled CM effects: (a)Measured TCb
CM values projected on τ; (b)
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CM values; (c)Modeled TCb

CM values; (d)Measured TCr
CM values projected on τ; (e)Measured TCr
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According to psychophysical experiments, parameters are computed based on the least
squares solution as:

gCMτ¼0:1 ωð Þ : v ¼ 1;m ¼ 0:5; p ¼ 8; t ¼ 0:45 ð11Þ

gCMτ¼0:2 ωð Þ : v ¼ 1;m ¼ 0:5; p ¼ 8; t ¼ 0:7 ð12Þ

Similarly, we adopt the same method for the Cr channel with the Cb channel. TCr
CM

n;ωi; j; τ
� �

is given by

TCr
CM n;ωi; j; τ

� � ¼
gCMτ¼0:12 ωð Þ−1� �

τð Þ=0:12þ 1
8:33 gCMτ¼0:17 ωð Þ−gCMτ¼0:12 ωð Þ� �

τ − 0:12ð Þ þ gCMτ¼0:12 ωð Þ
gCMτ¼0:17 ωð Þ

8<
:

0≤τ < 0:12
0:12≤τ < 0:17

0:17≤τ

ð13Þ

gCMτ¼0:12 ωð Þ : v ¼ 1;m ¼ 0:5; p ¼ 10; t ¼ 0:4 ð14Þ

gCMτ¼0:17 ωð Þ : v ¼ 1;m ¼ 0:5; p ¼ 8; t ¼ 0:6 ð15Þ

By adopting elaborate psychophysical experiments, we can obtain CM effects for two
chroma channels in different texture regions to accurately estimate JND thresholds. The

proposed TCb
CM n;ωi; j; τ

� �
and TCr

CM n;ωi; j; τ
� �

models in (9) and (13) are shown Fig. 4c and

f, respectively.

3.4 The TM effect for chroma TBs

The TM effect must be considered in the spatio-temporal JND model. It is because the HVS
more easily detects distortions for slow moving objects than for still and fast moving objects.
The TM effect can also be incorporated into our JND model in Eq. (1). In Cr and Cb channel,
we adopt the TM-JND model [18, 25], which is given by

TCb=Cr
TM n;ωi; j;mv

� � ¼ 1
1:07 f t−10ð Þ

1:07 f t

8<
:

f s < 5cpd& f t < 10Hz
f s < 5cpd& f t ≥10Hz

f s≥5cpd
ð16Þ

where fs is the spatial frequency related to ωi , j of chroma TBs, ft is the temporal frequency
related to mv of chorma TBs and the eye movement.

3.5 The summation effect for variable block sizes TBs

Since the distortion of a block is obtained by the probability summation model for individual
JND threshold of transform coefficients over spatial neighborhood, a summation effect factor
must be considered in the JND model. In previous transform-domain JND models, the
summation effect only uses a constant value as a summation effect factor for a fix-sized block.
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In these works, the summation effect factor value of luma TBs is set to 0.25, and chroma TBs
is set to 1 [9, 25]. However it is unsuitable for variable-sized TBs using various sizes transform
core in HEVC to apply the constant summation effect value for the fix-sized block. Therefore,
we propose a summation effect function about various sizes for chroma TBs, and adopt the
summation effect function for luma TBs in [14]. In order to deduce the summation effect
function for chroma TBs, we briefly introduce the probability summation model and the
summation effect function for luma TBs in [1, 14].

According to the probability summation model in [22], the probability detecting the
distortion at a spatial frequency ω by injecting noise is modeled based on psychometric
function, which is given by

P ωð Þ ¼ 1−2 − ΔC ωð Þ=JND ωð Þj jηð Þ ð17Þ
where ΔC(ω) is difference between the original and the distortion transform coefficient,
JND(ω) is the measured JND threshold at ω for 50% of observers detect the distortion from
experiments. In Eq. (17), the value of η is used to fit the normalized histogram of observers’
JND perceiving.

The model in Eq. (17) is extend to the whole detection probability for all distorted transform
coefficients of a L × L block, based on the following two assumptions [22]: 1)The whole
distortion of a L × L block is detected if the least one distorted transform coefficient is
perceived, and 2)The distortion detection of every noise-injected transform coefficient in a
L × L block is uncorrelated.

