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Abstract The task of matching observations of the same person in disjoint views cap-
tured by non-overlapping cameras is known as the person re-identification problem. It is
challenging owing to low-quality images, inter-object occlusions, and variations in illu-
mination, viewpoints and poses. Unlike previous approaches that learn Mahalanobis-like
distance metrics, we propose a novel approach based on dictionary learning that takes the
advances of sparse coding of discriminatingly and cross-view invariantly encoding features
representing different people. Firstly, we propose a robust and discriminative feature extrac-
tion method of different feature levels. The feature representations are projected to a lower
computation common subspace. Secondly, we learn a single cross-view invariant dictionary
for each feature level for different camera views and a fusion strategy is utilized to gener-
ate the final matching results. Experimental statistics show the superior performance of our
approach by comparing with state-of-the-art methods on two publicly available benchmark
datasets VIPeR and PRID 2011.

Keywords Dictionary learning · Sparse coding · Person re-identification · Intelligent
surveillance

1 Introduction

The person re-identification problem is known as recognizing an individual at a differ-
ent location from non-overlapping camera views. It has huge potentials for security and
safety management applications and thus has received increasing attention in the past years.
Despite great efforts from researchers in this field, it remains an unsolved problem. It is
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challenging owing to low-quality images, inter-object occlusions, and variations in illu-
mination, viewpoints and poses as can be seen samples from Fig. 1. The procedure of
re-identifying a person is generally under two main steps.

The first step is constructing distinctive feature descriptors. Common approaches apply
the descriptor to character the color and textural information of human clothes [4, 6, 8, 9,
20, 31, 51]. A good descriptor is expected to only have the discriminative power to dis-
tinguish different people but also possess the robustness of intra-personal variations. Since
the images from different camera views are in low resolution and have large variations, it
has been proved that color is the most valuable cue for person re-identification, i.e. color
histograms and color name descriptors [44]. Liu et al. [27] employs a strategy of the color
feature ensemble to extend the distinct inter-personal ability and invariant intra-personal
power of different color features. Because color alone can hardly sufficiently differentiate
different persons of similar colors, texture descriptors such as Local Binary Pattern (LBP)
[42] and filters (i.e. Gabor filters and Schimid filters [9]) are often combined with color
descriptors. However, it is difficult to unify feature representation of cross-view individuals
and to obtain both distinct and robust low-level features under severe condition variations.

The next step of feature extraction is metric distance computation. Commonly, the
dimensions of informative feature descriptors are extremely high, direct distance computa-
tion does not work. So metric is often obtained by learning a proper similarity for images
from different camera views. The widely used traditional method ground on the idea of
learning, in a supervised fashion, a Mahalanobis-like distance metric:

dM(y1, y2) = (y1 − y2)
T M(y1 − y2) (1)

where M is a positive semi-definite matrix [5, 15, 19, 34, 42, 50].
To improve performance in both steps, we propose a sparse coding method based on the

fusion of different level features. We firstly extract both the stripe-level and patch-level fea-
tures to deal with misalignment of images from different camera views. In our stripe-level

Fig. 1 Example pairs of images from the VIPeR dataset [9]
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features, we maximize the local occurrence of each histogram bin. And in the patch-level
feature we find the most similar neighbor patch as a corresponding feature representation.
In addition, to solve the high-dimensional feature problem, we use a subspace transforma-
tion to a lower computation space. With representation descriptors at different feature levels,
we do not follow the existing popular state-of-the-art Mahalanobis distance approaches.
Instead, we focus on the dictionary learning method and learn a single viewpoint invari-
ant dictionary for each feature level. It strengthens the capability of holding the invariant
features between different camera views.

The major contribution of this paper is twofold. Firstly, as our work belongs to the cate-
gory of distance learning for person re-identification, we adopt a different idea from those
popular Mahalanobis-like metric learning algorithms. Dictionary learning for person re-
identification is a new direction, where only a few researchers have explored before. Among
dictionary learning trials, different from existing methods learning separate sub-dictionaries
for each data class or each camera view, our work straightforwardly learns a single view-
point invariant dictionary for all camera views. Secondly, we model our input images in
different representation levels, denoted by the stripe-level and the patch-level, followed by
subspace learning, jointly for discrimination of each individual and robustness to pose and
camera view variations.

