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Abstract This paper presents a COrner based REGistration technique for multimodal
images (referred to as COREG). The proposed technique focuses on addressing large
content and scale differences in multimodal images. Unlike traditional multimodal image
registration techniques that rely on intensities or gradients for feature representation, we
propose to use contour-based corners. First, curvature similarity between corners are for
the first time explored for the purpose of multimodal image registration. Second, a novel
local descriptor called Distribution of Edge Pixels Along Contour (DEPAC) is proposed to
represent the edges in the neighborhood of corners. Third, a simple yet effective way of
estimating scale difference is proposed by making use of geometric relationships between
corner triplets from the reference and target images. Using a set of benchmark multi-
modal images and multimodal microscopic images, we will demonstrate that our proposed
technique outperforms a state-of-the-art multimodal image registration technique.

Keywords Multimodal image registration · Content difference · Scale difference ·
Corner · Curvature

1 Introduction

Multimodal images refer to two or more images captured by different types of imaging
modalities such as CT (computed tomography), MRI (magnetic resonance imaging), PET
(positron emission tomography), SPECT (single-photon emission computed tomography),
just to name a few [30]. Characteristics of multimodal images have been studied in a wide
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Fig. 1 An example of brightfield and confocal microscopic images. a: original brightfield image; b: orig-
inal confocal image; c and d: images after being processed by our prior work (DSS: Detector of Structural
Similarity) [31, 32] on (a) and (b) respectively

range of applications, especially in medical diagnosis [19, 28, 42]. For instance, both sim-
ilarities and differences between modalities are considered in modeling the progression of
chronic diseases [36, 37].

This paper focuses on multimodal image registration, which aims to align correspond-
ing objects in multimodal images [54]. This operation is essential and critical to producing
effective performance in many computer vision applications, e.g. medical image analy-
sis [39, 43], remote sensing [7] and aerial imagery analysis [51]. Registering multimodal
images is very challenging in that there may exist substantial intensity variations between
corresponding parts of images [25, 48].

1.1 Sample of challenging multimodal images

An example of multimodal images is given in Fig. 1a and b. The two images are captured
by two types of microscopes: a standard light microscope and a confocal microscope. The
standard light microscope is mounted with a color camera to capture the brightfield image,1

like the one shown in Fig. 1a. The specimen here has been stained with colored dyes (blue
for the nuclei and brown for the vessels) so all the color information is in the one image.
Essentially this is just a standard digital image. The confocal microscope uses lasers of
different wavelengths to excite different fluorochrome. Figure 1b shows an image captured
using a confocal microscope. In this image, a laser of a specific range of wavelengths is
used to excite the fluorescein isothiocyanate (FITC) dye that labels the blood vessels. The
light emitted from the FITC dye is collected by asensor and recorded as a grey scale image.
The green in the image is a pseudo color that has been assigned to that dye based upon
its excitation wavelength. If multiple colors were required, multiple ranges of laser would
be used, and thereby each color is collected as a grey scale image. An appropriate color is

1http://www.nikoninstruments.com/Learn-Explore/Techniques/Brightfield

http://www.nikoninstruments.com/Learn-Explore/Techniques/Brightfield


Multimed Tools Appl (2018) 77:12607–12634 12609

assigned and the images are then merged together to make a RGB image. We use Fig. 1 for
illustration because multimodal microscopic images remain the most challenging among
our test multimodal images.

Obviously, there are very large content differences between Fig. 1a and b. Blue struc-
tures in the brightfield image do not appear in the confocal image. Moreover, some brown
structures in the brightfield image cannot be clearly seen in the confocal image. To increase
the structural similarity in Fig. 1a and b, the two images were pre-processed to Fig. 1c
and d in our prior work (DSS: Detector of Structural Similarity) [31, 32]. Compared with
Fig. 1a and b, corresponding image structures between Fig. 1c and d are much clearer.
However, the content differences in such images as Fig. 1c and d are still large, which can
be seen in two aspects. First, the pixels in the confocal image are all spatially close each
other, whereas many pixels in the brightfield image are unconnected. Second, the brightfield
image presents much larger intensity variations as compared to the confocal image.

It is still very challenging for existing feature-based multimodal image registration tech-
niques such as [9, 10, 15, 40, 45] to effectively register images like Fig. 1c and d. These
multimodal image registration techniques are based on keypoints which are sensitive to
differences in image content such as intensities or gradients. Due to the large content dif-
ferences between corresponding regions in images like Fig. 1c and d, the corresponding
descriptors are not close no matter how discriminative the local descriptor itself is. This
will hinder corresponding keypoints from being matched. Consequently, the accuracy of
keypoint matches is unlikely to be high, thereby leading to a poor registration performance.

1.2 Contributions of this paper

To effectively register complex multimodal images, we propose a novel multimodal image
registration technique by borrowing the main idea of the multimodal image registration
framework in [26] and exploring feature representations of corners. The paper focuses on
addressing two issues. First, image contents may differ largely between corresponding parts
of multimodal images such as Fig. 1c and d. The second issue is that large scale changes
may occur.

Our contributions in this paper are threefold. First, the proposed multimodal image reg-
istration technique is based on contour-based corners, which is independent of intensity and
gradient changes in images. Second, a novel corner descriptor is proposed to represent edges
in the neighborhood of corners. Third, we propose a simple yet effective way of estimating
scale difference between two images.

This paper is an extension of our prior work [33], with the following major improvements.

i. Analyzing how a state-of-the-art multimodal image registration technique [26] per-
forms in handling large content differences and large scale differences between
complex multimodal images,

ii. A more detailed and accurate description of our proposed technique,
iii. Experiments on registering multimodal images with large scale differences (up to four

times), and
iv. Evaluating the proposed technique more extensively, such as performance comparisons

on non-microscopic images and microscopic images individually, and comparing with
a benchmark intensity-based multimodal image registration technique [24].

The rest of the paper is structured as follows. Section 2 summarizes related multimodal
image registration techniques. Sections 3 and 4 identify the limitations of a state-of-the-art
multimodal image registration technique [26] in handling large content differences and large
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scale differences respectively. In Section 5, the proposed technique is presented, followed
by a performance study in Section 6. The paper is concluded in Section 7.

