
Multimed Tools Appl (2018) 77:12073–12094

Effective and efficient similarity searching in motion
capture data

Jan Sedmidubsky1 ·Petr Elias1 ·Pavel Zezula1

Received: 5 October 2016 / Revised: 9 May 2017 / Accepted: 22 May 2017 /
Published online: 30 May 2017
© Springer Science+Business Media New York 2017

Abstract Motion capture data describe human movements in the form of spatio-temporal
trajectories of skeleton joints. Intelligent management of such complex data is a challeng-
ing task for computers which requires an effective concept of motion similarity. However,
evaluating the pair-wise similarity is a difficult problem as a single action can be performed
by various actors in different ways, speeds or starting positions. Recent methods usually
model the motion similarity by comparing customized features using distance-based func-
tions or specialized machine-learning classifiers. By combining both these approaches, we
transform the problem of comparing motions of variable sizes into the problem of com-
paring fixed-size vectors. Specifically, each rather-short motion is encoded into a compact
visual representation from which a highly descriptive 4,096-dimensional feature vector is
extracted using a fine-tuned deep convolutional neural network. The advantage is that the
fixed-size features are compared by the Euclidean distance which enables efficient motion
indexing by any metric-based index structure. Another advantage of the proposed approach
is its tolerance towards an imprecise action segmentation, the variance in movement speed,
and a lower data quality. All these properties together bring new possibilities for effective
and efficient large-scale retrieval.

Keywords Motion capture data retrieval · Effective similarity measure · Efficient
indexing · k-NN query · Motion image · Convolutional neural network · Fixed-size motion
feature

� Jan Sedmidubsky
xsedmid@fi.muni.cz

1 Masaryk University, Brno, Czech Republic

DOI 10.1007/s11042-017-4859-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-4859-7&domain=pdf
mailto:xsedmid@fi.muni.cz

12074 Multimed Tools Appl (2018) 77:12073–12094

1 Introduction

Computer-aided analysis of motion capture data (shortly motion data) remain interdisci-
plinary challenges that link together information retrieval, human computer interaction,
robotics, artificial intelligence, security, entertainment, gaming industry, medicine, and
sport. Motion data can be captured from multiple sources, for example, from video data [10,
25, 26], accelerometers in mobile devices [30], or from optical sensors [33, 43]. In this
paper, we primarily focus on data obtained from optical-based sensors that estimate 3D
positions of human body joints in a frame-by-frame fashion. Measuring similarity between
such spatio-temporal data is a difficult task as a single action, e.g., kicking, can be per-
formed by various actors in different styles. The actions can also vary in their lengths,
speeds of performances, or initial body configurations. Given the fact that the similarity
is also application dependent, there is no established global method for human motion
comparison [45].

To effectively compare two motion sequences, both of them should have comparable
lengths. For example, a 5-minute exercise sequence cannot be considered globally similar to
a 2-second action of jumping. To compare meaningfully long motions, various segmentation
techniques [21, 22, 42, 47] are applied to divide long motion sequences into shorter actions.
Such segmentation techniques can generate a huge number of different-length motions that
need to be efficiently compared against a query motion.

In this paper, we introduce a new effective and efficient similarity method for searching
in motion data. This method extracts highly descriptive 4,096-dimensional feature vectors
for rather short motions of various lengths. The fixed-size vectors can be efficiently com-
pared by the Euclidean distance and indexed to speed-up the retrieval process by orders of
magnitude, which makes the proposed method suitable for large-scale similarity search.

2 Related work

The majority of tasks such as action [12, 16] and activity [27–29] recognition, subsequence
searching [41, 42] and stream annotation [34, 56] require motion data to be firstly pre-
processed in order to extract descriptive features. These motion features are then either
compared for similarity by distance functions or processed by machine-learning techniques,
typically to learn a classification model. The following subsections describe various types
of known motion features and the ways of their comparison, outline techniques for efficient
similarity searching, and summarize the contributions of our approach.

2.1 Motion features

Human motions are modeled using a simplified skeleton figure represented by joints that
are virtually connected by bones. The positions of joints are estimated for each video frame
in the form of 3D coordinates. These coordinates are simply used as features [3, 48] as they
keep the absolute body viewpoint in a captured space. To become invariant of the absolute
positioning, original coordinates are, e.g., relativized to the skeleton centric space [1, 8, 50]
or transformed to joint angle rotations [16, 39, 41], that furthermore benefit from a compact
representation and invariance towards the size of the human skeleton.