The rest of the paper is organized as follows: In Section 2, we review the related works. In
Section 3, we analyze the overall frameworks of our re-identification approach. We propose
our feature extraction method and sparse coding framework with viewpoint invariant dictio-
naries for re-identification and describe its mathematical insight in Section 4. In Section 5,
we show the experimental results of our proposed approaches and compare our performance
with the state-of-the-art methods. The conclusions of the work are presented in Section 6.

2 Related work

Most existing approaches of the re-identification problem can be divided into two cate-
gories: feature representations and metric learning.

2.1 Feature extraction

Feature extraction base methods aim at the exploration of extracting a robust and distinc-
tive representation under various conditions, including illumination, camera view and pose
change [4, 9, 20, 31]. Gray and Tao [9] propose an ensemble of localized color and tex-
ture features. Shape and structural constraints has been exploited when SDALF [4, 6] takes
the symmetry and asymmetry property into account to handle viewpoint changes. Recently,
Liao et al. [23] propose a superior method by maximizing the horizontal occurrence of
local features to make a stable representation against viewpoint changes and is reported
outstanding performance for person re-identification. And Zhao et al. [49] use an unsu-
pervised learned salience model for patch matching. The eBicov [31] method computes
a covariance based bio-inspired feature. Semantic attribute representations [20] generate
low-dimensional attribute descriptions, similar to descriptions provided verbally to an eye-
witness, which is more straightforward to human understanding. To further improve the
performance by taking advantage of the complementary of multiple feature representations,
Zheng et al. [51] propose an effective feature fusion method to combine multiple feature
extraction methods. Deep learning based methods have a good ability of extracting fea-
tures in variant fields and tasks [21, 28–30, 43] and are also successfully applied in person
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re-identification problems as proposed in [2, 41]. Wu et al. [2] use a combination of hand-
craft features and deep features on a singe image to obtain an enhanced representation. Lin
et al. [41] deeper the weight layer to 10 layers using 3 ×3 convolution filters. Although
the existing feature representations achieve good re-identification performance, the multiple
scales and different levels haven’t been extensively studied. Assuming that distinguishing
level of feature descriptors hold complementary information, our approach models both
the stripe-level and patch-level feature representation to achieve a comprehensive effect for
better re-identification result.

Our use of two-level features for person re-identification is motivated by the recently pro-
posed Local Maximal Occurrence [42] and the densely sampled patch descriptor [49]. The
former locally constructs a histogram of pixel features and then takes its maximum values
with horizontal stripes to overcome viewpoint variations while the latter densely computes
the descriptor on each patch. Differently, in the case of patch-level feature extraction, we
utilize the k-Nearest-Neighbor algorithm thoughts to generate the descriptors for gallery
images in each pixel hierarchy. It needs to highlight that our computed descriptor for patch-
level feature is asymmetric for probe and gallery (not in the same computation steps), and
the k-Nearest-Neighbor algorithm is only applied to the gallery images rather than both the
probe and the gallery ones. Details are demonstrated in Section 4.1.2.

2.2 Metric learning

Metric learning base methods ground on the idea of obtaining a proper similarity metric
for images from different camera views by learning classifiers and metrics. Most researches
in this category is to learn a Mahalanobis-like distance metric. KISSME [19] obtain the
distance metric by computing the difference between the intra-class and inter-class covari-
ance matrix. PRDC [50] derives the Mahalanobis metric by maximizing the probability of
that a pair of the same individual has a smaller distance than that of different individuals.
LFDA [34] maximizes the inter-class distance while preserving the multi-class modality.
PCCA [15] conducts sparse pairwise constraints on the similarity metric. Regarding the
performance bottleneck due to the inherent linearity of the Mahalanobis-like distance met-
ric, Xiong et al. [42] propose kernel-based algorithms to learn non-linear distance metrics.
However, these techniques are still limited by the recognition power of the learned distance
metric.

Besides the Mahalanobis learning based approachds, dictionary learning has not received
much attention for the person re-identification problem, although dictionary learning has
achieved impressive performance in classification and recognition problems [16] in recent
years. With the label information and sparse representation over the learned dictionary, the
classification-oriented dictionary has strong representational power. K-SVD [1], discrimi-
native K-SVD [46], K-SVDwith label consistency constraints [13] and projective dictionary
pair [10] are among the most popular dictionary learning methods in recent trends.