According to two assumptions above, the summation detection probability of a L × L block,
represented asBL, can be expressed by

P BLð Þ ¼ 1− ∏
ω∈BL

1−P ωð Þð Þ ð18Þ

Substituting (17) into (18) yields

P BLð Þ ¼ 1−2−D
η
BL ð19Þ

where

DBL ¼ ∑
ω∈BL

ΔC ωð Þ
JND ωð Þ
����

����
η� 	1=η

ð20Þ

where DBL is the whole distortion in a L × L block.
It can be seen that as L of the block size increases, DBL increases resulting in

increasing P(BL) in Eq. (19). This will lead to making the distortion of the noise-
injected block more easily visible. Consequently, to maintain the identical detection
probability for various transform sizes when obtaining corresponding JND thresholds
of TBs, DBL must maintain identically for different sizes TBs. For this, the summation
effect function of S(L) is proposed to compensate the JND threshold of individual
transform coefficient for different transform block sizes. By this way, DBL for variable
block-sized TBs will be identical.

Based the single channel case in [1], we derive the multi-channel summation effect function of
SΩ(L) which S(L) can be extend to the proposed multi-channel SΩ(L) in Eq. (1). In order to model
the summation effect function for every channel, we inject the noise separately into transform
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coefficients C(ω) of different channel TBs to meet the condition withΔC ωð Þ ¼ JNDΩ
spatio−temporal

in Eq. (1) for every channel. So putting Eq. (1) into Eq. (20), we can obtain

DΩ
BL

¼ ∑
ω∈BL

SΩ Lð Þ�� ��ηΩ� 	1=ηΩ

ð21Þ

Eq. (21) can be rewritten as

SΩ Lð Þ ¼ DΩ
BL
⋅L‐2=η

Ω ð22Þ

The DBL and η for Ω channel need to be parameterized in Eq. (22). For Cb and Cr channels,
we perform psychophysical experiments under the same experimental condition in Table 1.
For SY(L) in the luma channel, we adopt parameters in [14].

Since the HVS color perception depends on the concentration of cones in retina, the
fovea region is more sensitive to color perception where there is a high density of cones.
The fovea region covers approximately 2∘ in visual angle. So, in our psychophysical
experiments, we select 32 × 32 pixels color block as the test patch which can be fully
projected on the fovea region. To support three different transform block sizes of 16 ×
16, 8 × 8 and 4 × 4 in Cb and Cr channels, SCr(L)and SCb(L) are measured. To well
estimate JND thresholds under two assumptions in [22], a homogeneous test color patch
with μpixel=0.8, τ =0 for Cr channel, and μpixel =0.5, τ =0 for Cb channel is used for
experiments. We inject JND thresholds adjusted by S(L) in Eq. (1) to all coefficients of
each corresponding Cb and Cr transform block in the test color patch to estimate the
parameters. Ten viewers are involved in experiments. Each viewer gradually increases
JND values by adjusting S(L) from zero until the viewer starts to perceive the distortion
for 16 × 16, 8 × 8 and 4 × 4 Cb and Cr TBs. When 50% of viewers perceive the
distortion for the block, S(L) for Cb and Cr channels would be obtained separately.

From S(L) for Cb and Cr channels, we obtain parameters of DCb
BL
=2.24, DCr

Bl
=12.02,

ηCb=2.15 and ηCr=1.33 based on the least square solution. At last, we can obtain the
summation effect function of SCb(L) and SCr(L). Figure 5 shows the accuracy of
measured S(L) and modeled S(L) for Cb and Cr channels, whose JND thresholds are
higher than the luma channel.
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Fig. 5 Psychophysical experiment results and modeled summation effects: (a) the modeled SY(L), measured
SCb(L) and modeled SCb(L); (b) the modeled SY(L), measured SCr(L) and modeled SCr(L)
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4 Fast and HEVC-compatible PVC scheme based on the proposed JND
model

This section will introduce our PVC scheme which incorporates the proposed JND model into
HM 15.0 [13]. Since previous HEVC-based PVC scheme [14] has two limitations in decreas-
ing the computational complexity: 1) TU-level Sobel edge detection is performed repeatedly
for the iterative TB partition based on the RDO process to computing the texture complexity,
and 2) transform coefficients are only considered the relationship between the luma component
and JND thresholds, leading to increasing memory access for chroma components. To fix
aforementioned problems, our fast PVC scheme is proposed by performing the frame-level
overall edge detection as will be presented in Section 4.1 and using the JND-based multi-
channel transform coefficients suppression method as will be elaborated in Section 4.2.