Multiple features can be combined together to focus on more aspects of motions simul-
taneously, such as turning, accelerating or moving horizontally [3, 9, 34]. On the other
hand, the amount of features can be narrowed to lower performance demands while keeping

Multimed Tools Appl (2018) 77:12073–12094 12075

reasonable effectiveness. In [8, 15], information of only five and three joints is considered
while still acquiring high accuracy in action recognition.

To reduce the feature space and simplify indexing, features are quantized into discrete
classes [32]. For instance, Müller et al. [34] extract 39 feature values of various kinds and
carefully quantize each of them into {0, 1}. A similar idea is used by Ijjina et al. [15] who
quantize distances between specific pairs of joints based on predefined thresholds. However,
finding such thresholds is difficult and highly domain-dependent. Liang et al. [24] avoid
determining thresholds by feature quantization into a histogram of 84 spherical bins.

The most relevant approach to our work is introduced by Milovanovic et al. [31] who
represent motions by visual features to reveal similar walking patterns. However, they omit
data normalization which results in a poorer representation power of visual features, and
thus rendering their method less effective. In our preliminary work [13], we show that data
normalization is of high importance and brings better results for general action recognition.

2.2 Comparing motions based on similarity

Motion features can be compared for similarity by (1) distance-based functions to obtain a
list of the most similar motions with respect to a query motion or (2) processed by learning-
based methods such as neural networks to obtain the classification of the query motion.

Distance-based methods utilize a distance function defining the measure of (dis)simila-
rity between any pair of motions. Similarity can be directly compared on the level of multi-
dimensional spatio-temporal trajectories [44, 51]. The most widely used function is the
Dynamic Time Warping (DTW) [2, 41] and its variants [18] that quantify how good is a
match between a pair of time series. The drawback of DTW is its quadratic complexity
and inability to discover semantics in the inherent variability of motions, unlike approaches
involving machine learning. Among other distance-based measures, the Bhattacharyya dis-
tance is used to compare pose-level histograms [2], the Martin distance is applied in Linear
Dynamical Systems [7], or the Euclidean distance compares rotation angles [14]. Such
methods support indexing and do not incorporate a time-consuming training phase. They are
convenient for a wide range of applications, such as efficient large-scale query-by-example
retrieval [41], motion classification [7, 54] using a k-NN classifier, or cluster analysis [24].

Machine learning methods generally employ a training phase to learn a classification
model from provided training data. Effectiveness of the model is proportional to the qual-
ity and amount of the provided data. Convolutional neural networks currently constitute
the state-of-the-art in machine learning, for example, Du et al. [12] achieve the best results
by classifying motion data using a deep hierarchical recurrent neural network. Neural net-
works have usually a complex architecture and high-performance demands, but can also be
very efficient when a simple architecture is chosen, e.g., a single-hidden layer feed-forward
neural network annotating motion streams nearly in real time [8]. Besides neural networks,
Support Vector Machines (SVM) are also widely used [6, 16, 46] for classifying motions.

The more detailed analysis of distance-based and machine learning methods applied to
motion data can be found in recent papers [38, 45].

2.3 Content-based searching

Searching is a very important operation for motion capture data. It requires a convenient
feature representation and effective method for the pair-wise similarity comparison [52]. A

12076 Multimed Tools Appl (2018) 77:12073–12094

simple way of searching constitutes the evaluation of k-nearest neighbor queries using a
sequential scan, e.g., to recognize the class of query action [2, 34].

Searching becomes challenging when dealing with large volumes of motion data. For
instance, the task of subsequence matching [17, 49] requires long motion sequences to be
partitioned into a large number of short motion parts that need to be efficiently compared
with a short query motion. In general, partitioning techniques [5, 42, 47] can generate mil-
lions of motion instances making the sequential scan inapplicable. To significantly speed-up
similarity searching in large databases, scalable metric-based index structures can be easily
utilized due to their ability of being extensible [55]. In the field of motion data, the trie-based
structure is used to efficiently access motion features in [17], M-Index is used to perform
fast subsequence retrieval on key poses [41], or KD-Trees are utilized in [20]. Traditional
memory index structures are hardly usable when motion data do not fit into main memory.
In this paper, we also target the issue of scalability and employ a very efficient disk-oriented
approach to approximately search a 20-million motion database in real time.