2 Related work

Intensity-based image registration techniques such as [22, 24, 35, 38, 44] have gained pop-
ularity in registering multimodal images, especially in medical images. An intensity-based
image registration technique estimates an optimal transformation between the reference
and target images by comparing their intensity patterns [43]. Particularly, elastix [24] has
been presented as a toolbox for intensity-based medical image registration. The elastix has
properly integrated multiple choices in various modules such as transformation models and
similarity measures, which allows users to tailor the toolbox to a specific image registration
application. Due to its popularity and effectiveness, elastix will be used in this paper as one
of the benchmark intensity-based multimodal image registration techniques for performance
comparisons.

A second category of multimodal image registration techniques is based on local
features. Note that our work is mainly focused on feature-based multi-modal image regis-
tration. Among such local features, multimodal variants of SIFT are particularly popular,
including SIFT-GM (GM: Gradient Mirroring) [23], Symmetric SIFT [9], IS-SIFT (IS:
Improved Symmetric) [20, 21, 45], GO-IS-SIFT [20, 45] (GO: Gradient Occurrences),
PIIFD (Partial Intensity Invariant Feature Descriptor) [10], UR-SIFT-PIIFD (UR: Uniform
Robust) [15], NG-SIFT (NG: Normalized Gradients) [40] and HD-MOG-IS-SIFT (HD:
Higher Discrimination, MOG: Magnitudes and Occurrences of Gradient) [34]. These mul-
timodal local descriptors take into account certain characteristics of multimodal images.
PIIFD [10] is herein selected as a representative of the aforementioned multimodal vari-
ants of SIFT. On the basis of building orientation histograms within a local region as done
in SIFT [29], PIIFD [10] has three main distinct properties. First, normalized gradient
magnitudes are accumulated to the corresponding bin of an orientation histogram, thereby
mitigating the effect of the change in gradient magnitudes between corresponding image
contents. Second, gradient orientations are constrained to [0, 180◦), which addresses the
issue that gradient orientations at corresponding locations of multimodal images may point
to opposite directions. This issue was discussed and called gradient reversal in [45]. Third,
to address the issue that the main orientations of corresponding keypoints may point to
opposite directions (referred to as region reversal in [45]), a linear combination is performed
on two intermediate descriptors which are built for a local region and its rotated version
by 180◦. PIIFD was improved by UR-SIFT-PIIFD [15] in terms of the robustness to scale
changes by enhancing the stability and distinctiveness of SIFT keypoints. However, UR-
SIFT-PIIFD cannot effectively register multimodal images with large content differences
since it still uses SIFT-like keypoints which rely heavily on intensity changes. As shown
in [25], UR-SIFT-PIIFD even performs worse than PIIFD in registering multimodal images
with complex intensity changes. Based on our analysis, the aforementioned multimodal
variants of SIFT only consider straightforward characteristics of multimodal images such
as gradient reversal, however the real situation may be more complex, such as registering
the two images shown in Fig. 1c and d.

Moreover, there exist edge-based image registration techniques, such as ED-DB-ICP
(Edge Driven Dual Bootstrap Iterative Closest Point) [47] and EOH (Edge Oriented His-
togram) [12]. ED-DB-ICP [47] enriches SIFT with[shape context using edge points, but it
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is not robust to scale changes and noises. EOH [12] detects keypoints as SIFT does and
then builds descriptors using the proposed edge oriented histograms. However, EOH is not
scale-invariant since it determines the region size empirically when building descriptors.
EOH refines keypoint matches by performing a scale restriction process [53]. However,
scale invariance can not be achieved. Note that the estimated scale difference here refers to
the scale factor attached to each keypoint detected by SIFT.

More recently, AB-SIFT (AB: Adaptive Binning) [41] and LoSPA (Low-dimensional
Step Pattern Analysis) [25] have been proposed. AB-SIFT [41] mainly modifies SIFT in
two aspects. First, the keypoint detection is improved so that keypoints are more robust
to changes in scale and viewpoint. The second modification is the use of an adaptive his-
togram quantization strategy. AB-SIFT has shown advantages in registering remote sensing
images, however it has limitations in dealing with nonlinear or complex intensity differ-
ences between multimodal images, as pointed out in [41]. To effectively register multimodal
retinal images with complex intensity changes, LoSPA [25] focuses on intensity change
patterns and 28 such patterns are empirically presented. In registering multimodal retinal
images, LoSPA outperforms ED-DB-ICP, UR-SIFT-PIIFD and PIIFD (PIIFD performs best
among the three). However, LoSPA is not scale-invariant and its registration performance is
very poor when the scale difference is above 1.9 times, as reported in [25]. This is because
there does not exist any ad hoc setting for achieving scale invariance. In building descriptors,
LoSPA determines the region size empirically.

In [26], a multimodal image registration framework was proposed by making use of
spatial and geometrical relationships of keypoint triplets. Its main idea is summarized as
follows.

i. Local descriptors are built. Relative to each keypoint in the reference image, all key-
points in the target image are ranked in terms of the distance to the reference keypoint.
By doing so, an initial mapping for each reference keypoint is obtained.

ii. Keypoint triplets are generated in the reference and target images.
iii. For each reference keypoint, its best match is determined. This is achieved by iter-

atively searching and comparing all related pairs of keypoint triplets. To evaluate
the transformation calculated from a pair of keypoint triplets, the similarity metric is
defined to be the Number of Overlapped Pixels (NOP) between edges of the two entire
images, which allows for Global Information (GI) to be incorporated.

iv. All keypoint matches are ranked by their NOP values. A threshold is set to select
keypoint matches that hold highest NOP values.

v. RANSAC [14] is used to refine keypoint matches.
vi. A transformation is estimated from the refined keypoint matches and is used for

aligning the reference and target images.

