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Abstract This paper discusses the topic of automatic segmentation and extraction of impor-
tant segments of videos taken with Google Glasses. Using the information from both the video
images and additional sensor data that are recorded concurrently, we devise methods that
automatically divide the video into coherent segments and estimate the importance of the each
segment. Such information then enables automatic generation of video summary that contains
only the important segments. The features used include colors, image details, motions, and
speeches. We then train multi-layer perceptrons for the two tasks (segmentation and impor-
tance estimation) according to human annotations. We also present a systematic evaluation
procedure that compares the automatic segmentation and importance estimation results with
those given by multiple users and demonstrate the effectiveness of our approach.

Keywords Google Glass . Smart glasses . Egocentric video . Video abstraction . Video
segmentation . Video summarization . Video diary

1 Introduction

There has been a large body of research works in the topic of video segmentation and
abstraction. Most of the existing works focus on videos that are produced for the mass
audience, such as movies and TV programs. Such videos usually consist of short shots. A
typical procedure for segmentation starts with shot detection, followed by the grouping of
similar shots. The task of abstraction involves selecting a set of key frames or short clips
(skimming) to represent the whole video. There are also some types of videos that require
specialized segmentation and/or summarization. For example, sports videos usually have
relatively clear temporal structures given the rules of that particular sport, and the types of
important segments or highlights are more easily defined. For surveillance videos, the main
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task is to extract interesting segments (usually some types of events), which is helped by the
fact that the whole video covers the same scene. There has been a large body of literature
regarding the segmentation and summarization of each of these types of videos [2, 19, 20].
Some examples and surveys include [14, 18] for produced videos such as movies, [16] for
newscast, [30] for sports videos, and [6] for surveillance videos.

Home videos, also called user-generated videos, pose a quite different set of challenges for
segmentation and summarization. Such videos are mostly unscripted, contain many unintend-
ed and meaningless camera motions from, say, shaky hands, and usually have very long shots
such that, unlike professional videos, shot detection is basically useless for their segmentation.
As devices such as smart phones make it very convenient for generating such videos,
researches on their summarization have also increased recently; some representative works
include [1, 9, 10]. The majority of works on this topic focus on one of two aspects of home
videos: The identification of camera motion as indications of the recorder’s intension, and the
extraction of important people or objects in the images.

As a special type of user-generated videos, an egocentric video is recorded from a
recorder’s Bfirst-person^ viewpoint, meaning that what is recorded is what the recorder sees.
Such videos can be recorded with head-mounted cameras and, more recently, with smart
glasses. While such videos have existed for some time, the introduction of Google Glass in
2013 certainly drew a lot of attention to their applications. One attractive characteristics of
egocentric videos is that the recorder can proceed with his/her activities without the distraction
of having to control the camera, and this provides many interesting new possibilities of video
content generation, such as in [23]. The following are several existing research topics related to
the content analysis of egocentric videos: The recognition of the recorder’s status (such as
walking, sitting, etc.) [4, 26], the summary of a video containing a single but complex activity
(such as cooking, etc.) [15, 32], the extraction of people or objects of interest to the recorder
[13], and the detection of particular recorder events in a given setting, such as viewing a
painting in a museum [29].

To the best of our knowledge, this paper is the first attempt to segment and summarize
egocentric videos using a subjective importance measure learned from human annotations. The
existing works on egocentric videos, particularly those taken with smart glasses, focus on the
identification of more well-defined events or objects. This can work well for more limited
scenarios, such as for analyzing consumer interests in a store [13]. However, for videos
consisting of more diverse activities and environments of everyday life, a recorder’s or
viewer’s idea of importance, when selecting contents from such a video, is likely to be more
general and may involve more diverse cues like image features, motions, interactions with
people, trajectories, and so on. The subject of modeling how human rate and select such videos
has yet to be studied.

Overall, the main contribution of this paper is the implementation and evaluation of a
system that attempt to model how human viewers would segment and rate the importance of
egocentric videos of everyday lives. The following is the target application scenario of this
paper: The recorder, while wearing a smart glass, will go about doing multiple activities,
possibly in multiple places while the camera stays on. The recorded video will likely contain
segments of various degrees of importance. The objective is to process the video such that the
more important segments are retained, and the less important parts (such as when moving
between two places) are discarded. The end product is a shortened version of the original
video, which is very different from traditional keyframe or skimming based summary. In
addition, the technical contributions of this paper also include (1) a new protocol for evaluating
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automatic segmentation results against human annotations, including methods for reducing the
biases causes by individual preference of level of detail, (2) a procedure that integrates both the
estimated cut likelihood and the estimated frame importance for segmentation, and (3) the use
of trajectory-based features obtained from GPS, compass and inertia sensors for the purpose of
segmenting and rating the importance of egocentric videos.