2.4 Our contribution

In this paper, we introduce a novel solution for searching in large volumes of motion data.
The core is formed by an effective motion similarity measure that combines advantages of
both distance-based and machine learning methods. The specific contributions of this paper
are the following:

– Image-based motion representation – several variants of motion normalizations, such
as skeleton positions, orientations and sizes, are proposed to transform motion data into
images;

– Motion similarity measure – effective 4,096-dimensional feature vectors are extracted
from motion images using a convolutional neural network and compared by the
Euclidean distance;

– Indexing and large-scale search – an applied index structure enables real-time search-
ing in a database containing 20millions of short motions.

The proposed solution has a potential to be employed in a wide range of motion
retrieval applications due to several positive properties such as indexability or tolerance
towards different speed of execution or imprecise segmentation (i.e., to an added noise
or partly occluded content). Furthermore, a thorough experimental evaluation in the terms
of effectiveness and efficiency presents challenging results, compared to state-of-the-art
methods.

3 Visualization-based similarity

We propose a new concept of encoding 3-dimensional joint trajectories into images. Such
visualization is conveniently combined with computer vision methods for content-based
image retrieval. Namely, a convolutional neural network [19] is used to detect and recognize
key visual patterns in images. In particular, the last hidden layer of the network is used
to extract a 4,096-dimensional feature vector from each image. These fixed-size features
effectively represent original motions of variable lengths and can be efficiently compared for
similarity by metric functions, such as the Euclidean distance. In addition, metric functions
can be indexed using metric-based structures, such as PPP-Codes [35], to retrieve query-
similar feature vectors very efficiently. The proposed visualize-train-extract-index-retrieve

Multimed Tools Appl (2018) 77:12073–12094 12077

concept is depicted in Fig. 1 and introduces a generalized view on comparing similarity in
motion data, with a possible applicability in large-scale searching, filtering, classification
or clustering. In the following subsections, we formally introduce motion data and describe
the processes of motion visualization, feature extraction and indexing.

3.1 Motion data definition

Motion data are represented as trajectories of the specific body-joint positions in a 3D space.
Every motion m (e.g., a simple gesture, action, or complex activity) is an ordered sequence
(p1, . . . , pn) of poses pi (i ∈ [1, n]), where n ∈ N denotes the motion length in terms of the
number of frames. Each pose pi represents the skeleton configuration in a given frame by
an ordered sequence (j1, . . . , jl) of joint coordinates ji = (ji[x], ji[y], ji[z]), where l ∈ N

represents the number of tracked joints. The motion data used in experiments recognize
l = 31 different joints on the human body. Individual joints are visualized by a simplified
skeleton and ordered within the kinematic tree in Fig. 2. For clarity, we denote pelvis, left
hip joint and right hip joint by abbreviations jroot , jlhip and jrhip , respectively.

3.2 Motion data normalization

Normalization neutralizes differences in motions which are performed similarly but in dif-
ferent contexts, such as a different location, facing direction or by humans of different
bodies [37]. Normalization is applied on the level of individual poses by changing their
original coordinates throughout the whole motion m to acquire a normalized motion m. We
altogether provide 2 · 2 · 2 variants of position, orientation and skeleton-size normalizations
that can be combined together. Whether to apply the specific normalization or not always
depends on requirements of a particular application.

3.2.1 Position normalization

Intuitively, position normalization aligns variously positioned motions from the real-world
space into a specific location in some virtual space. This helps focus on the way howmotions
are performed rather than where they are performed. We can either force all the motions to
start at the same initial position, or we can fix all their poses to that position:

– First-pose position normalization – the same starting position of root is assured for
every motion by shifting the skeleton configuration of (1) the first pose so that its

Fig. 1 Flowchart diagram that demonstrates encoding motion data into images, extracting their 4,096D
feature vectors using a convolutional neural network, indexing the extracted features, and retrieving a ranked
list of the most similar motions with respect to a query

12078 Multimed Tools Appl (2018) 77:12073–12094

Fig. 2 The kinematic tree and corresponding skeleton model

root joint gets the position (0, 0, 0) and (2) other poses relatively to the first one.
This normalization can be useful, for example, when we need to compare long-jump
performances.

– All-poses position normalization – actors are attached by their root to the origin (0, 0, 0)
throughout the whole motion in every single pose. The newly obtained space, referred
to as the skeleton-centric position-invariant coordinate system, has an advantage of
reducing the tracked-space size.

Publicly available motion capture datasets do not usually contain movement categories
that can be directly distinguished by the absolute traveled distance (e.g., short jump and long
jump). For this reason, it is practical to apply all-poses position normalization to reduce the
size of the tracked space without losing much of original information.