In [26], SIFT [29] and PIIFD [10] are used as local descriptors. Accordingly, the multi-
modal image registration techniques are called GI-SIFT and GI-PIIFD respectively in this
paper. Theoretically, the multimodal image registration framework in [26] should work with
any other local descriptor. Based on our analysis, the main problem of [26] lies in lack of
discriminative feature representations and accurate scale estimation. The local descriptor,
regardless of SIFT or PIIFD, is neither invariant to large content differences nor invariant
to large scale differences. Some may argue that this problem can possibly be addressed
by a more competitive local descriptor. To the best of our knowledge, there exists no local
descriptor so far which can decently deal with both large content differences and large scale
differences when registering multimodal images.
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It has been shown in [26] that GI-SIFT and GI-PIIFD significantly improve SIFT and
PIIFD respectively. This validates the effectiveness of the multimodal image registration
framework. We assume that the registration performance would be further enhanced by
exploring a more robust feature representation and accurately estimating the scale difference
between images. Moreover, GI-PIIFD outperforms GI-SIFT when registering multimodal
images, as reported in [26]. Thus, GI-PIIFD will be used as a benchmark technique for
performance comparisons in this paper. In Sections 3 and 4, we will analyze how GI-PIIFD
performs in handling large content differences and large scale differences respectively.

3 Large content differences between complex multimodal images

It is challenging to register multimodal images with large content differences when using the
PIIFD descriptor. In PIIFD, keypoints are detected using the Harris corner detector which
relies on intensity variations in a small neighborhood [17]. The PIIFD descriptor is built
based on a local region around each keypoint. In each local region, normalized gradient
magnitudes are used to build orientation histograms. Due to the use of gradient information,
the PIIFD descriptor is sensitive to content differences within the local region. Figure 2
illustrates such an example of large content differences between corresponding parts of
Fig. 1c and d.

By comparison, we observe that curvatures of corners are relatively more robust to con-
tent differences. The Fast-CPDA corner detector [2, 4] is used. The Fast-CPDA corner
detector estimates curvatures of contour points using the chord-to-point distance accumula-
tion technique [16]. Those maxima contour points with regard to curvature values are treated
as candidate corners. Thus, the curvature of a Fast-CPDA corner is independent of intensity
and gradient changes in the neighborhood of the corner.

Figure 3 shows a pair of corresponding corners which are detected by the Fast-CPDA
corner detector. Note that, the local regions highlighted in Figs. 2 and 3 are equivalent.
Based on the curvature estimation in the Fast-CPDA corner detector, the curvatures for the
two corners in Fig. 3a and b are very similar, despite of large content differences between the
two regions. Hence, curvatures of Fast-CPDA corners are more robust to content differences
as compared to PIIFD descriptors.

Fig. 2 Illustrating large content differences between complex multimodal images. The two image patches
are corresponding parts of Fig. 1c and d. A red dot represents a keypoint detected by PIIFD [10]. A PIIFD
descriptor is built in a local region as enclosed by a green square
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Fig. 3 Illustrating curvature similarity of corresponding corners. A red dot represents a corner detected by
the Fast-CPDA corner detector [2, 4]. a and b correspond to Fig. 2a and b respectively. The local region
enclosed by a dashed square is the same as in Fig. 2

4 Scale invariance

Scale invariance will be discussed in this section. First, we will analyze the significance of
scale invariance to image registration. Next, we will illustrate how the PIIFD descriptor is
not invariant to scale differences and its impact on GI-PIIFD.

4.1 Significance of scale invariance to image registration

It is important to achieve scale invariance in registering images as the reference and target
images may contain structures at different scales [27]. For a feature-based image registration
technique such as [9, 10, 45], a scale is estimated and assigned to each keypoint in a scale-
space representation [27]. The scale of a keypoint determines the size of the local region
in which a descriptor is built. Thus, the accuracy of the scale estimation directly affects
the feature description and matching performances. If the estimated scale is inaccurate, the
distance between a pair of corresponding keypoints is likely to be larger than it should be.
Consequently, there will be a high possibility that this potentially true match is rejected in
the matching stage. Due to an inaccurate scale estimation, the final registration performance
is likely to be undermined.

4.2 Scale variance of PIIFD descriptor

The PIIFD descriptor was proposed in [10] for registering multimodal retinal images. The
size of a local region for building PIIFD descriptor is fixed at 40 × 40 pixels because there
is a minor scale difference between retinal images tested in [10]. Using the same setting
as [10] for the size of local regions, we have illustrated corresponding keypoints which are
manually extracted from brightfield and confocal images, as shown in Fig. 4. Figure 4c is
three times bigger than Fig. 4a and b with respect to scales. The local regions in Fig. 4a
and c only partially correspond. Accordingly, the image structures which are represented in
building PIIFD descriptors are not equivalent.

We now explain how GI-PIIFD [26] is affected by the scale variance of the PIIFD
descriptor since GI-PIIFD will be used as the benchmark multimodal image registration
technique for evaluating our proposed technique in this paper. GI-PIIFD determines initial



12614 Multimed Tools Appl (2018) 77:12607–12634

Fig. 4 A visual comparison of local regions for building PIIFD descriptors at different scales. A red dot in
each sub-figure represents a PIIFD keypoint. Images in (a) and (b) are at similar scales. The scale difference
between (c) and (b) is three times. In (c), the local region in the blue square is used for building the PIIFD
descriptor, and the small region within the green square corresponds to the regions in (a) and (b)

mappings of keypoints by selecting a set of closest descriptors, followed bymatching triplets
of keypoints. Due to the scale variance of the PIIFD descriptor, the number of correspon-
dences appearing in initial mappings is likely to decrease as the scale difference between
the reference and target images increases. Figure 5 gives two examples of correspondences
which appear in initial mappings of GI-PIIFD when registering images with similar scales
and with a scale difference of three times respectively. There are 33 of 58 correspondences
in registering Fig. 5a and b, whereas there are only two of 21 correspondences in register-
ing Fig. 5c and d. Herein a latter number, 58 or 21, denotes the number of correspondences
between PIIFD keypoints which are detected in the reference and target images. Obviously,
there is no chance of matching a triplet pair where all the three pairs of keypoints are all
correspondences, in registering Fig. 5c and d. Consequently, it is impossible to effectively
register the two images.