The overall block diagram of our approach is depicted in Fig. 1. With features extracted
from the video frames and other sensors, a per-frame importance measure and a per-frame cut
likelihood are computed. These two are used together to identify segments and per-segment
importance ratings of the video. Since the extraction of important segments is a major target
application of our system, the per-frame importance measure is applied first in the segmenta-
tion step, followed by additional cuts according to the cut likelihood measure. More detail on
this step is given in Subsection 4.3.

In the rest of the paper, Section 2 contains discussions on previous works, Section 3 covers
the features used in our system, and Section 4 describes the dataset and experimental methods.
We present the evaluation methods and results in Section 5, followed by the conclusions in
Section 6.

2 Related works

The segmentation of professionally produced videos, such as movies, has been well studied.
Shot detection is the basic step here, and most methods for this task are based on the frame
images. For example, Tse et al. [31] used a simple frame differencing method. Differences
between color histograms are the basis of the methods used in [3, 7, 21]. Other features that are
also commonly applied to video segmentation include motion and accompanying audio. For
example, Zhang et al. [33] used camera motion (pan and zoom) to separate video segments.
Lienhart [18] used characteristics of accompanying music to identify different segment types
in movies. The summarization or abstraction of such videos also has been studied a lot. The
typical approach is to extract representative keyframes and/or short clips (skimming) from the
shots. Other related works include Fujimura et al. [8], which reduces redundancy by pruning
contents from the same scenes, Zhu et al. [35], which utilizes object tracking, and Kannan et al.
[12], which allows user-specified preferences to control the proportions of material selected
from different scenes.

The segmentation and summarization of home videos usually require different sets of
techniques than for professional videos [17]. Han [9] discusses the topic of extracting
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Fig. 1 The overall block diagram
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interesting objects from such videos. Hua et al. [10] introduces a system that selects highlight
segments from home videos and combines them with music to form an edited video. An
interesting application of creating a summary of multiple recordings of the same event is
proposed in [34]. In Abdollahian et al. [1], the topic is how motions in home videos affect
viewers. Viewers’ responses are furthered considered as cues for summarization in [25]. The
work of Cricri et al. [5] studies the usage of inertia sensors to analyze camera motions.

Egocentric videos present a different set of challenges from regular home videos (i.e., those
taken with camcorders or smartphones) because they are recorded with no intentional control.
As summarized in [29], simple visual saliency is usually insufficient in their analysis. Overall,
motion has been the most widely used feature type in their analysis. One main task is to divide
a video into short segments, each having a consistent motion pattern; an earlier example is
[22]. This is actually similar to some works on home videos, but with a different set of possible
motions (for example, no zooming for egocentric videos). Several works propose methods to
recognize the recorder’s state using the motion patterns. For example, in [4], the states of
recorders, who are sightseers, are classified as walking, standing, etc., and [26] attempts to
classify states of recorders into classes of walking, riding, etc., based on the distribution of
motion vectors that are integrated over time to reduce effects caused by spontaneous and
random head movements. In [28, 29], motion features are used to determine whether the
recorder is focusing on something in the scene.

Recently, there have also been works that combine more features for more diverse
applications of egocentric video analysis. For example, [15] attempts to predict the user’s
gaze from the recorded images, and [32] uses motion and visual saliency to predict the
recorder’s attention. In [13], event detection is accomplished by clustering the frames, and
multiple cues are integrated to recognize objects in the images that the recorder interacts with.

However, none of the existing works directly address our target problem for egocentric
videos. Works on segmentation actually focus on the recognition of the recorder’s motion
state, such as [26], and have ignored scene characteristics that are essential for segmenting
regular videos. On the other hand, works on extracting interesting segments, such as [29], only
aim to find a limited set of events that can be defined somewhat objectively, and as a result are
not sufficient to handle the diversity of subjectively interesting segments of everyday lives.
Therefore, we aim to propose a system here that handles the task of more general segmentation
and importance rating of egocentric videos by learning from human annotations.

3 Description of features

We focus on the explanation of the features used in our analysis in this section. There are a
total of 8 features: Inter-frame color difference, mean color saturation, mean hue, hue
consistency, degree of detail, forward motion, duration of stay, and existence of dialog. All
these features are used in the task of segmentation. All but inter-frame color differences and
degrees of detail are used for the estimation of frame importance. Since we want to learn from
the annotators’ ideas of important segments, which are purely subjective and can vary between
different annotators, the notion of importance is not well-defined this way. As a result, we do
not attempt to design features that specialize to some type of importance (except for the dialog
feature), and instead just design some features that, from our empirical observations, appear
correlated with some manually important video segments. We expect the combination of these
features is able to capture more diverse concepts of importance.
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The original video taken with Google Glass has a frame size of 1280 × 720 and a frame rate of
30 fps. For better efficiency, we only use one frame per second in our analysis. This is acceptable
because we do not intend to find very precise segmentation points as in shot detection.