To the best of our knowledge, the very few applications of dictionaries in re-identification
are as follows. Liu et al. [26] present an approach of semi-supervised coupled dictionar-
ies in the assumption that a pair of patches in separate views should have the similar
coding. Jing et al. [14] propose a semi-coupled low-rank discriminant dictionary learning
approach to super-resolution person re-identification and apply low-rank regularization in
dictionary learning procedure to characterize intrinsic feature space of high-resolution and
low-resolution, but both the methods of learning coupled dictionaries mentioned above pose
difficulties when the dimensionality of the training data increases. Most recently, Karanam
et al. [16] learn a single dictionary instead of several dictionaries to represent both gallery
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and probe images and discriminatingly apply explicit constraints on the corresponding
sparse codings of image pairs in training the dictionary. However matching rate has not been
improved remarkably compared to the classic metric learning methods.

We are dealing with a supervised re-identification problem with dictionary learning and
sparse coding. Instead of multiple sub-dictionaries to learn, we reconstruct a single cross-
view dictionary for all the camera views. Furthermore, our model is learned using the
alternating directions framework by alternately fixing part of the variables and optimizing
over the other variable.

3 Frameworks

We separately learn a single dictionary for stripe-level and patch-level feature represen-
tations, denoted as Dstripe and Dpatch respectively. The dictionary is assumed viewpoint
invariant, so it is the same one for both the probe and gallery camera views. In our work,
the stripe-level and patch-level dictionaries and sparse codings are trained independently
and the distance between individuals computed based on the learned dictionary are fused to
output a final result. Figure 2 shows the general framework of our method.

In the training phase, given image sequences in both probe and gallery camera views,
we first compute their two-level representative feature vectors. After transforming the fea-
ture descriptors into a subspace, stripe-level and patch-level dictionaries are independently
learned through the framework of alternating directions optimization.

Fig. 2 A visual summary of our framework. Given images in both gallery and probe camera views for
n persons, we first compute their representative feature vectors and then iteratively train a discriminative
viewpoint invariant dictionary and sparse codes for two feature levels. In the test phase, we compute the
corresponding sparse codes respect to the learned dictionary and conduct the fusion of similarities to obtain
the final prediction
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In the test phase, for each gallery image and a certain probe image, we generate the fea-
ture representation in the subspace and then optimize the corresponding sparse codes with
respect to the learned dictionaries Dstripe and Dpatch in the training phase. The distance
between the sparse codes of a image pair from two camera views represent their similari-
ties. The final distance is obtained by the fusion strategy and for each probe image, all the
matching proposals are ranked by distance.

4 Methodology

In this section, we first introduce our feature representation extraction for pedestrian in the
stripe-level and the patch-level. Then we formulate person re-identification problem using
the dictionary learning approach.

4.1 Feature representation

We take stripe-level and patch-level features into consideration to get detailed feature rep-
resentations. Given an image of individuals from a camera view, we first normalize it to a
fixed size of 128 × 48 and we fetch the center region of 120 × 40 (shaving 4 pixels for all
the four directions, top, bottom, left, and right, of the original images), for ignoring the dis-
tractions from the image background. A sliding window of size 8× 8 is applied to the image
with a stride of 4 pixels in both the stripe-level and patch-level feature extraction method.

4.1.1 Stripe-level representation

For the extraction of distinctive features, we apply the idea of the local maximal occur-
rence (LOMO) feature descriptor, which has demonstrated state-of-the-art performance in
re-identification [23]. The LOMO feature descriptor applies HSV color histogram to extract
color features and the Scale Invariant Local Ternary Pattern (SILTP) [22] descriptor to
extract texture features, which are both proven to have a nice invariant property. Within each
sliding window, we compute the HSV histogram and SILTP features in multiple scales. Each
histogram bin is the occurrence probability of one pattern in a sub-window. In each stripe
(patches at the same horizontal location), we compute the maximization of local occurrences
in each pattern. Then the features from each stripe are concatenated and log transformed to
produce the final descriptor of (8× 8× 8 color bins + 81× 2 texture bins) × (29+ 14+ 6
stripes) = 33,026 dimensions. The resulting feature representation holds the characteristics
of both invariance to viewpoint and distinctiveness for different individuals.