Sections 3 and 4 have shown that PIIFD performs poorly in dealing with large content
differences and large scale differences respectively. Admittedly, some other local descriptor
may perform better than PIIFD in dealing with large content differences or large scale dif-
ferences. One example is that LoSPA [25] may be, to some extent, more robust than PIIFD
in handling large content differences. However, LoSPA is not sufficiently robust to scale
changes in multimodal images, as stated in Section 2. Generally, our analysis shows that
any existing intensity-based or gradient-based local descriptor is unlikely to be effective in
registering multimodal images with large differences in both content and scale. Thus, we
propose a multimodal image registration technique based on corners.
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Fig. 5 Illustrating how GI-PIIFD is affected by the scale variance of PIIFD descriptor. Red dots indicate
correspondences which appear in initial mappings of keypoints using GI-PIIFD. (a) and (b) are at similar
scales; the scale difference between (c) and (d) is three times. Here (c) and (d) are shown at similar sizes only
for the purpose of a clear illustration. The two blue arrows in (c) and (d) point to two keypoints. In registering
(a) and (b), 33 correspondences appear in initial mappings of keypoints, but only two correspondences in
registering (c) and (d)

5 Proposed technique

This section elaborates our proposed COREG. An overview of COREG is first given,
followed by a few key issues in detail.

5.1 Overview of COREG

COREG is designed based on the registration framework in [26]. GI-PIIFD [26] has lim-
itations in handling large content differences and large scale differences when registering
multimodal images, as stated in Sections 3 and 4. Overall, our aim is to achieve greater
robustness to large differences in image contents and scale as compared to GI-PIIFD [26].
To achieve greater robustness to large content differences, we will explore curvature sim-
ilarity between corners and propose a novel corner descriptor, which will be elaborated in
Sections 5.2 and 5.4. To deal with large scale differences, a novel way of scale estimation
will be proposed by taking into account geometric relationships between corner triplets,
which will be discussed in Section 5.3.

The steps in COREG are as follows.

i. Detecting corners
Corners are detected in the reference and target images using the Fast-CPDA corner
detector [2, 4].

ii. Determining initial mappings of corners using curvature similarities
Relative to each reference corner, curvature similarities of all the corners in the target
image are ranked. By selecting highly-ranked corners, candidate matches of each
reference corner are determined. Curvature similarity will be described in Section 5.2.
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iii. First round matching of corner triplets
With initial mappings of corners determined in Step ii, all the possible mappings of
corner triplets are generated. Each pair of corner triplets in the reference and target
images are compared and accordingly a transformation is computed. The transforma-
tion is used to transform the target image onto the reference image. The corresponding
edge images are overlapped and therefore the Number of Overlapped Pixels (NOP) is
computed. By comparing NOP values, the pair of corner triplets with the maximum
NOP is selected. The triplet pair selected is denoted as T P1.

iv. Estimating a scale difference between the reference and target images
The scale difference between the reference and target images is estimated from the
pair of corner triplet T P1. The estimated scale difference is obtained by averaging
the length ratios between corresponding line segments in the two corner triplets. This
will be illustrated in Section 5.3.

v. Second round matching of corner triplets
First, the reference and target images are resized using the scale difference estimated
in Step iv. Second, a novel local descriptor called Distribution of Edge Pixels Along
Contour (DEPAC) is built for each corner. The proposed DEPAC descriptor will
be stated in Section 5.4. Similar to Step ii, the initial mappings of corners can be
determined by ranking the DEPAC descriptor distances. Next, the matching of cor-
ner triplets is carried out based on curvature similarity and the DEPAC descriptor
respectively. Accordingly, two pairs of corner triplets are obtained. The pair of corner
triplets which correspond to a higher NOP is denoted as T P2.

vi. Determining a triplet pair
The two triplet pairs, T P1 and T P2, are compared in terms of NOP. A decision is
made to select the triplet pair with the higher NOP. The selected triplet pair is denoted
as T Ps .

vii. Refining localizations of the selected pair of corner triplets T Ps

With the triplet pair determined, the localizations of corner pairs in the triplet pair are
refined in a small neighborhood. If a higher NOP can be achieved, then the triplet pair
is updated with the refined corner localizations. This will be discussed in Section 5.5.

viii. Estimating a transformation and aligning images
A transformation is estimated from the selected pair of corner triplet T Ps . The
estimated transformation is finally used for aligning the reference and target images.

Table 1 compares the steps in COREG and GI-PIIFD [26], which clearly indicates the
differences between the two techniques. Compared with GI-PIIFD, the novelties of COREG
lie in Steps ii, iv, v and vii. For Steps ii and v, we will describe curvature similarity between
corners in Section 5.2 and the DEPAC descriptor in Section 5.4. Steps iv and vii will be
elaborated in Sections 5.3 and 5.5 respectively.

5.2 Curvature similarity between corners

Let us first define corners in the reference and target images as

Cr =
{
C1

r , C2
r , . . . CNr

r

}
, (1)

and

Ct =
{
C1

t , C2
t , . . . C

Nt
t

}
, (2)
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Table 1 Comparing steps in COREG and GI-PIIFD

No. COREG GI-PIIFD

i Detecting corners Detecting PIIFD keypoints

ii Determining initial mappings of
corners using curvature similarities

Determining initial mappings of
keypoints using PIIFD descriptors

iii First round matching of corner triplets Matching of keypoint triplets

iv Estimating a scale difference N/A

v Second round matching
of corner triplets

N/A

vi Determining a triplet pair Determining a triplet pair

vii Refining localization of the
selected pair of corner triplet

N/A

viii Estimating a transformation
and aligning images

Estimating a transformation and
aligning images

where Nr and Nt denote the number of corners in the reference and target images
respectively. Likewise, the curvatures of corners are defined as

Kr =
{
K1

r , K2
r , . . . KNr

r

}
, (3)

and
Kt =

{
K1

t , K2
t , . . . K

Nt
t

}
. (4)

Given two corners from the reference and target images, their curvature similarity is
defined as

sij =
∣∣∣Ki

r − K
j
t

∣∣∣
Ki

r

, (5)

where 1 ≤ i ≤ Nr and 1 ≤ j ≤ Nt . Explicitly, the smaller a sij value is, the higher the
curvature similarity between two corners is.