3.2.2 Orientation normalization

Orientation normalization unifies the direction which the skeleton is facing. Such normal-
ization assumes the y-axis is pointing upwards. All joints within a pose are rotated around
the y-axis so that the subject faces the positive x-axis and the hips are placed parallel to the
z-axis. The angle of rotation ϕ of a given pose is defined as:

ϕ = arctan

(
jlhip[x] − jrhip[x]
jlhip[z] − jrhip[z]

)
.

To rotate the whole skeleton, each joint coordinate ji is transformed in a way that the y-
position remains unchanged and x- and z-positions are rotated by angle ϕ:

(ji[x], ji[y], ji[z]) =
⎛
⎝ji[x]

ji[y]
ji[z]

⎞
⎠

T ⎛
⎝ cos(ϕ) 0 sin(ϕ)

0 1 0
−sin(ϕ) 0 cos(ϕ)

⎞
⎠ .

Similarly as in position normalization, we distinguish two different variants:

– First-pose orientation normalization – the skeleton is rotated in each pose according to
fixed rotation angle ϕ computed in first motion pose p1. The actor initiates the motion

Multimed Tools Appl (2018) 77:12073–12094 12079

facing the direction of the positive x-axis and, afterwards, the body orientation changes
as in the original motion. This is useful, for example, when we want to distinguish
turning left and right.

– All-poses orientation normalization – the skeleton is rotated in each pose individually
according to its rotation angle. Since the skeleton is facing the same direction all the
time, the turning aspect is not considered anymore. This can be convenient, for example,
when considering jogging and jogging in circle as the same movement category.

An example of the visualization of position and orientation normalizations is illustrated in
Fig. 3.

3.2.3 Skeleton size normalization

As people vary in sizes, joint trajectories for the very same movement performed by various
actors can be significantly different. To be able to focus only on nuances in movement
execution, it is vital to work with normalized skeletons. Each skeleton bone can be scaled
to an average limb size over a given population.

– Normalized skeleton – starting from the root joint as parent joint jparent , each coordi-
nate of its child joint jchild (i.e., joint connected with the root by a bone) is adjusted
according to the average bone length bparent,child connecting these joints as:

jchild = (jchild + α · (jchild − jparent)),

where α = bparent,child/‖jchild − jparent‖ is the ratio between the average and the
actual bone length. Based on the kinematic tree (see Fig. 2), coordinates of other joints
are recursively adjusted.

– Original skeleton – skeletons keep the original proportions of their limbs, which is
useful when motion data are categorical with respect to a body or limb size.

3.3 Motion data visualization

We effectively represent each normalized motion as a static image, where pixel colors rep-
resent quantized positions of normalized joint coordinates. Seeing this image as a matrix
of pixels, a single column represents the skeleton configuration at a given frame while a
row illustrates how the position of a given joint changes in time. The color of each pixel is
encoded using the three-compound RGB color space with 8 bits (i.e., 256 values) per chan-
nel to conveniently approximate (quantize) the nearly continuous space into 2563 bins (i.e.,
256 bins for each of x, y and z axis). The image is constructed by normalizing the motion,

Fig. 3 Position and orientation normalizations of two similar skeleton configurations

12080 Multimed Tools Appl (2018) 77:12073–12094

quantizing each normalized joint coordinate into a given bin, transforming each pose into a
vertical color stripe (i.e., the column of the image matrix) and concatenating all the stripes in
order of poses. The whole transformation process of motion m = (p1, . . . , pn) is illustrated
in Fig. 4 and consists of the following four steps.

1. Motion normalization – poses of motion m are optionally normalized in their position,
orientation and size to obtain normalized motion m = (p1, . . . , pn) with normalized
coordinates (j [x], j [y], j [z]) of each joint j .

2. Quantization of coordinates – normalized coordinates in each pose are then quantized
into the space [0, 255]3 of 16M bins. New quantized coordinate (ĵ [x], ĵ [y], ĵ [z]) of
joint j is calculated as:

(ĵ [x], ĵ [y], ĵ [z]) =

⎢⎢⎢⎢⎣ 255

cmax − cmin

·
⎛
⎝j [x] − cmin

j [y] − cmin

j [z] − cmin

⎞
⎠

T
⎥⎥⎥⎥⎦ ,

cmin = min
{
min{j [x], j [y], j [z]}| ∀j ∈ p,∀p ∈ m

}
,

where cmin and cmax are global minimum and maximum values of normalized joint
coordinates, respectively.

3. Single pose visualization – pose p̂ = (
ĵ1, . . . , ĵ31

)
with quantized coordinates is visu-

alized as a vertical stripe image of 31 pixels, where each pixel i ∈ [1, 31] is assigned
RGB color R = ĵi[x],G = ĵi[y] and B = ĵi[z]).