4.1.2 Patch-level representation

The pedestrian images in different camera views usually cause the misalignment problem.
Although the former LOMO approach relieves this to some extent, it only take the maxi-
mization of the patch features in a horizontal stripe. In this way, other patch information in
the same horizontal stripe are neglected thus some valuable information is missing. To rem-
edy the neglect of detailed image feature information, we also apply a method of extracting
local patches on a dense grid [49]. We compute the 32-bin color histograms and 128-dim
dense SIFT features in each of LAB channels. To obtain detailed information, we compute
histograms on two more down sampled scales for each patch with down sampling fac-
tor 0.5 and 0.75. All the features of one patch are normalized with l2-norm. Finally, each
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patch is represented by a feature vector and the concatenation of all the patches sequentially
constitutes the probe image representation.

In this patch-level descriptor computation process, we propose an asymmetry strategy in
which image representations in the probe and the gallery set are obtained in different routes.
The gallery representations are generated according to the to-be-matched probe image and
for each probe image, all the gallery representations are generated once newly. For image
from camera A (the probe set), dense local features are denoted by xA,u = {xA,u

m,n},where
x

A,u
m,n denotes the features of a patch at the m-th row and n-th column in the u-th image from

camera view A (or the probe). For patch x
A,u
m,n , the corresponding patch in the v-th image

from camera view B (or the gallery), i.e. xB,v = {xB,v
i,j }, v=1, ... , V, is represented as the

constrained search set of x
A,u
i,j in xB,v

ℵ
(
xA,u
m,n, xB,v

)
= {xB,v

i,j |j = 1, ..., N,

i = max(0,m − h),..., min(M, m + h)},
(2)

where h represents the height of search regions and we follow [49] to set it to 2 in our
experiment setting. For each patch x

A,u
m,n in images from the probe, we do a nearest-neighbor

search in its constrained search set ℵ(x
A,u
m,n, xB,v). The nearest k neighbors in the search set

is assembled to compute a mean 672-dimensional descriptor of the corresponding patches
in the gallery. All the mean descriptors are concatenated to generate a final representation
of image in the gallery set.

4.1.3 Fusion strategy

The final distance of a pair image is the fusion of stripe-level and patch-level distances by

dsimilarity = (1 − μ) × dstripe + μ × dpatch (3)

with a tunable parameter μ: 0< μ <1. The matching for each probe person is obtained as
the index of the minimum value in the computed distances. We later show the performance
of the feature fusion strategy between rank and matching rate in Section 5.2.2.

4.2 Dictionary learning

We first briefly introduce the basics of dictionary learning and notations that are used in
our work. Then, we explain our approach to learn a sparse coding with viewpoint invariant
dictionaries in both dictionary learning and subspace projection stage.

4.2.1 Preliminaries

Given a query image X= { xij | xij ∈ �d , feature vector of person with index i in the view of
camera j}. For the person re-identification problem, we aim to learn a dictionary D ∈ �d×N

, that is capable of discriminating the feature vectors of the similar individual and dissim-
ilar individuals from different camera viewpoints. We can compute sij , the sparse code of
feature vectors with respect to learned dictionary D by solving the following problem:

sij = min
s

||xij − Ds||22 + λ||s||1 (4)

where the first part is an l2-norm term for the discrimination of the learned dictionary, and
the second term ensures the sparsity of the variable s.
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4.2.2 Viewpoint invariant dictionary for re-ID

The method in [16] assumes that the images from variant camera views of the same per-
son should possess similar sparse codings corresponding to the learned dictionary. D is
expected to satisfy the following two properties: firstly, D should be invariant with large
viewpoint changes. Secondly, D should be discriminative between feature representations of
the same individual and those of different individuals. Taking these two properties of D into
consideration, we formulate the problem as the following overall minimization problem:

min
D,si1,si2

n∑
i=1

{||xi1 − Dsi1||22 + λ1||si1||1

||xi2 − Dsi2||22 + λ2||si2||1}
s.t. ||si1 − si2||2 < ||si1 − sj2||2,∀j �= i,∀i (5)