The first four features are based on colors. To reduce the effect of motions on color features,
we choose to first identify per-frame representative colors and then use them to compute these
features. For each frame, we first compute a reduced-size image of 128 × 72. Standard k-
means clustering is applied to the set of RGB values from five contiguous frames (the current
frame plus its two previous and two subsequent frames). Each cluster is a representative color.
Figure 2 shows an example frame with its representative colors at various k. We empirically
choose to use k = 20 when computing our color features.

3.1 Inter-frame color difference

To estimate the color difference between two frames, we apply the Hungarian Algorithm to
match their representative colors. The cost of matching (weighted sum of absolute differences
of the matched colors) is used as the measure of frame difference. The resulting values are
smoothed temporally using a Gaussian filter with σ of 30 s. We use fCD(t) to represent the inter-
frame color difference between the frames at time t–1 and t.

3.2 Mean color saturation

Frames with higher color saturation are more likely to represent interesting scenes. In addition,
abrupt changes in saturation might indicate scene changes, especially indoor-outdoor transi-
tions. These are our motivations of using this feature.

We first convert the representative colors to the HSV color space, and then compute this
feature as the weighted average of their saturation values. The weights are given by the
numbers of pixels associated with the representative colors. The resulting values are smoothed
temporally using a Gaussian filter with σ of 10 s. We use fMS(t) to represent the result at time t.

3.3 Mean hue

Let us treat each representative color as a 2-D unit vector with the direction given by its hue
angle. The mean hue is the direction angle of a weighted average of these vectors. The weight
of a color is the product of two factors: The number of its associated pixels, and its saturation

Fig. 2 An example frame (left) with its 20 main colors (right)
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value. The resulting values are smoothed temporally using a Gaussian filter with σ of 10 s. We
use fMH(t) to represent the result at time t.

3.4 Hue consistency

Consider the weighted average of color vectors in Subsection 3.3. When the hues of the colors
are more similar to one another, the weighted average vector will have larger magnitude
because of constructive addition. Therefore, we can use the magnitude of this average vector to
represent as a measure of hue consistency. The resulting values are smoothed temporally using
a Gaussian filter with σ of 10 s. We use fHC(t) to represent the result at time t.

3.5 Degree of detail

The degrees of detail of video frames depend on their contents. In general, frames with more
details are more likely to be interesting to the user and therefore should be more likely to be
important. For a given frame, we simply use the ratio of edge pixels found with the Canny
edge detector to represent its degree of detail. The resulting degrees of detail of the frames in a
video are smoothed temporally using a Gaussian filter with σ of 10 s. We use fDD(t) to
represent the result at time t.

3.6 Forward motion

Motion features are actually intended for the identification of user behaviors. For example,
continuous motions may indicate that the user is moving between two places, making the part
of video less likely to be important. On the other hand, if the user stays at a place for an
extended amount of time, this might indicate the user is at his/her intended location, making
the part of video more likely to be important.

When the person wearing the Google Glass is moving between two places, the motion of the
image frame is likely to exhibit the characteristics in Fig. 2, with themotion vectors pointing outward
from the image center. Our idea is to compare the estimatedmotion vectors with the pattern in Fig. 3
to determine the likelihood ofwhether the recorder ismoving forward. The procedure is listed below:

(1) Compute the optical flow between adjacent frames (sub-sampled to 320 × 180).
(2) Divide the frame into 3 × 3 blocks and compute the per-block mean directions. To reduce

the interference from moving objects in the frames, we use a robust estimation method:
The estimation of the mean direction is refined three times by excluding samples that are
beyond a standard deviation from the current mean.

(3) Substract the mean direction of the center block from all the per-block mean directions to
exclude the effect of pan/tilt motion.

(4) Compute dθ(t), the total absolute difference between the per-block mean directions of the
frame at time t and their respective target directions, which are depicted in Fig. 3. The
degree of forward motion is given by

f FM tð Þ ¼
1 if dθ tð Þ≤π;
4π−dθ tð Þ

3π
if π < dθ tð Þ≤4π;

0 otherwise:

8><
>: ð1Þ
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Finally, the resulting degrees of forward motion of the frames are smoothed temporally
using a Gaussian filter with σ of 10 s.

We want to note here that the motion features in Fig. 3 are similar for forward
motion and zooming-in. This is not a problem here though, as zooming is not
available on smart glasses. For devices that allow zooming-in, more sophisticated
analysis or the integration with other motion sensors are required to distinguish the
two difference cases.

3.7 Duration of stay

When the user stays at the vicinity of a location for a significant amount of time, it might
be due to some event that is important for the user at that location. Therefore, we use the
duration of the user staying at a certain location as a cue of the important of that location in
the video.

In order to estimate the duration of stay at different locations, we need to first estimate the
trajectory of the user. The procedure is listed below:

(1) Estimate the user’s velocity using the accelerometers. Due to the fact that the
orientation of the Google Glasses (and therefore the accelerometers) changes con-
stantly over time, the direct integration of accelerometer readings do not yield
accurate velocities. As a result, we take a different approach that focuses on the
user’s walking motion. The velocity is estimated as a multitude of the rate of walking
steps. Currently we simply use 0.8 m as the average step size. While this will not
work if the user is not moving by walking, such as when the user is riding a bike,
such cases usually occur outdoors and can be handled with absolute location infor-
mation from, say, GPS.