4.1 The frame-level texture complexity computation for TBs

HEVC uses repeatedly the iterative TB partition to obtain the best R-D performance. Therefore,
the frame-level overall edge detection for reducing complexity and improving performance in
the encoder side have two advantages: 1) decrease duplicate operations of the Sobel edge
detection for the iterative TU partition based on the RDO process, and 2) the Sobel edge
operator employed for local edge detection in every block is more ineffective to achieve the
frame-level overall edge profile corresponding the HVS. It is because edge pixels of blocks can
hardly obtain pixels of neighbor blocks to compare their intensity values. In summary, the
frame-level overall detection can be more effective than the TU-level detection by experiments.

4.2 JND-based multi-channel suppression

For the JND-based suppression of conventional PVC schemes, transform coefficients are only
considered the relationship between the luma component and JND thresholds, leading to
increasing memory access for chroma components in the multi-channel case. So the complex-
ity can be further decreased. HEVC transform in the codec can be expressed by

YN�N ¼ β Nð Þ⋅ χ Nð Þ⋅ ψ Nð Þ⋅ CN HEVC � XN�Nð Þ½ � � CN HEVC
T
 �

¼ β Nð Þ⋅Y0
N�N

ð23Þ

where YN ×N is the finite precision approximations, XN ×N is the residual coefficients matrix,

CN_HEVC is the real-valued DCT matrix, Y
0
N�N is the output residual transform coefficients in

HM codec, β Nð Þ ¼ 2−7þlog2N , χ Nð Þ ¼ 2−log2N−6 and ψ Nð Þ ¼ 2−log2Nþ1.
The quantization process in HEVC can be expressed as

li; j
�� �� ¼ di; j

�� ��� f QP%6½ � þ offset
� �

>> b i; j ¼ 0;⋯;N−1 ð24Þ

sign li; j
� � ¼ sign di; j

� � ð25Þ

where di , j is the element of the matrix Y
0
N�N , li , j is the element of the quantization matrix,

f[QP%6] is the table with 6 entries, b= 21 −N +QP/6 and the offset is a rounding offset which
is between 220 −N +QP/6 and 221 −N +QP/6.
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It is noted in Eq. (24) that if Y
0
N�N will be suppression with JND thresholds, JND

thresholds need be scaled. It is because that JND thresholds are obtained from the classic

DCT matrix, while Y
0
N�N is calculated by the integer DCT matrix.

Thus, Eq. (23) can be rewritten by

ŶN�N ¼ β Nð Þ⋅ Y
0
N�N − γ Nð Þ⋅JNDN�N

� �
ð26Þ

where ŶN�N is a JND suppression matrix of Y
0
N�N , γ(N) is the JND threshold scaling

factor between the real-valued DCT matrix and finite precision approximations matrix,
which is equal to β−1(N) corresponding to the block size N, JNDN × N is calculated by the
integer DCT matrix.

Accordingly, the JND-based luma-channel quantization with coefficient suppression can be
derive from Eq. (24), which can be expressed by

l*i; j
��� ��� ¼ di; j

�� ��− γ Nð Þ JNDi; j
�� ��� �� f QP%6½ � þ offset

� �
>> b

0

�
di; j
�� �� > γ Nð Þ JNDi; j

�� ��
otherwise

ð27Þ

where di , j is the element of the matrix Y
0
N�N , li , j∗ is the quantization level of the transform

coefficient di , j suppressed by the JND threshold, JNDi , j is the element of the matrix JNDN ×N.
The QP will be different in luma and chroma channels when QP is greater than or equal to