With the curvature similarity defined in (5), all the corners in the target image are ranked
by their curvature similarities relative to each reference corner. The highly-ranked corners
comprise candidate matches. Thus, a reference corner is mapped to these candidate matches
as

Ci
r �→

{
C1

t , C2
t , . . . C

Nc
t

}
, (6)

where Nc represents the number of candidate matches. Given three corners Ci
r , C

j
r and Ck

r

in the reference image, a corner triplet is generated. With candidate matches relative to each
reference corner as (6) describes for Ci

r , all the possible corner triplets are generated in the
target image.

5.3 Scale estimation

As stated in Step iii of COREG in Section 5.1, a pair of corner triplets, T P1, is selected
after the first round matching of corner triplets. Our way of estimating a scale difference is
based on the triplet pair T P1. Figure 6 shows T P1 in registering a pair of brightfield and
confocal images. The three corners Ci

t , C
j
t and Ck

t in the brightfield image correspond to

the three corners Ci
r , C

j
r and Ck

r in the confocal image. With the three corner pairs, the
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Fig. 6 An example of a triplet pair for estimating the scale difference. The actual scale difference between
the two images is 1:2.73 and the estimated scale difference is 1:2.82. Here the two images are displayed at
similar scales so that readers can find correspondences easily

scale difference between the two images is estimated by averaging the length ratios between
corresponding line segments in the two corner triplets, i.e.,

σ = 1
3 ×

⎛
⎝

∣∣∣∣
−−−→
Ci

rC
j
r

∣∣∣∣∣∣∣∣
−−−→
Ci

t C
j
t

∣∣∣∣
+

∣∣∣∣
−−−→
C

j
r Ck

r

∣∣∣∣∣∣∣∣
−−−→
C

j
t Ck

t

∣∣∣∣
+

∣∣∣∣
−−−→
Ck

r Ci
r

∣∣∣∣∣∣∣∣
−−−→
Ck

t Ci
t

∣∣∣∣

⎞
⎠ . (7)

In the example shown in Fig. 6, the ground-truth scale difference between the brightfield
and confocal images is 1:2.73, whereas the estimated scale difference is 1:2.82. We can see
the estimated scale difference is quite close to the ground-truth one. The accuracy of scale
estimation for all the test image pairs will be illustrated in Section 6.3.

Note that, the accuracy of scale estimation is largely affected by the correctness of the
triplet pair T P1. As stated in Section 5.1, this triplet pair leads to the maximum NOP,
indicating a very high similarity between edges of two images. Thus, there is a very high
likelihood that this triplet pair is correct for estimating scale difference. In case the triplet
pair T P1 is incorrect, we suggest the following to obtain a desired triplet pair. First, a dif-
ferent edge detector [13, 50] is used when calculating NOP. Our observation is that the
accuracy of calculating NOP is directly affected by the quality of the edge detector used.
Second, instead of only using curvatures of corners (Step ii in Section 5.1), both curvatures
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and our proposed DEPAC descriptor are used to determine initial mappings of corners. A
more accurate feature description should improve the quality of initial mappings of corners.

5.4 DEPAC: our proposed corner descriptor

Curvature [1–4, 18, 46] is an important representation of corners. The curvature of a corner
describes how the edge pixels move along the contour of the corner in a small neighbor-
hood. In order to better represent corners, we will propose a novel corner descriptor. Firstly,
an example is given to illustrate the limitations of representing corners only using their cur-
vatures. Figure 7a and b show two corners and their contours that are extracted respectively
from a reference image and its target image in our test image pairs. The two corners are not
corresponding in terms of ground-truth locations. The curvatures of the two corners are very
close as the edges in a small neighborhood are structurally very similar. However, the edge
structures in a larger neighborhood are significantly more different. Based on this analysis,
a novel corner descriptor is proposed in order to capture more edge information surround-
ing a corner as compared to its curvature. Note that only the edge pixels along the contour
where the corner is located are represented in the proposed corner descriptor, due to the
fact that the number of edges may largely differ in the corresponding parts of multimodal
images. Thus, the proposed corner descriptor is called Distribution of Edge Pixels Along
Contour (DEPAC).

Let Ci
r , C

j
t , Γ

(
Ci

r

)
and Γ

(
C

j
t

)
denote the two corners and their contours shown in

Fig. 7a and b. We illustrate how a DEPAC corner descriptor is built using Ci
r and Γ

(
Ci

r

)
as

follows.

i. Concentric circles are plotted by taking the corner as the center, as shown in Fig. 7c.
Let R denote the radius of the internal circle. The radius of a concentric circle is
incremented by R, from inside to outside. In our implementations, R is set to five
pixels.

Fig. 7 Building the DEPAC descriptor. A green dot denotes a corner. a and b show the corner and the
contour where the corner is located in reference and target image respectively. In c and d, the neighborhood
around a contour is divided into 16 sub-regions as red circles and blue lines indicate. The arrow in (c) and
(d) points to main orientation. Note that only the semicircle which contains the contour is useful for building
the DEPAC descriptor
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Table 2 Number of edge pixels
in each sub-region for corner Ci

r circle
orientation

1 2 3 4

1 5 2 1 0

2 0 5 5 0

3 0 6 6 0

4 0 1 10 0

ii. The main orientation of the corner, Om, is defined by averaging the orientations of two
tangents [18]. In Fig. 7c, the arrow points to main orientation.

iii. Orientation bins are defined at the two sides of the main orientation. As plotted by blue
lines in Fig. 7c, the four quantized orientations are O1 = Om − 90◦, O2 = Om − 45◦,
O3 = Om and O4 = Om + 45◦ in an anticlockwise direction. With four concentric
circles and four quantized orientations, 16 sub-regions are defined in the neighborhood
of the corner and each sub-region is denoted as (c, o), where 1 ≤ c ≤ 4 and 1 ≤ o ≤ 4.

iv. In the sub-region (c, o), the number of edge pixels is incremented by one if an edge
pixel, Pe, along the contour falls into this sub-region, i.e.