(2) Estimate the relative directional change by integrating the gyroscope readings.
(3) Use the velocity and directional change information to construct a preliminary

trajectory.
(4) Refine the locations and directions when absolute localization information (GPS and

electronic compass readings) is available.

An example of trajectory estimation is shown in Fig. 4: Fig. 4a is a manually annotated
trajectory overlapped on Google Map, and Fig. 4b is the automatically determined trajectory.
We can see that they possess very similar characteristics.

X

Fig. 3 The target motion
directions of the image regions for
forward motion
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Let p(t) be the spatial location of the frame at time t on the estimated trajectory. The
duration-of-stay feature of this frame is given by

f DS tð Þ ¼ ∑
t0
exp −

p tð Þ−p t
0� ��� ��2

2δ2

 !
ð2Þ

where the summation of over all the frames in the trajectory. The factor δ is set at one meter in
our experiments. We show in Fig. 4c the estimated relative duration of stay overlapped on the
map. We can see that the user spent most of the time at a location to the right.

3.8 Existence of dialog

If the video contains a segment where the user is talking with someone, we believe such a
segment is more likely to be considered important by the user. Here we discuss the cues we use
to identify such segments, including the audio cue, which is about whether the recorded sound
contains human speech, and the visual cue, which is about whether the video images contain
human faces.

For the audio cue, we apply the short-time Fourier transform to the recorded audio signal
with a window size of one second. We add up the squared coefficients in the frequency range
of 150 to 500 Hz [24] and use the result as the estimation of the amount of human speech
sound at a time point. The resulting values are smoothed temporally using a Gaussian filter
with σ of 5 s. To identify the range of time in which there exists significant sound level of
human speech, we first find continuous segments with energy levels of at least 50,000 and
maximum energy level of at least 80,000. These thresholds are estimated empirically. The
found ranges are refined with a minimum filter with a half-width of 2 s, followed by a
maximum filter with a half-width of 3 s.

a

b

c

Fig. 4 Example result of the
estimation of the duration-of-stay
feature. a A snapshot of Google
Map with manually marked
trajectory. b The same as (a) with
an automatically estimated
trajectory. c The relative durations
of stay at different locations along
the trajectory shown as pseudo
colors overlaid on (b)
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For the visual cue, we apply the face detector of OpenCV to the image frames. The intervals
of frames with detected faces are refined with minimum and maximum filters in the same way
as for the audio cue. This cue is useful to exclude the effect of sounds that are not from a dialog
involving the user.

Finally, we intersect the sets of frames identified with the audio and visual cues to obtain
possible frames of dialogs. The process is illustrated in Fig. 5: Fig. 5a contains a sequence of
frame snapshots of a video sequence, Fig. 5b indicates the actual frames that contain dialogs,
Fig. 5c and d indicate frames selected with the audio and visual cues, respectively, and Fig. 5e
gives their intersection. We define fdlg(t) as +1 if the frame at time t is identified as possibly
containing dialogs, and 0 otherwise.

4 Experimental methods

4.1 Description of test data

There are seven videos recorded using Google Glasses used in our experiments. The videos are
indexed from 1 to 7 and represent a diverse set of everyday activities in a campus. Table 1
summarizes the scenarios in the videos. Lengths of the individual videos range from 3 to
15 min, with a total of 48 min. The videos contain both outdoor scenes (labeled as ‘C’ in
Table 1 regardless of the actual locations) and indoor scenes (other labels in Table 1).

4.2 Human annotation of test data

The division of a long continuous video into meaningful parts and the estimation of their
importance are very subjective. To allow for more comprehensive and reliable evaluation of
our methods, we ask a number of people other than the one who takes the video to act as the
annotators, who provide manual segmentation and per-segment importance rating for the
videos. A labeling program is implemented for this purpose, with an example screenshot
shown in Fig. 6.

a

b

c

d

e

t

Fig. 5 The illustration of the procedure to identify video frames with dialogs. a Snapshots of a video that
contains dialogs. Their temporal locations are marked on the time axis. b Human labeled video frames that
contain dialogs. c Frames identified with the audio cue. d Frames identified with the visual cue (face detection). e
The intersection of (c) and (d)
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For each video, the annotator is first asked to segment it at three different levels of detail:
3 ~ 5 segments at Level 1, 5 ~ 9 segments at Level 2, and 7 ~ 12 segments at Level 3. The
purpose of using these levels is to avoid the biases in segmentation caused by the individual
annotator’s preference of level of detail. Subsequent evaluations are done for each level
separately. After finishing the segmentation, the annotator is asked to rate the importance of
each segment as being Low, Medium, or High. For illustration purpose, Fig. 7 displays the
three-level segmentation and the importance ratings of a video by a human expert. The
importance ratings are color-coded as green, yellow, and red for Low, Medium, and High
importance, respectively. We do not specifically instruct the annotators what properties of the
videos constitute importance here. This is because our objective is to learn from the annotators’
subjective judgments without limiting their considerations to specific events or scenarios.