30. It is because that the large quantization step used in chroma channel results in color drift.
Therefore, Eq. (27) can be used in the luma channel, but not be used directly in chrome
channels whenQP is greater than or equal to 30. So, we derive the JND-based chroma-channel
quantization when QP is greater than or equal to 30, which can be given by

l*i; j
��� ��� ¼ di; j

�� ��−γ Nð Þ JNDi; j
�� ��� �� f QPchroma%6½ � þ offset

� �
>> b

0

�
di; j
�� �� > γ Nð Þ JNDi; j

�� ��
otherwise

ð28Þ

where QPchroma is chroma QP which can be obtained from QP.
Combining Eqs. (27) and (28), the JND-based chroma-channel quantization with coeffi-

cient suppression can be derive as

l*i; j
��� ��� ¼

di; j
�� ��−γ Nð Þ JNDi; j

�� ��� �� f QP%6½ � þ offset
� �

>> b di; j
�� �� > γ Nð Þ JNDi; j

�� �� and QP < 30
di; j
�� ��−γ Nð Þ JNDi; j

�� ��� �� f QPchroma%6½ � þ offset
� �

>> b di; j
�� �� > γ Nð Þ JNDi; j

�� �� and QP≥30
0 otherwise

8<
: ð29Þ

where li , j∗ is the quantization coefficient level of the transform coefficient di , j sup-
pressed by the JND threshold, f[QP%6] is the quantization array, offset is a rounding
offset, and γ(N) is a JND threshold scaling factor corresponding to the block size N.
Eqs. (27) and (29) can support transform coefficients with the variable-sized block in
HEVC. Moreover, it can be employed effectively in three channels with fewer duplica-
tion operation and memory access.

4.3 Summary of the proposed PVC scheme

In our proposed PVC scheme, we firstly incorporate the proposed transform-domain multi-
channel JND model into the codec. And our proposed fast method is also integrated into the
codec. It is noted that the proposed PVC scheme is only suppresses coefficients in the
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encoding side, the output result bitstreams is HEVC-compatible. The detail description of
proposed PVC scheme in HM15.0 is given in ‘Algorithm 1’.

5 Experimental results

This section will evaluate performance of our proposed CM-JND model and HM-based PVC
scheme, respectively. The performance of our CM-JNDmodel can further verify CM effects in
chroma channels. The performance of the PVC scheme can evaluate gains in the codec by
incorporating the proposed multi-channel JND model.

5.1 The performance of the proposed CM-JND model

In order to evaluate the effectiveness of the proposed multi-channel CM-JND model, we
use the adjectival categorical judgment method [1, 19] that shows reference images and the
distorted images in a side-by-side way. The quality assessment consists of seven score
values from better quality to worse quality: 3 for “Much better”, 2 for “Better”, 1 for
“Slightly better”, 0 for “The same”, −1 for “Slightly worse”, −2 for “Worse”, and −3 for
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“Much worse”. The view test condition is the same as the one in Table 1. Considering the
model used in the YCbCr space and related to the content of sequences instead of the size
for video, we select the video frame from eight typical HM video sequences with
YCbCr420 format as shown in Fig. 6 [2, 3]. The CM-JND model of Luo’s model is
employed in the luma channel and taken advantage of corresponding JND thresholds at
4 × 4 level in chroma channels [18]. Chen’s model proposed a chroma CM-JND model in
DCT-domain which only simply considers the CM effect related to DCT coefficients in a
4 × 4 DCT block [6].

To compare Luo’s multi-channel CM-JND model for color video coding with the proposed
multi-channel CM-JND model, noise will be injected to each coefficient of DCT blocks for
every channel in video frames according to the JND threshold as follows [7, 27]:

Ĉ n; i; jð Þ ¼ C n; i; jð Þ þ εSrand n; i; jð Þ � JND n; i; jð Þ ð30Þ

where C(n, i, j) is the (i,j)-th DCT coefficient, C n; i; jð Þ is the noise-injected coefficient, ε
regulars the magnitude of the JND noise and Srand(n, i, j) takes the value of +1 or −1 randomly,
to avoid generating a fixed pattern of changes. Generally, a better model will obtain higher
JND thresholds for the region which is insensitive to the HVS, while lower JND thresholds for
the region which is sensitive to the HVS. From (30), a better JND model will inject more noise
into the insensitive region and less noise into the sensitive region. Therefore, if we inject the
same level noise into the original image, a more accurate JND model will obtain better quality
than a less accurate JND model. At the same subjective quality, a better model will obtain
higher JND thresholds and lead to lower PSNR. Table 3 shows the comparison of the proposed
CM-JND model and Luo’s model in terms of peak signal to nosie ratio (PSNR) and mean
opinion score (MOS) values.