(c − 1) × R < d
(
Pe, C

i
r

)
≤ c × R, (8)

and

Oo ≤ −−→
Ci

rPe < Oo+1, (9)

where d
(
Pe, C

i
r

)
is the Euclidean distance between Pe and Ci

r , 1 ≤ c ≤ 4 and 1 ≤
o ≤ 4. Equations (8) and (9) represent the distance and orientation conditions Pe

should satisfy. The number of edge pixels computed for the sub-region (c, o) is denoted
as NEPc,o. For the corner Ci

r shown in Fig. 7c, the number of edge pixels in each
sub-region is listed in Table 2.

v. The number of edge pixels in each sub-region, NEPc,o, is normalized into [0,1] by

NEPc,o = NEPc,o

max{NEPc,o} . (10)

With the normalized NEPc,o, the DEPAC descriptor is built.

To compare the DEPAC descriptors built for the two corners, Ci
r and C

j
t , the number

of edge pixels in each sub-region for C
j
t is listed in Table 3. We can clearly see that the

two DEPAC descriptors are very different. Thus, our proposed DEPAC descriptor captures
important edge information in the neighborhood of a corner.

It should be noted that scale invariance must be ensured in building DEPAC descriptors
for corners in the reference and target images. Ideally, the size of concentric circles for
building DEPAC descriptors should be in line with the actual scale difference between the

Table 3 Number of edge pixels
in each sub-region for corner C

j
t circle

orientation
1 2 3 4

1 4 1 1 2

2 0 5 6 0

3 8 4 5 0

4 8 0 6 0
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reference and target images. To achieve scale invariance, the estimated scale difference σ ,
which has been discussed in Section 5.3, is used as

Rr = σ × Rt , (11)

where Rr and Rt denote the radius values of the internal circle for building DEPAC
descriptors in the reference and target images, respectively.

5.5 Refining localizations

As stated in Section 5.1, a triplet pair, T Ps , is selected from T P1 and T P2 by selecting the
one with a higher NOP value. Let Ci

r , C
j
r , Ck

r �→ Ci
t , C

j
t , Ck

t denote T Ps , thus Ci
r �→ Ci

t is
a match of corners. Based on our analysis, two corners of a match in this triplet pair might
not be accurately corresponding. As shown in Fig. 8, there may exist an image pixel, Cx

t ,
in a small neighborhood of the corner Ci

t , and Ci
r �→ Cx

t is more accurate than Ci
r �→

Ci
t . This phenomenon is very likely to occur in multimodal images due to a localization

error in detecting corners. Such an error can be caused by different amounts of noises at
corresponding parts between multimodal images.

The refinement of localizations is carried out by searching image pixels in an w × w

window, where w is the width of the searching window. Note that the searching process
is only performed in the target image while the corner localizations of the triplet pair in
the reference image remain unchanged. As the searching window is set for each corner of
the triplet in the target image, (w × w)3 = w6 triplet pairs are additionally generated. If
any triplet pair out of these w6 pairs achieves a higher NOP, the triplet pair Ci

r , C
j
r , Ck

r �→
Ci

t , C
j
t , Ck

t is accordingly updated. In our experiments, w is equivalent to five.

5.6 A special consideration

In COREG, spatial relationships between corners are employed by making use of corner
triplets. If the number of corners is smaller than three, it is impossible to generate a corner
triplet. In such cases, the registration process will be terminated. Thus, a special consider-
ation must be taken to ensure there are sufficient corners for generating at least one corner
triplet. In the Fast-CPDA corner detector [2, 4], edges are detected using the Canny edge
detector [8]. In the Canny edge detector [8], a high threshold and a low threshold are used
to define strong and weak edge pixels respectively. In COREG, the high threshold for the
Canny edge detector is empirically lowered to preserve more edges so that more corners are

Fig. 8 Refining localizations. Ci
r �→ Ci

t is a match of corners in a triplet pair T Ps . Cx
t denotes a corner

within the small neighborhood of Ci
t . C

i
r �→ Cx

t is actually more accurate than Ci
r �→ Ci

t
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potentially detected, in the cases where the number of corners is smaller than three using
the default threshold.

6 Performance study

To evaluate the proposed COREG, the following comparisons will be made. First, we will
measure the accuracy of the proposed way of estimating scale differences (Section 6.3).
Then, the registration performance is extensively evaluated (Sections 6.4.1 and 6.4.2).
Moreover, an efficiency analysis is given (Section 6.4.3).

6.1 Test data

Five multimodal datasets were tested in our experiments. Dataset 1 includes two artificial
pairs in which image contrast is reversed between the reference and target images. Dataset 2
includes 18 NIR (Near Infra-Red) vs EO (Electro-Optical) image pairs. Dataset 3 includes
four image pairs used in [52]. The four image pairs include three MRI pairs and one EO
vs IR (Infra-Red) pair. The three MRI pairs are of different weighting patterns:2 T1 vs T2,
T1 vs PD (Proton Density), and T2 vs PD, for each. Dataset 4 includes 16 brightfield and
confocal microscopic image pairs such as Fig. 1c and d. Dataset 5 includes 81 brightfield
and fluorescence microscopic images. Figure 9 shows sample image pairs for Datasets 1, 2,
3 and 5. The sample image pair of Dataset 4 has been shown in Fig. 1a and b.

Datasets 1 to 4 include 40 image pairs and we call them the base image pairs. In these
pairs, the scale difference between the reference and target images varies from 1:0.70 to
1:1.07. With these base image pairs, we have manually generated corresponding image
pairs which have scale differences of 1.5, 2, 3 and 4 times, respectively. Thus, five scale
differences are tested. For the referencing purpose, these five scale differences are labeled
as 1X vs 1X, 1X vs 1.5X, 1X vs 2X, 1X vs 3X and 1X vs 4X, respectively. Here, X is
equivalent to times with regard to a scale difference. Different from Datasets 1 to 4, the scale
difference in each image pair of Dataset 5 is real, rather than being manually generated.
Dataset 5 contains 27, 36 and 18 image pairs with 1X vs 1X, 1X vs 2X and 1X vs 4X scale
difference respectively.