4.3 Classifier design

This subsection covers the core of our algorithm, which is to use the extracted features to
generate the video segments and their importance ratings. The overall framework is depicted in
Fig. 8. Two quantities are computed for each frame: Scut(t), which is a measure of whether a cut
should occur between frames t and t + 1, and Simp(t), which is a measure of its importance.

Table 1 Description of test videos

Video no. Scenes

1 O → C → L → C → O
2 C → L1 → L2 → C
3 (night scene) H → C → F → H
4 H → C → S → C → H
5 H → C → H
6 O → C → L → C → S → C → O
7 O (with two segments of dialogs)

Outdoor scenes: C: campus; F: food stand

Indoor scenes: O: office; H: hallway; S: store; L: library

(L1 and L2 indicate two separate areas in the library)

Fig. 6 A screenshot of the program for the annotators to do manual segmentation and importance rating
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Two multi-layer perceptrons (MLPs) are used in the process. We will call them the Bcut^
and Bimportance^MLPs, respectively, given the tasks in which they are involved. Both MLPs
have two hidden layers with four neurons each and a single output neuron. The outputs for
both MLP are between 0 and 1. For the first and last 30 s in each video, we always use 0 as the
output from the Bimportance^ MLP because these frames usually involve the user operating
the Google Glass, making the results less reliable.

Each sample for the Bcut^ MLP is a pair of adjacent frames that are one second apart. We
train this MLP for a two-class problem, with the classes being Bcut^ and Bno-cut^, corre-
sponding to whether the two frames should be put in two different segments. The seven inputs
for the Bcut^ MLP are based on the features described in Subsections 3.1–3.7. For the 6
features other than the inter-frame color difference, the inputs to this MLP are actually their
amounts of change between two consecutive frames. All the 7 inputs are normalized so that
their minimum and maximum values in the training set are zero and one, respectively. Scut(t) is
just the output of this MLP.

Here we describe how we construct the training set for the Bcut^ MLP. For a given video
used for training, we initialize ncut(t) to be the total counts of human-labeled cuts at time t,
summed over the results of all the annotators and all the three levels. The results are smoothed

L1

L2

L3

L1

L2

L3

Fig. 7 Example segmentations
and importance ratings by human
annotators. Two sets of results are
shown here, each consisting of
results for Levels 1 to 3 (from top
down) on the same video

"cut"

MLP

"importance"

MLP

Data Normalization Data Normalization

fCD(t)
| fMS(t) – fMS(t –1) |

| fMH(t) – fMH(t –1) |

| fHC(t) – fHC(t –1) |

| fDD(t) – fDD(t –1) |

| fFM(t) – fFM(t –1) |

| fDS(t) – fDS(t –1) |

fMS(t)
fMH(t)
fHC(t)
fFM(t)
fDS(t)

Scut(t) Simp(t)
Max fdlg(t)

Segmentation

Importance Rating

Fig. 8 The framework for
automatic segmentation and
importance rating from the
computed features
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temporally using a Gaussian filter with σ of 10 s. A threshold of 0.5 is applied to the smoothed
ncut(t) to separate the samples into the two classes. Due to the fact that the Bno-cut^ class has
many more samples than the Bcut^ class, we choose to duplicate the samples in the Bcut^ class
so that the two classes have approximately equal numbers of training samples, with the
duplicating ratios proportional to ncut(t).

Each sample for the Bimportance^ MLP is a single frame. We also train this MLP as a two-
class problem, with the two classes being Bimportant^ and Bunimportant^. This MLP uses only
5 inputs, with the inter-frame color difference, degree of detail, and dialog features excluded.
The inputs here are normalized as well.

To label a frame as one of the two classes for training purpose, we compute its average
importance rating over all the annotations and all the three levels of detail, followed by
Gaussian smoothing with σ of 10 s. A threshold of 0.5 is applied to label this frame as in
the Bimportant^ or Bunimportant^ class.

The information about the existence of dialog is integrated into the importance ratings, as
we want to keep segments that contain dialogs as important ones. We first smooth fdlg(t) with a
Gaussian filter with σ being 10, 6, and 4 s for the three levels of detail, respectively. We then
compute Simp(t) as the maximum of fdlg(t) and the output of the Bimportance^ MLP. The
following is the rationale of treating the dialog feature separately, instead of using it as just one
of the features for the MLPs: As long as dialog exists in a segment, we consider the segment as
being important regardless of what else are in the image.