In Table 3, MOS values of the proposed CM-JND model are closer to zero than Luo’s
model and Chen’s model. In average PSNR from the Table 3, the proposed model obtains
27.21 dB which is 0.21 dB lower than Luo’s model in the luma channel. And the proposed
model also is 0.24 dB lower than Chen’s model in the luma channel. This is because the
proposed model adopts a luma CM-JND model without the block classification to improve
the CM effect [34]. It is noticed that the proposed model yields 27.28 dB and 27.29 dB
which are 0.13 dB and 0.12 dB lower than Luo’s model in Cb and Cr channels, respec-
tively. This due to the fact that the proposed model adopts an elaborate method to estimate
CM effects in two chroma channels. Also, the proposed model is 0.05 dB and 0.02 dB
lower than Chen’s model in Cb and Cr channels, respectively. Moreover the average MOS
value of the proposed model is higher than Chen’s model. This is because the proposed

Ball Horses Mall Party

Text Flower          Keiba         Mobi

Fig. 6 The 8 test frames used in the subjective assessments
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model uses the block size which is larger than Chen’s model to improve the accuracy of
JND thresholds in the spatial frequency.

Figure 7 shows the subjective performance comparison of three multi-channel CM-
JND models for Ball video frame. Figure 7b, c and d show the noise-injected frame by
Luo’s, Chen’s and proposed model, respectively. As can be seen, Luo’s model shows
more visible distortions over the frame, especially, in the some smooth regions (e.g., the
hoop region). This is because JND thresholds are overestimated in these smooth regions.
Chen’s model shows more discrete visible distortions over the frame. This is because
Chen’s model estimates JND profiles in low frequency, so the density of noise is low.
Figure 7d shows that the proposed CM-JND model achieves a better quality with almost
the same PSNR value in the luma channel and lower PSNR values in chroma channels
compared with Luo’s and Chen’s model. It is seen that JND values are more accurately
estimated in the hoop region. And, the texture region (e.g., the cord net region) shows
less visible distortions with higher JND noise in chroma channels. Similar results can be
observed on other test video frame, as shown in Fig. 8. In all, our proposed multi-
channel CM-JND model consistently outperforms two models, in items of both PSNR
and MOS values.

(a)               (b)              (c) (d)

Fig. 7 The ‘Ball’ video frame of the original and the distortion-injected by the three multi-channel CM-JND
models: (a) The origin frame; (b) Luo’s model(PSNRY:27.44, PSNR Cb:27.43, PSNR Cr:27.43, MOS: -1.4) (c)
Chen’s model(PSNR Y:27.92, PSNR Cb:27.53, PSNR Cr:26.84, MOS: -1.1) (d) The proposed model(PSNR
Y:27.41, PSNR Cb:27.02, PSNR Cr:27.09, MOS: -0.6)

Table 3 Comparison of three CM-JND models

Test frame LUO’s [18] CHEN’s [6] Proposed

PSNR MOS PSNR MOS PSNR MOS

Y Cb Cr Y Cb Cr Y Cb Cr

Ball 27.44 27.43 27.43 −1.4 27.92 27.53 26.84 −1.1 27.41 27.02 27.09 −0.6
Horses 27.08 27.07 27.07 −0.4 27.02 27.01 27.13 −0.2 26.7 26.93 27.03 −0.2
Mall 27.1 27.01 27.01 −0.5 27.24 26.97 26.92 −0.3 26.92 27.05 27.00 −0.3
Party 27.78 27.79 27.79 −0.9 27.65 27.59 27.66 −0.8 27.75 27.54 27.59 −0.9
Text 27.35 27.36 27.36 −1.3 27.24 27.31 27.39 −0.6 27.16 27.34 27.19 −0.4
Flower 27.53 27.52 27.52 −0.9 27. 6 27.3 27.32 −1.2 27.06 27.28 27.22 −0.4
Keiba 27.69 27.68 27.68 −1.2 27.69 27.62 27.64 −0.9 27.45 27.81 27.67 −1.1
Mobi 27.4 27.39 27.39 −0.2 27.41 27.3 27.67 −0.2 27.21 27.24 27.57 −0.2
avg 27.42 27.41 27.41 −0.85 27.45 27.33 27.32 −0.66 27.21 27.28 27.30 −0.51
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5.2 The performance of the proposed PVC scheme

In order to evaluate performance of the proposed PVC scheme, our PVC scheme is
incorporated into HM15.0. For performance comparison purpose, the state-of-the-art
PVC scheme for HEVC, ie., Kim’s PVC scheme specified in [14], which improves Luo’s
method implemented in H.264/AVC is also incorporated into HM15.0 for fair comparison.
Moreover, we incorporate Chen’s model into HM15.0 for fair comparison. Therefore, the
proposed PVC scheme will be compared with the original HM15.0 the recent Kim’s PVC
scheme and Chen’s PVC scheme under the same encoding configuration.