6.2 Evaluation metric

To carry out quantitative performance comparisons, average registration error [49] is used to
measure the overlap error after aligning the reference and target images with the estimated
transformation. Average registration error (called ARE in this paper) is defined as

ARE = 1

H × W

W∑
x=1

H∑
y=1

‖Te(x, y) − Tg(x, y)‖, (12)

where H and W are the height and width of the reference image, Tg is the ground-truth
transformation and Te is the estimated transformation. The smaller the ARE value is, the
better the registration performance will be.

2The Basics of MRI: http://www.cis.rit.edu/htbooks/mri/

http://www.cis.rit.edu/htbooks/mri/
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Fig. 9 Examples of our test multimodal image pairs. a and b: Artificial; c and d: NIR vs EO; e and f:
MRI (T1 vs T2); g and h: EO vs IR; i and j: brightfield and fluorescence microscopic. The scale difference
between (i) and (j) is 1X vs 4X
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Fig. 10 Comparing estimated and ground-truth scale differences. From bottom to top, these five groups of
lines are for 1X vs 1X, 1X vs 1.5X, 1X vs 2X, 1X vs 3X and 1X vs 4X respectively

The ground-truth transformations for Datasets 1, 2 and 3 are known or provided [52].
For Datasets 4 and 5, the ground-truth transformation of each image pair is calculated by a
set of corresponding pixels which were manually selected.

6.3 Accuracy of scale estimation

As discussed in Section 4, achieving scale invariance is of critical importance in the process
of image registration. In our proposed COREG, the reference and target images are resized
using the estimated scale difference. If the estimated scale difference is close to the ground-
truth scale difference, the reference and target images will have similar scales after being
resized. Here, the accuracy of scale estimation is measured by an error which deviates from
the ground-truth scale difference. Let σe and σg denote the estimated scale difference and
the ground-truth scale difference respectively. The error of estimating a scale difference is
defined as

εs = |σe − σg|
σg

× 100%. (13)

Figure 10 compares the estimated and ground-truth scale differences for 40 image pairs
of Dataset 1 to 4 at all the five scale differences. It can be seen in Fig. 10 that the estimated
scale difference is in many cases close to the ground-truth scale difference.With the measure
defined in (13) for accuracy of scale estimation, a threshold of εs is set to 5%. For these
40 pairs, with five scale differences from 1X vs 1X to 1X vs 4X, εs is below 5% in 33, 36,
35, 34 and 36 pairs, respectively. Clearly, our way of estimating scale differences is very
accurate and robust even when the scale difference between two images is large.



Multimed Tools Appl (2018) 77:12607–12634 12625

Fig. 11 ARE comparisons between elastix, GI-PIIFD and COREG for image pairs of 1X vs 1X scale
difference from Datasets 1 to 4

6.4 Performance comparisons

6.4.1 Comparisons in ARE

Figures 11, 12, 13, 14 and 15 present ARE results of registering image pairs from Datasets
1 to 4. All five patterns of scale differences, i.e. 1X vs 1X, 1X vs 1.5X, 1X vs 2X, 1X

Fig. 12 ARE comparisons between elastix, GI-PIIFD and COREG for image pairs of 1X vs 1.5X scale
difference from Datasets 1 to 4
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Fig. 13 ARE comparisons between elastix, GI-PIIFD and COREG for image pairs of 1X vs 2X scale
difference from Datasets 1 to 4

vs 3X and 1X vs 4X, have been tested. For each dataset, IDs of image pairs and their
corresponding imaging conditions are listed in Table 4. Note that, brightfield and confocal
microscopic images (Pairs 25 to 40) have been processed by DSS [31, 32] to increase the
structural similarity.

Figure 11 compares ARE achieved by elastix [24], GI-PIIFD and COREG when reg-
istering image pairs of 1X vs 1X scale difference from Datasets 1 to 4. Clearly, COREG
far outperforms elastix and GI-PIIFD. The average ARE achieved by elastix, GI-PIIFD and
COREG is 9.12, 6.92 and 2.27 respectively. Since our work is focused on multimodal image

Fig. 14 ARE comparisons between elastix, GI-PIIFD and COREG for image pairs of 1X vs 3X scale
difference from Datasets 1 to 4
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Fig. 15 ARE comparisons between elastix, GI-PIIFD and COREG for image pairs of 1X vs 4X scale
difference from Datasets 1 to 4

registration based on local features, we have only tested elastix at the 1X vs 1X scale dif-
ference. As shown in Fig. 11, the advantage of COREG over elastix is already very clear.
Overall, elastix and GI-PIIFD perform very poorly in registering Pairs 24 to 40, whereas
COREG performs much better. Pairs 25 to 40 are brighfield and confocal microscopic
images. Content differences in these images are still large after being processed by DSS [31,
32]. Regarding Pair 24, the objects are very unclear and content differences are very large,
as show in Fig. 9g and h.

For the other four patterns of scale differences, GI-PIIFD and COREG are compared in
Figs. 12, 13, 14 and 15. As the scale difference increases, GI-PIIFD performs increasingly
poor, whereas COREG is much more robust. In other words, the advantage of COREG
over GI-PIIFD is more significant as the scale difference increases. Table 5 compares aver-
age ARE values between GI-PIIFD and COREG for the five patterns of scale differences.
The advantage of COREG over GI-PIIFD is very clear. Note that the special consideration,
described in Section 5.6, has been taken for registering image pair 11 across all five scale
differences, as less than three corners have been detected when using default settings of the
corner detector [18]. More specifically, the high threshold for the Canny edge detector is
lowered from 0.35 to 0.25 in registering this image pair.