4.4 From classifier outputs to video segments

This subsection explains how we combine Scut(t) and Simp(t) to divide a video into segments
and estimate their importance. Given the main target application of extracting important
segments from a video, we start with Simp(t) and then applies Scut(t) to identify finer segmen-
tation if necessary. The procedure is explained below:

(1) The first step is to extract the Bimportant^ segments, as illustrated in Fig. 9. We first
identify maximal intervals of the video where Simp(t) stays above a threshold (we use
0.5). The area under Simp(t) is then computed for each of these intervals. Assuming that
the largest area of such intervals is A, we identify each interval with an area of at least A/
3 (for Level 1), A/5 (for Level 2), or A/10 (for Level 3) as a segment. Cutting points are
placed at the beginning and end of such a segment.

(2) If the number of segments is below the lower bound specified for the given level of detail
after the previous step, additional cut points are added at the local maximums of Scut(t).
These local maximums of Scut(t) are selected in the descending order. To prevent the
generation of spuriously short segments, we will skip a local maximum if it is too close to

0

1

0.5
Simp(t)

Extracted

Segments

Fig. 9 An illustration of the initial
extraction of important video
segments based on Simp(t)
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any existing cutting point; the required temporal separation is 20, 10, and 6 s for Levels
one to three, respectively. This is repeated until the lower bound is reached or the local
maximums are exhausted.

(3) Finally, we assign the importance rating of each segment based on the mean Simp(t)
within that segment. Let Simp

* be the mean Simp(t) of a segment, its importance rating is
High, Medium, and Low for Simp

* ≥ 2/3, 2/3 > Simp
* ≥ 1/3, and Simp

* < 1/3, respectively.

5 Experimental results

In this section, we present the evaluation of our results in three different aspects: per-frame
importance rating, segmentation accuracy, and important segment extraction. The evaluation
of our results is always obtained with leave-one-video-out cross-validation. Furthermore, the
last video (no. 7) is not used for training because it contains much higher proportion of dialog
than other videos, making the annotations of its segmentation and importance rating less
applicable to other videos.

To compare our method with existing related techniques, several existing approaches
are implemented and applied to the same set of videos. Here are the approaches used
for comparison:
Per-frame importance rating based on visual saliency, using the method of [27]. The code
is made available by the authors. We use the abbreviation SAL (meaning SALiency) to
represent the results of this method.
Per-frame importance rating based on inverse motion magnitude [28]. From the experi-
ments in [29], this is better than visual saliency in detecting Bengagement^ in egocentric
videos. We use the abbreviation IMM (meaning Inverse Motion Magnitude) to represent
the results of this method.
An adaptive fusion method that combines static attention, motion attention, and face
detection to compute per-frame saliency from [19]. We use the results of [27] for static
attention and use the method in [19] for computing motion attention. The audio part in
[19] is ignored. We use the abbreviation AFF (meaning Adaptive Fusion Function) to
represent the results of this method.

When comparing the results of the methods above with our results, their outputs are used in
place of the output of our Bimportance^ MLP as in Fig. 7. The other elements of our system
(fdlg(t) and Scut(t)) are not changed. Even so, as we will see in our analysis (Subsection 5.4), the
per-frame importance rating carries the most weight when extraction important segments.

Concerning the computational cost, currently the processing is approximately 0.1 s per
frame; the environment is a PC with Intel i7 CPU and MATLAB 7. The majority of the time is
spent on the feature computation part, especially on motion estimation.

5.1 Evaluation of per-frame importance ratings

Here we use mean absolute difference (MAD) as the difference between two sets of per-frame
importance ratings of a video. To evaluate the accuracy of a set of rating for a test video, we
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compare it to the ratings of that video from all the annotators and take the average MAD. A
computed set of rating is first scaled so that its minimum and maximum are 0 and 1,
respectively. On the other hand, the annotated rating is set at 0, 0.5, and 1 for a frame in a
low-, medium-, and high-importance segment, respectively.

The average MAD values of our results against the annotations are shown in Table 2.
Values for each test video and each of the three levels are listed separately. For comparison
purpose, we also list in Table 2 the average pairwise MAD between all the annotations. When
comparing the automatic and annotators' results, the performances are approximately the same
for Levels 1 and 2 and only different by 0.04 for the more fine-grained Level 3. This indicates
that our system is able to approximate the human annotators’ importance ratings up to the
variations among the annotators themselves.

The comparisons between multiple methods for importance ratings are listed in Table 3.
For brevity, the MAD values of the seven videos are aggregated together weighted by their
numbers of frames. The method marked as BnoDS^ is a version of our method that
excludes the use of DS features (Subsection 3.7). This allows us to determine whether
this new feature of ours improves the importance rating accuracies. Based on the results in
the two rows marked as BOurs^ and BOurs_noDS^, we can see that this feature does
produce moderate improvements.