Since Kim’s PVC scheme uses the Sobel operation in the TU level of HM11.0 to
compute the complexity of TUs, we apply the operation in TUs of HM15.0 for the Kim’s
method to make fair comparison. Furthermore, the Kim’s method uses two times RDOQ
to adjust the RDO process for the mode selection in HM11.0, so we also calculate two
times RDOQ to use the same RDO process in HM 15.0 for fair comparison when Kim’s
method is incorporated into HM15.0.

To evaluate the coding performance of the proposed PVC scheme and compared fairly
it with state-of-the-art PVC schemes with Default Lower Delay (LD) and Random
Access (RA) configurations [2, 3, 14]. These two configurations are used for all
experiments. Four Full-HD (1920 × 1080) and two WVGA (832 × 480) test sequences
with different motion characteristics, pixel intensity, background and object complexity
are selected in our experiment, which are harmonizing with Kim’s test sequences. It is
because many video services support high-resolution videos currently. Moreover, our
proposed PVC scheme will be mainly used for high-resolution video contents. Experi-
ments are performed on recommended sequences under different QPs (22, 27, 32, 37).
The first 100 frames of test sequences are encoded. The simulation is operated on a PC
with an Intel 3.4 GHz and 4.0 GB memory.

A better PVC scheme should be more bitrate reduction at the same visual quality and
lower computational complexity. To evaluate the objective performance of the proposed
PVC scheme compared with the original HM15.0, Kim’s PVC scheme [14] and Chen’s
PVC scheme [6], we use the Multiple Scale-Structural Similarly Index (MS-SSIM)
measure, bitrate reduction and encoding time. The bitrate reduction and the encoding time
are used for measuring performance of three PVC schemes, compared to HM15.0.

Table 4 shows the object performance of the original HM15.0, Kim’s PVC scheme
[14], Chen’s PVC scheme [6] and the proposed PVC scheme under LD configuration. It

(a)            (b)             (c) (d)
Fig. 8 The ‘Flower’ video frame of the original and the distortion-injected by the three multi-channel CM-JND
models: (a) The origin frame; (b) Luo’s model(PSNRY:27.53, PSNR Cb:27.52, PSNR Cr:27.52, MOS: -0.9) (c)
Chen’s model(PSNR Y:27.28, PSNR Cb:27.65, PSNR Cr:27.64, MOS: -1.2) (d)The proposed model(PSNR
Y:27.06, PSNR Cb:27.28, PSNR Cr:27.22, MOS: -0.4)
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can be noticed in Table 4 that the average bitrate reduction is 7.46% for Kim’s PVC
scheme, 6.31% for Chen’s PVC scheme and 9.42% for the proposed PVC scheme,
compared to the original HM 15.0 with similar MS-SSIM values. The similar MS-
SSIM value means the video viewer can rarely perceive visible distortion among
reconstructed frames with four encoding approaches. As can be seen, the proposed
PVC scheme outperforms both Kim’s and Chen’s with more bitrate reduction, of
1.97% and 3.12%, respectively. What’s more, the proposed scheme achieves the maxi-
mum bitrate reduction of 25.91% for the Cactus sequence at QP = 22 with the negligible
reduced MS-SSIM value. It is because that the Cactus sequence exhibits plenty of texture
and color regions with hardly perceive visible distortion by JND-suppression. For the
encoding time, the proposed PVC scheme increases 28.62%, compared to the original
HM 15.0, which is 14.1% faster than Kim’s PVC scheme. It is because that Kim’s
method adopts TU-level Sobel edge detection performed repeatedly for the iterative TU
partition and HEVC-based single-channel quantization.