For solving the optimization problem, Karanam et al. [16] introduces two constants c1
and c2 to reformulate the problem:

min
D,si1,si2

n∑
i=1

{||xi1 − Dsi1||22 + λ1||si1||1

+||xi2 − Dsi2||22 + λ2||si2||1
s.t. ||si1 − si2||2 < c1, ∀i

||si1 − sj2||2 < c2, ∀j �= i, ∀i (6)

where c1 << c2
This form is not convex in the three variables, D, si1, si2 simultaneously, but the objec-

tive function is convex in one of the variables when the other two are fixed. Therefore, we
utilize the technique of alternating directions to solve the minimization problem. Instead
of the existing dictionary methods in the person re-ID, our appliance of the single invari-
ant dictionary holds a better characteristic of representing robustness when camera view
changes.

4.2.3 Subspace projection for re-ID

We use ϕ(·) to represent a nonlinear mapping of input representations to a feature subspace
F , i.e, ϕ : xij ∈ �m → ϕ(xij ) ∈ F , and D is the resulting dictionary matrices after map-
ping D and α is the sparse code corresponding to D . So the optimal function is reformulated
as:

min
D,αi1,αi2

n∑
i=1

{||ϕ(xi1) − Dαi1||22 + λ1||αi1||1

+||ϕ(xi2) − Dαi2||22 + λ2||αi2||1}
s.t. ||αi1 − αi2||2 < c1,∀i

||αi1 − αj2||2 < c2,∀j �= i, ∀i (7)

where c1 << c2
The dimensions of stripe-level and patch-level feature representations in the original

space are very large, and we expect a low dimensional space �m(m < d) for classification.
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Work [23] extended the Bayesian face [32] and KISSME [19] approaches to cross-view
metric learning. The original distance function between xi1 and xj2 is

d(xi1, xj2) = (xi1 − xj2)
T

(
Σ−1

I − Σ−1
E

)
(xi1 − xj2) (8)

where ΣI and ΣE are the covariance matrices of intrapersonal variances ΩI and the
extrapersonal variations ΩE .

In [23], a subspace W = (w1, w2, ..., wm) ∈ �d×m is learned with cross-view data.
Given a training set{X1, X2}, where X1 = (x11, x21, ..., xp1) ∈ �d×p contains p examples
in a d-dimensional subspace from the probe and X2 = (x12, x22, ..., xq2) ∈ �d×q contains
q examples in a d-dimensional subspace from the gallery.

Then the distance function is formulated as

d(xi1, xj2) = (xi1 − xj2)
T W

(
Σ

′−1
I − Σ

′−1
E

)
WT (xi1 − xj2) (9)

where Σ
′−1
I = WT ΣIW and Σ

′−1
E = WT ΣEW . We learn the matrix M(W) =

W
(
Σ

′−1
I − Σ

′−1
E

)
WT using the XQDA [23] algorithm.

4.2.4 Re-identification scheme

In the test stage, for each gallery feature vector we compute the corresponding sparse codes
with respect to the learning dictionary D as:

αi2 = minαi2 ||ϕ(xi2) − Dαi2||22 + λ2||αi2||1,∀i (10)

This is the standard LASSO problem [39], we can use the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [3] to solve the problem. Alternatively, we use l2-
constraint instead of l1-norm on coefficients. Thus it will be transformed into a simple least
squares problem, which has a closed-form solution and can be solved by derivation. Simi-
larly, the sparse codes αi1 of probe images are computed. After obtaining αi1 and αi2 for all
persons in the test set, their similarity is obtained by computing the cosine distance between
their respective sparse code vectors.

5 Experiments

In this section, we evaluate the performance of our proposed viewpoint invariant represen-
tation based dictionary learning method. We show the assessment of different strategies in
the experimental results in Section 5.2 The experimental results of our proposed approaches
and the comparison with the state-of-the-art methods are shown in detail in Section 5.3.