Moreover, Fig. 16 compares GI-PIIFD and COREG in terms of ARE when register-
ing brightfield and fluorescence microscopic images. Consistently, COREG achieves a lot
smaller ARE compared to GI-PIIFD. The average ARE value achieved by GI-PIIFD and

Table 4 Pair IDs and imaging
condition Dataset ID Pair ID Imaging Condition

1 1-2 Artificial

2 3-20 NIR vs EO

3 21-24 MRI, EO vs IR

4 25-40 Brightfield vs Confocal Microscopic
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Table 5 Average ARE of
GI-PIIFD and COREG when
registering image pairs of each
scale difference from Datasets 1
to 4

Scale Difference GI-PIIFD COREG

1X vs 1X 6.92 2.27

1X vs 1.5X 11.06 3.82

1X vs 2X 15.58 3.73

1X vs 3X 25.66 3.99

1X vs 4X 42.96 4.44

COREG is 21.19 and 4.00 respectively. From Pair 64 to 81, the scale difference between
two images is 1X vs 4X. In registering these images using GI-PIIFD, ARE values are obvi-
ously bigger compared to registration of Pairs 1 to 63. By comparison, ARE values achieved
by COREG remain relatively stable. Throughout all image pairs, the biggest ARE value is
7.88 when COREG is used. Hence, COREG is more robust than GI-PIIFD in dealing with
large scale differences.

Based on the above comparisons, the following is summarized. First, all three techniques,
i.e. elatix, GI-PIIFD and COREG, achieve satisfactory registration performance when reg-
istering images without large content and scale differences, such as Pairs 1 to 23 in Fig. 11.
Second, COREG generally outperforms elastix and GI-PIIFD when dealing with images in
which there exist large content and/or scale differences.

6.4.2 Comparisons in registration accuracy

Figure 17 compares registration accuracy of GI-PIIFD and COREG in registering a pair of
brightfield and confocal images. Note that the two images have been processed by DSS [31,
32]. The alignments achieved by GI-PIIFD and COREG are compared using checkerboard
images. To generate an aligned image, an estimated transformation is used to transform a

Fig. 16 ARE comparisons between GI-PIIFD and COREG when registering brightfield and fluorescence
microscopic images. The scale difference is 1X vs 1X, 1X vs 2X and 1X vs 4X for Pairs 1 to 27, Pairs 28 to
63 and Pairs 64 to 81 respectively
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Fig. 17 An alignment example. (a) and (b) are a pair of brightfield and confocal images which have been
processed by DSS [31, 32]. (c) and (d) are aligned results when registering (a) and (b) using GI-PIIFD
and COREG respectively. Checkerboard is used for a better illustration. (e) and (f) are corresponding parts
manually extracted from (a) and (b) respectively. (g) and (h) are manually extracted from (c) and (d) to
illustrate how (e) and (f) are aligned using GI-PIIFD and COREG respectively

brightfield image onto its corresponding confocal image. The transformed brightfield image
and confocal image are displayed in an alternate way using the checkerboard format. To bet-
ter identify alignments of image structures, the foregrounds of the brightfield and confocal
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images are displayed using red and green colors respectively in the checkerboard image. In
the example shown in Fig. 17, the actual scale difference between the color and confocal
images is 1:3.76. The ARE values achieved by GI-PIIFD and COREG are 121.61 and 4.87
respectively. To easily compare alignments achieved by GI-PIIFD and COREG, a small
area of corresponding parts is extracted from the color and confocal images, as shown in
Fig. 17e and f. Clearly, Fig. 17h shows a much better alignment as compared to Fig. 17g.
Thus, COREG significantly improves the registration performance over GI-PIIFD.

6.4.3 Efficiency analysis

Although our focus is on improving the registration accuracy, we now give a rough
efficiency comparison between GI-PIIFD and COREG as follows.

i. In registering image pairs with the same or similar scales, GI-PIIFD is approximately
12% faster than COREG. When COREG was used, less than 45 minutes were spent for
registering a pair of our test multimodal images. Since our experiments were carried out
on Matlab, the efficiency should be significantly improved on some other programming
platforms such as C and/or C++.

There are two main reasons why COREG is less efficient than GI-PIIFD. First, two
rounds of matching corner triplets are needed in GOREG, while there is only one round
in GI-PIIFD. Second, compared with GI-PIIFD, additional time is needed in COREG
for refining localization which has been discussed in Section 5.5. However, COREG
is more efficient in building local descriptors than GI-PIIFD. The local descriptor in
GI-PIIFD is 128-dimensional, whereas only the curvature and 16-dimensional DEPAC
descriptor are used for describing corners in COREG.

ii. As the scale difference in an image pair increases, COREG achieves comparable or
even higher efficiency than GI-PIIFD.

When the scale difference increases, the space of geometric transformations
becomes increasingly larger. Accordingly, more time will be needed for comparing
corner triplets. In COREG, the reference and target images have similar scales after
applying the estimated scale difference. Thus, the second round of comparing corner
triplets in COREG is much faster than the first round.

6.5 A discussion on corner triplets

As introduced in Section 5.1, the proposed technique essentially compares pairs of corner
triplets from two images and estimates the optimal geometric transformation to do the final
alignment. All possible pairs of corner triplets are compared and ranked in terms of NOP
values. The triplet pair which holds maximum NOP value leads to the estimated transforma-
tion between two images. Hence, how two images are aligned depends on the correctness of
the triplet pair with maximum NOP value, rather than the number of triplet pairs. Based on
our analysis, a correct transformation can be estimated as long as there exist at least one cor-
responding triplet pair between two images. If this condition is not met, it is recommended
to adjust default settings of the corner detector used [18], as discussed in Section 5.6. By
doing so, sufficient number of corresponding triplet pairs are generated, thereby estimating
a correct transformation between two images.
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7 Conclusion

We have presented a novel multimodal image registration technique based on corners. To
address large content differences in multimodal images, we have explored curvatures of cor-
ners and have proposed a novel corner descriptor for feature representations. The proposed
feature representations are independent of intensity and gradient changes in multimodal
images. Moreover, we have proposed a simple yet effective way of estimating the scale dif-
ference between the reference and target images. The scale estimation is achieved with the
assistance of a pair of corner triplets which leads to optimal transformation between the
reference and target images. Our experimental results have shown that our proposed tech-
nique achieves much greater robustness in both content and scale differences as compared
to state-of-the-art multimodal image registration techniques.

Without the loss of generality, COREG is suited for registering all kinds of multi-modal
images in which transformations may include scale, rotation, translation, blur and illu-
mination, etc. Moreover, our proposed DEPAC corner descriptor is applicable to various
applications such as object recognition [5], image retrieval [6] and robot localization [11].
Our future work includes developing image representations which are robust to various
transformations including occlusion and deformation.
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