Table 5 shows the object performance of the original HM15.0, Kim’s PVC scheme
[14], Chen’s PVC scheme [6] and the proposed PVC scheme under RA configuration. It
can be seen in Table 5 that the average bitrate reduction is 7.01% for Kim’s PVC
scheme, 6.22% for Chen’s PVC scheme and 8.34% for the proposed PVC scheme,
compared to the original HM 15.0 with similar MS-SSIM values. The proposed PVC
scheme outperforms both Kim’s and Chen’s with more bitrate reduction, of 1.33% and
2.12%, respectively. The maximum bitrate reduction achieves 18.14% for the Cactus
sequence at QP = 22 with the negligible reduced MS-SSIM value. For the encoding time,
the proposed PVC scheme increases 32.07%, compared to the original HM15.0, which is
24.86% faster than Kim’s PVC scheme.

The Double-Stimulus Continuous Quality Scale (DSCQS) method is used for subjective
quality assessment [19]. The DSCQS method is a classic standard for subjective quality
assessment of video contents [2, 14, 18]. Two reconstructed PVC test sequences are compared
in term of the DMOS (different mean opinion score) value as

DMOS ¼ MOSPVC−MOSORI ð33Þ

where MOSPVC and MOSORI denote the MOS values of reconstructed sequences from a PVC
scheme and the original HM15.0, respectively.

The display condition for subjective quality assessment experiments is the same as
those in Table 1. The view distance is set to 1.3 m (about 3 times the screen height).
Fifteen viewers including ten male and five female participate subjective quality assess-
ment experiments.

Figure 9 shows the subjective performance of Kim’s, Chen’s and the proposed PVC
scheme under LD configuration. As can be seen, MOS values of Kim’s, Chen’s and the
proposed PVC scheme for all test sequences at four QP values under LD configuration
are not seriously different. Generally, there are less residual coefficients in RA case than
LD case. Therefore, the JND-based method will obtain less residual reduction under RA
configuration. So the subjective performance under RA configuration is similar with LD
case at least.

Figure 10 shows subjective quality comparisons for reconstructed frames and their residual
distribution at QP = 27. The test sequence BQMall with abundant color data can effectively
varify subjective quality by using our scheme. The Fig. 10a, b, c and d show encoding a video
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frame by four approaches which cost 50,408 bits, 46,800 bits, 46,256 bits, 44,624 bits,
respectively. Obviously, their residual distribution can also further address the bitrate reduction
in blue rectangles of Fig. 10a, b, c and d where the black region denotes no residue while
others denotes exiting residue. It can be seen that the blue rectangle region in Fig. 10d has
more black data than others, which implies less residual coefficients in the same red rectangle
region with hardly perceive luma and chroma distortions.

6 Conclusion

In this paper, we have addressed problems of conventional PVC schemes and proposed a
transform-domain multi-channel JND model in the YCbCr space, which can estimate
more precisely JND thresholds in every channel for the different sized transform block to
remove perceptual redundancy. Firstly, since most of JND models focus on the gray
image or video, which results in JND thresholds calculated coarsely in the chroma
channel, our transform-domain multi-channel JND model can solve this problem by
the modeling method based on psychophysical experiments. Then we proposed a fast
and HEVC-compatible perceptual video coding scheme using our proposed JND model.
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Fig. 9 the average DMOS comparison of Kim’s PVC,Chen’s PVC and proposed PVC with respect to
HM15.0 at (a) QP22; (b) QP27; (c)QP32; (d)QP37 for Cactus, BasketballDrive, Kimono, ParkScene, BQMall,
RaceHorses sequences

(a) (b)

(c) (d)

Fig. 10 Comparison of reconstructed 26th frames and their residual distribution at QP27: (a) the reconstructed
frame by the original HM15.0(Cost 50,408 bits); (b) the reconstructed frame by Kim’s PVC (Cost 46,800 bits);
(c) the reconstructed frame by Chen’s PVC (Cost 46,256 bits); (d) the reconstructed frame by the proposed PVC
(Cost 44,624 bits)
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To decreasing the computational complexity on the encoding side of our PVC scheme,
we improved the frame-level method for evaluating the texture complexity to avoid
duplication in the iterative TU partition process and proposed a multi-channel transform
coefficients suppression method based on JND thresholds and QP ranges to reduce the
encoding time. Extensive experimental results show the proposed PVC scheme yields
significant bit saving of up to 25.91% and on average 9.42% with similar subjective
quality under LD configuration, compared to the original HM15.0, and consistently
outperforms two PVC schemes with much reduced bitrate and complexity overhead. In
future work, the encoding complexity of our PVC scheme should be further decreased in
the hardware codec.
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