Also listed in Table 3 are results from the three reference methods from [19, 27, 28].
We can see that our method performs much better than the other methods. It is also
interesting to see that SAL (visual saliency) is the best among the three methods,
indicating a correlation between visual saliency and what the annotators consider to be
important. This observation is apparently different from that in [29], where motion-based
importance measures like IMM works much better than saliency. The following are two
possible explanations:

& Unlike the problem considered by [28, 29], what viewers’ consider important in a video
may not be related to the recorder’s actions. An example is walking in a garden. Therefore,
a scene that is simply more interesting, which yields higher saliency grades, may be more
important in some scenarios.

& A significant portion of our videos are taken outdoors where the surroundings (buildings,
etc.) are quite far away. The motion magnitudes estimated from the frames are quite small
even if the recorder is moving. This makes it difficult to distinguish them from motion

Table 2 Evaluation of importance rating results (MAD)

Computed results Manual annotations

Video no. L1 L2 L3 L1 L2 L3

1 0.11 0.14 0.13 0.18 0.19 0.09
2 0.23 0.22 0.20 0.07 0.12 0.10
3 0.37 0.39 0.40 0.33 0.25 0.23
4 0.12 0.12 0.13 0.12 0.09 0.09
5 0.19 0.20 0.18 0.35 0.33 0.26
6 0.11 0.12 0.11 0.10 0.12 0.10
7 0.29 0.22 0.20 0.33 0.26 0.21
Average 0.17 0.17 0.17 0.17 0.16 0.13
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magnitudes computed when the recorder is engaged with something close, hence leading
to reduced effectiveness of such features.

5.2 Evaluation of segmentation results

Since it is difficult to define an Baverage^ segmentation of a video from multiple sets of
annotations, we choose to compare the segmentation result with each annotator’s segmentation
separately. The evaluation metric we use here is the adjusted Rand index (ARI) [11], which is
widely used in measuring the similarity between two ways of partitioning a common set of
data. ARI values range between −1 and +1, with +1 resulting from two identical partitions and
0 being the expected value for two random partitions.

We show in Table 4 the average ARI between our segmentation results and all the
annotators’ results. Values for each test video and each of the three levels are listed separately.
For comparison purpose, we also list the average pairwise ARI between all the annotations.
When comparing the computed and annotated segmentations, the average ARI difference is
only around 0.1. This indicates that our segmentations are relatively close to the human
annotators’ segmentations up to the variations among the annotators themselves.

5.3 Evaluation of the extraction of important segments

In this subsection, we consider the problem of selecting only part of the segments of a video
according to their estimated importance. This is evaluated as a retrieval problem using
precisions and recalls as the metrics. For a video with multiple sets of annotations, we compute
the confusion matrix of our extracted segments against each set of annotation, and then use the

Table 3 Comparison of frame
importance measures (MAD) for
different methods

Method L1 L2 L3

Ours 0.17 0.17 0.17
Ours_noDS 0.18 0.19 0.19
SAL 0.28 0.28 0.29
IMM 0.36 0.35 0.32
AFF 0.40 0.37 0.37

Table 4 Evaluation of segmentation results (ARI values)

Computed results Between annotations

Video no. L1 L2 L3 L1 L2 L3

1 0.68 0.56 0.55 0.62 0.61 0.72
2 0.46 0.66 0.62 0.72 0.70 0.70
3 0.45 0.46 0.58 0.48 0.70 0.73
4 0.58 0.57 0.49 0.75 0.79 0.69
5 0.58 0.49 0.47 0.77 0.62 0.63
6 0.84 0.76 0.64 0.75 0.85 0.70
7 0.35 0.68 0.64 0.49 0.57 0.63
Average 0.63 0.62 0.57 0.69 0.74 0.69
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aggregated confusion matrix elements to compute the overall precision and recall. This allows
us to avoid the problem of determining the average of multiple annotations as the ground truth.

We employ two approaches of computing the precisions and recalls:

& The frame-based metric: We simply use frames as the unit of evaluation. For example, a
frame is considered a true positive if it belongs to segments of high importance in both the
annotation and the computed result.

& The segment-based metric: Here the segments are the unit of evaluation. We follow the
metric given in [29], where precision is the ratio of extracted segments with at least 50%
overlap with the annotator-selected segments, and recall is the ratio of annotator-selected
segments with at least 50% overlap with the extracted segments.

The results for these two metrics as well as the F1 scores are given in Tables 5 and 6,
respectively. The evaluation includes only the segments with importance rated as High. Our
method again performs better than the reference methods. The improvement of BOurs^ results
over BOurs_noDS^ results is more evident than that in Table 3.