5.1 Experimental settings

Datasets We choose two public baseline datasets, i.e. the VIPeR dataset [11] and the PRID
2011 dataset [36] for testing our proposed approach. Both are very challenging datasets
for the person re-identification task because their pictures show great significant variations
in illuminations, viewpoints, poses, and are of low resolutions, even with occlusions and
background clutters. The VIPeR dataset [11] is mostly widely used and relatively large. It
consists of 632 people, each of which has two images scaled to 128 × 48 pixels captured
in two different outdoor views from arbitrary viewpoints under varying illumination condi-
tions. In our experiments, the whole set of 632 image pairs are randomly divided into two
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even sets of 316 pairs, one for training and the other for testing. The PRID 2011 dataset [40]
consists of image sequences in two non-overlapping cameras. Camera A contains 385 indi-
viduals, and camera B contains 749 individuals, in which 200 individuals appearing in both
cameras. The images are captured in an outdoor environment with viewpoint, pose and illu-
mination changes. It is generally considered being even more challenging than VIPeR since
it includes distractors as well as strong cross-camera changes. In our experiments we use
the single shot version of the dataset as in [12, 18], i.e. one image per person for both views.
In each process of data split, 100 people with one image from both views are randomly cho-
sen for the training set from the 200 ones appearing in both cameras, while for testing, the
remaining 100 of camera A are used as the probe set, and remaining 649 of camera B are
used as gallery (also containing the 100 people in the probe set).

Evaluation protocol All the quantitative results are reported in standard Cumulated
Matching Characteristics (CMC) curves. The CMC curve is a plot of the re-identification
rate with respect to the rank [17]. We randomly partition the dataset into two even parts, for
training and testing respectively, without overlap on person identities. Im ages from a cam-
era view are used as probe and those from a different camera view as gallery. Each probe
image is matched with every image in gallery, and the rank of correct match is obtained.
Rank-k matching rate is the expectation of correct match at rank k, and the cumulated values
of recognition rate at all ranks is recorded as CMC result.

Parameter settings All orginal images are resized to 128 × 48 pixels for later feature
computation. We set the subspace dimension m = 315 for the VIPeR dataset and m = 150
for the PRID dataset. The regularization parameters are set as λ1 = 0.001 and λ2 = 0.001.
The pre-defined constant μ for similarity fusion of different feature levels is set to 0.5 by
default. To make a convincing comparison, we repeat a random partition of training and test
set 10 times, then evaluate and report the expectation of recognition results.

5.2 Strategy evaluation

We assess the effect of proposed subspace learning strategy in Section 5.2.1. Effects of
feature level fusion is discussed in Section 5.2.2.

5.2.1 Subspace learning evaluation

The distinctive feature representations consisting of concatenating complementary feature
descriptors are high-dimensional, which result in a prohibitive computational cost. An alter-
native way is to transform the original space to a low-dimensional subspace that maintains
the computational cost much more acceptable and enforces features from the same indi-
vidual to be closer than features from different individuals yet improves the results. Local
Fisher Discriminant Analysis (LFDA) [34] is applied in [16] and proved as a particularly
suitable approach. The image sequence for each person displays multi-modality due to
occlusions, background and illumination variations. LFDA overcomes the bias of Fisher
Discriminant Analysis (FDA) [7] methods and instead preserves the local data structure
during the embedding process. The transformations for each pair of probe and gallery indi-
viduals are utilized for a better feature representation, and differently from [16], in our
experiments, we employed a different XQDA [23] subspace learning method.

Based on our feature extraction methods in two levels, we evaluate the proposed sub-
space using XQDA [23] with original feature space and Local Fisher Discriminant Analysis
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(LFDA) [34] representation space. Table 1 illustrates the experimental results using sub-
space learning XQDA of the feature representation. As can be seen from Table 1, compared
to the original feature space and the transform of top linear transformation algorithm LFDA,
our employed algorithm reveals greater performance in the matching result. We attribute
the improvement to the implementation of the subspace learning strategy. Because of the
advanced results, we use XQDA in the rest of our experiments in this paper.

5.2.2 Feature level fusion evaluation

Computation cost is the bottleneck when concatenating different features, so researches
often select the most effective features. Ensemble of method both in feature and extraction
[51] is a popular field. We assume that different levels of features embrace complemen-
tary useful information, so we fuse the patch-level and stripe-level feature. Of course, in
our consideration, the fusion of other effective features can also improve the results. Our
experimental exploration is to highlight the contributions of complementary feature fusion.
Figure 3 shows the CMC curve of average matching rates on VIPeR dataset [9]. In the fig-
ure, we can conclude that the fusion of our choosing two levels of feature representations
achieves better performance than the use of only one type of feature representation.

The obvious improvement of matching result shows the effect of feature fusion. The two
level of features, consisted of color and texture descriptor, help each other in detailed and
invariant information and improve 2.7% and 4.5% at rank-1 accuracy respectively compared
to stripe-level and patch-level only.

5.3 State-of-the-art comparisons

In this section, we give a comprehensive evaluation on our proposed method. The over-
all results of our method and the comparison with related dictionary learning methods
and state-of-the-art approaches are analyzed on the VIPeR and PRID 2011 dataset in
Sections 5.3.1 and 5.3.2.

5.3.1 Comparison with dictionary learning methods

We evaluate the performance of the top dictionary learning methods for person re-
identification. The recent results of learned dictionaries reported on VIPeR dataset includes
SSCDL [26], CPDL [37], SLDDL [14], ISR [24], UMDL [35]. The results on the VIPeR
dataset are shown in Table 2. Statistics in the table shows that the recent UMDL [35] and
CPDL [37] obtain better recognition rate than the other former proposed method. It is valu-
able to highlight that the UMDL [35] is a novel cross-dataset transfer learning approach and
it is unsupervised in the sense that the target dataset is completely unlabelled which does not
rely on manually labelled data any more thus has a much larger application prospect than
the supervised ones that largely rely on the manually labelled data. However, the recognition

Table 1 Re-identification
accuracy (%) evaluation of
subspace learning on the VIPeR
dataset

Method rank=1 rank=5 rank=10 rank=20

Original 35.6 59.8 70.4 86.1

LFDA [34] 37.5 62.4 73.6 88.2

XQDA [23] 45.6 73.5 83.5 92.6The best results in comparison
are in bold
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Fig. 3 Re-identification accuracy comparison of stripe-level only, patch-level only and the fusion model on
VIPeR dataset

accuracy of the unsupervised method UMDL has not achieved the best. We can see from
the results that our dictionary learning method presented the highest matching rate when
compared to these dictionary learning methods on the VIPeR dataset.

When it comes to the PRID dataset, similarly to the VIPeR dataset, we collect nearly
all the reported results of dictionary learning methods for the person re-identification prob-
lem (to the best of our knowledge). Top reported results consists of SSCDL [26], SLD2L
[14], ISR [24], UMDL [35], Kordirov’s [18]. According to the results on the PRID dataset
shown in Table 3 and similarly to the results on the VIPeR dataset, we achieve improved
performance when compared to these dictionary learning methods. As matter of fact, we
improved the best reported rank-1 accuracy by 1.7% and reached the best rank-1 matching
rate at 26.9% reported in literature.

Table 2 Re-identification
accuracy (%) evaluation of the
learned dictionaries on the
VIPeR dataset

Method rank=1 rank=5 rank=10 rank=20

SSCDL [26] 25.6 53.7 68.1 83.6

CPDL [37] 34.0 64.2 77.5 88.6

SLD2L [14] 16.9 41.2 58.1 79.0

ISR [24] 27.0 49.8 61.2 73.0

UMDL [35] 31.2 – – –

Ours 45.6 73.5 83.5 93.6The best results in comparison
are in bold
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Table 3 Re-identification
accuracy (%) evaluation of the
learned dictionaries on the PRID
dataset

Method rank=1 rank=5 rank=10 rank=20

SSCDL [26] 4.8 16.0 32.6 48.4

SLD2L [14] 8.8 22.8 39.2 58.6

ISR [24] 17.0 34.4 42.0 54.3

UMDL [35] 24.2 – – –

Kordirov et al. [18] 25.2 51.9 62.9 71.6

Ours 26.9 53.7 63.7 73.5The best results in comparison
are in bold

5.3.2 Comparison with the state-of-the-art

We compare our proposed approach with a large number of state-of-the-art method includ-
ing the best reported approaches on the exploration of metric learning and feature extraction
on both the VIPeR and PRID dataset.