The results in Tables 5 and 6 are aggregated over all the seven videos. However, actual
performances for different videos do vary quite significantly. To better understand the causes
of the differences, we choose two videos with quite different performances and display in
Fig. 10 their detailed results for qualitative analysis. There two videos are video no. 6 (the
better one, with segment-based F1 scores of 0.92, 0.82, and 0.70 for Levels 1 ~ 3, respectively)
and video no. 5 (the worse one, with segment-based F1 scores of 0.26, 0.46, and 0.46 for levels
1 ~ 3, respectively). We can see that it appears that video no. 6 contains two important
segments that are quite well-defined, and there appears to be a high degree of agreement
among the annotators (except for the last one). Our method is able to identify the same set of
important segments in this case. On the other hand, the important segment in video no. 5 is less
well defined since the annotators do not agree on that very well. The actual video content of
the detected important segment is when the recorder stopped in a walk, in an outdoor scene,
and took a photo with a smartphone. There are a lot motions (the recorder pulling out the
phone and looking around to choose a view) without a change of scene, and this might be why
the annotators do not agree well on the range of frames that constitute the important segment.
Considering the results for Level 1, the important segment found by our method overlaps with
the important segment found by four of the annotators. However, when computing the
segment-based recall/precision metric, only for one of them (the last annotator) is our segment
counted as a successful detection, and the other three (annotators 1, 2, and 5) are considered as
missed detections because our segment covers less than 50% of the annotated important
segments. This observation may indicate a need for more sophisticated evaluation metrics.

Table 5 Comparison of segment extraction accuracy (Frame-based metric)

L1 L2 L3

Method REC PRE F1 REC PRE F1 REC PRE F1
Ours 0.77 0.68 0.72 0.75 0.66 0.70 0.81 0.63 0.71
Ours_noDS 0.59 0.72 0.65 0.56 0.67 0.61 0.67 0.63 0.65
SAL 0.71 0.52 0.60 0.58 0.50 0.54 0.75 0.58 0.65
IMM 0.36 0.35 0.35 0.32 0.34 0.33 0.21 0.36 0.27
AFF 0.26 0.35 0.30 0.21 0.35 0.26 0.10 0.18 0.13
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5.4 Effects of combining both Simp and Scut

Currently, both Simp and Scut are utilized in the segmentation of a video and the extraction of its
important segments. It is interesting to investigate their separate effects on these tasks. In this
subsection, we repeat the experiments in Subsections 5.2 and 5.3 with two variations: The first is
to use only Simp, meaning that the second step in Subsection 4.4 is skipped and Scut has no effect at
all. The second variation is to use only Scut to segment the video, skipping the first step in
Subsection 4.4, and Simp values are only used to determine the importance ratings of the segments.
The results are listed in Table 7, together with the results of the original method that uses both.

Regarding the ARI metric, the performance of using both Simp and Scut at levels 2 and 3 is
somewhat better that of using only Simp. This improvement results from the cases when Scut
introduces cuts that separate segments of similar importance. On the other hand, using only
Scut yields clearly worse numbers. When considering the metrics on importance segment
extraction, using only Simp is no worse than, and sometimes even slightly better than using
both. A likely reason is that the use of Scut (step 2 of Subsection 4.4) might unnecessarily
divide an important segment. This observation seems to indicate that, when the sole purpose is
to find important segments in a video, using only Simp is sufficient. This is consistent with
event detection works such as [29], where only the per-frame event likelihood is used to
generate the segments.

Table 6 Comparison of segment extraction accuracy (Segment-based metric)

L1 L2 L3

Method REC PRE F1 REC PRE F1 REC PRE F1
Ours 0.68 0.80 0.74 0.73 0.75 0.74 0.66 0.71 0.68
Ours_noDS 0.56 0.79 0.66 0.57 0.74 0.65 0.48 0.62 0.54
SAL 0.58 0.60 0.59 0.56 0.56 0.56 0.69 0.60 0.64
IMM 0.24 0.38 0.29 0.31 0.41 0.35 0.17 0.44 0.24
AFF 0.20 0.32 0.25 0.16 0.22 0.19 0.08 0.13 0.10

Level 1 Level 2 Level 3

Fig. 10 Example color-coded comparison of the computed segmentation and importance rating results with
annotations. Results on two videos are shown here: video no.6 (top) and video no. 5 (bottom). Results and
annotations of all three levels are displayed. For each level, the top plot is the result from our algorithm, and the
other 7 plots are human annotations
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6 Conclusion

In sum, this paper describes a set of automatic methods to segment videos taken using
smart glasses, and for generating importance ratings of the extracted segments. The results
can be applied straightforwardly to the generation of a video summary by selecting and
combining only the segments with importance ratings above some given threshold. We
also present a systematic evaluation framework of these tasks, and the results indicate that
our results are highly consistent with those given by the annotators. When compared with
several existing approaches, the experimental results show that our method performs best
at modeling the segmentation and importance rating of human viewers.

We believe that videos taken with wearable devices, such as smart glasses, provide a
lot of new possibilities and challenges for video processing techniques. This work is
just a beginning in this direction. So far, we have limited the videos to contain lives in
a college campus in order to limit the complexity. A possible direction for future work
is to expand the variety of videos, and to investigate the relations between the contexts
and the suitable features for video segmentation and summarization, including the
possibility of automatic or semi-automatic identification of the contexts, including
recognition of scenes and activities. Another interesting subject is to extract information
about people interactions and relations, using both verbal and visual information, from
egocentric videos.
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