VIPeR dataset Table 4 shows the matching rate for different methods reported on the
VIPeR dataset including approaches based onmetric learning [19, 23, 25, 25, 33, 37, 42, 42],
and feature methods [23, 27, 38, 44, 50]. It is worth noticing that the ECM [18, 27, 47, 48]
uses an ensemble of color features and achieves 38.9% of rank-1 accuracy better than other
method on the exploration of noval feature extractions. We also apply a strategy of multiple
features and have a broader range both in feature type and selection of extraction region. In
Null Space [47] method, images of the same person are collapsed into a single point thus
minimizing the within-class scatter to the extreme and maximizing the relative between-
class separation simultaneously and reaching 42.3% of rank-1 accuracy, but differently, we
try to transfer the feature space into a common subspace and than learn a dictionary for
sparse coding. According to the results, the proposed method reaches accuracy of 45.6% at
rank-1 and best results in low ranks, i.e,rank-1 to rank-10, only surpassed by [38] at rank-
20 by the recognition rate of 94.9% more than ours 93.6%. It needs to highlight that it

Table 4 Comparison of
state-of-the-art results on the
VIPeR dataset

Method rank=1 rank=5 rank=10 rank=20

KISSME [19] 25.4 53.3 67.7 82.1

kLFDA [42] 40.7 70.0 81.2 90.8

kCCA [25] 36.8 – 84.5 92.3

ECM [27] 38.9 – 78.4 88.9

SCNCD [44] 37.8 68.5 81.2 90.4

Mid-level [50] 29.1 52.5 67.1 80.0

Shi et al. [38] 31.1 68.6 82.8 94.9

CPDL [37] 34.0 64.2 77.5 88.6

Liu et al. [23] 40.0 – 80.5 91.1

Zhang et al. [48] 42.7 – 84.3 91.9

Null Space [47] 42.3 71.5 82.5 92.1

Ours 45.6 73.5 83.5 93.6The best results in comparison
are in bold
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Table 5 Comparison of
state-of-the-art results on the
PRID dataset

Method rank=1 rank=5 rank=10 rank=20

KISSME [19] 10.2 26.1 37.4 53.2

kLFDA [42] 19.7 44.9 56.4 65.9

kCCA [25] 14.5 34.3 46.6 59.1

Kodirov et al. [18] 25.2 51.9 62.9 71.6

Ensemble [33] 17.9 – 50.0 62.0

KCCA [25] 15.0 – 38.0 50.0

Ours 26.9 53.7 63.7 73.5The best results in comparison
are in bold

needs more attention in lower ranking results since lower ranks makes more sense in real
surveillance environment. And in this case, our approach impressively outperforms all the
other former existing approaches.

PRID dataset As evidenced by the results Table 5 and similarly to ons on the VIPeR
dataset, among the reported experiment results of the state-of-the-arts, KISSME [19],
kLFDA [42], kCCA [25], Kodirov’s [18], Ensemble [33] and EIML [25] on the single-
shot scenery of PRID 2011 dataset, our method of using dictionary learning with viewpoint
invariant representations produces favorable performance with the best results of 26.9% at
rank-1 recognition rate for the person re-identification problem. Furthermore, the similar
performances on the public challenging datasets, the VIPeR and the PRID 2011 dataset,
demonstrate the advantage of our overall learning strategy.

5.3.3 Discussion

Notice that our proposed viewpoint invariant dictionary with the fusion of stripe-level
and patch-level cross-view variation suppression representations improves re-identification
accuracy with respect to other state-of-the-art methods. The proposed method increases
from 42.7% to 45.6% and 25.2% to 26.9% at rank-1 on VIPeR and PRID dataset respec-
tively. The important thing we want to highlight is the complementation of different feature
levels improve the representative ability of feature descriptors. Subspace learning and dictio-
nary learning methods both effectively obtain the more proper distance metric of individual
pairs, which contribute to our experimental improvements in the matching rate.

6 Conclusion

In this paper, we have presented an effective way to re-identify persons in non-overlapping
cross-view cameras. We take different levels of feature representations into consideration
and fuse them instead of only using one level of feature descriptor. After transferring
the high-dimensional feature space into a common subspace, we learn a single viewpoint
invariant dictionary and sparse codes for both camera views. With cross-view invariant and
distinctive dictionaries, we show our method outperforming other state-of-the-art methods
for the person re-identification problem in our experiments on publicly challenging datasets.
Due to the time cost of our training process, we plan to extend our work for optimizing our
training and testing process to make it more computationally efficient. In addition, due to
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the small number of labeled data, we would like to investigate the technique to extend our
supervised dictionary learning method to a semi-supervised one with only a few manually
labelled data to solve the re-identification problem in our future works.
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