4. Motion visualization – stripe images of individual poses (p̂1, . . . , p̂n) are concatenated
in the same order to construct the motion image of 31 × n pixels.

The proposed image representation compactly keeps most of the characteristics of the
original motion. Since images encode motions in a quite accurate fashion, it is possible
to reconstruct original motions with a small relative joint coordinates error. Assuming the
all-poses-position normalization and average person height of 180 cm, relative joint coordi-
nates can be reconstructed with the error up to 7 or 0.03 millimeters by using 8- or 16-bit
color representation. The 8-bit representation is sufficient since its reconstruction error is
comparable to the tracking error of nowadays motion capturing technologies.

Images of motions from different categories look diversely – this is especially practi-
cal for the future detection of visual patterns by a convolutional neural network. Examples
of several images generated for distinct motion categories are visualized in Fig. 5. Motion
images might be eventually helpful for humans to discover distinctive motion characteristics
at the first sight (e.g., repetition of sub-motions or rapid movement changes). Moreover, the
time component can be easily adjusted by resizing the images. However, the main advan-
tages are that (1) such images can be effectively processed by neural networks that can learn

Fig. 4 Transformation of a single pose into a vertical stripe image (a–c) and concatenation of stripe images
of all poses into a motion image (d)

Multimed Tools Appl (2018) 77:12073–12094 12081

Fig. 5 Six motion images belonging to three categories. Repeating movement patterns can be also discovered
by humans at the first sight, like in the first two images

and reveal visual patterns, (2) fixed-size features extracted by the neural network can be
compared for similarity.

3.4 Extraction and comparison of fixed-size feature vectors

We compute similarity of motion images by extracting their 4,096-dimensional feature vec-
tors that are compared by the Euclidean distance. These fixed-size vectors are extracted
using a reference model of convolutional neural network.1 This model is a replication of
well-known Krizhevsky’s [19] model that consists of 5 convolutional and 3 fully connected
layers. It is trained on 1M ImageNet photographs and classifies an input image of 256×256
pixels into one of 1 k categories.

We utilize the reference model, which performs very well on the domain of photographs,
and fine-tune it to also recognize motion images with a high accuracy. In particular, we
resize each motion image to the input size of 256 × 256 pixels and change the network
layer of 1K output neurons to 122 motion categories used in experiments. The advantage
of pre-learnt filters (i.e., the weights initialized in lower levels of the network) trained on
1M photographs is not lost as the learning phase affects more significantly the uppermost
layers. Such tuning is done by feeding the network with application-specific motion images
and their corresponding category labels.

3.4.1 Feature extraction

The response of the last hidden layer of the network is known as the DeCAF feature [11].
This feature represents a 4,096-dimensional vector of real numbers which carry great
semantic information – the feature vectors compared by the Euclidean distance form the
feature space that clusters similar images together. This is even true for feature vectors
belonging to categories on which the network has never been explicitly trained. The spe-
cific results are reported within the experimental evaluation. The main advantage of feature
vectors is their possibility to be compared by the Euclidean distance for similarity, which
enables their indexing and utilization in a wide variety of applications.

To extract a 4,096-dimensional feature vector for each motion image, we utilize the GPU
implementation, which further decreases extraction time by order of magnitude, compared
to the CPU implementation. The extraction time using a single GPU card takes 25ms on
average.

Compared to normalization and visualization of motion data into images, the feature
extraction process is the main bottleneck from the time complexity point of view. We can

1https://github.com/BVLC/caffe/tree/master/models/bvlc reference caffenet.

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

12082 Multimed Tools Appl (2018) 77:12073–12094

extract about 40 feature vectors from motion images per second using a single GPU card.
Considering the data sampling frequency of 120Hz and a sliding window of average length
of 2 seconds (i.e., 240 frames), we are able to gradually shift the sliding window by 3 frames
and still generate the feature vectors in real time. This demonstrates the possibility of our
approach to be also usable in some real-time motion tracking applications.

3.5 Large-scale retrieval by metric-based indexing

We evaluate a k-nearest-neighbor (k-NN) query to search for the most similar motions. Hav-
ing a query motion, we extract its 4,096-dimensional feature vector, compute the Euclidean
distance between the query and all vectors stored in a database, and present the k most simi-
lar vectors as the query result. Using a single CPU (i7 960 at 3.2GHz) we can approximately
compute 250,000 Euclidean distances per second. By applying a sequential scan we can
search in real time a database of only 250K motions. To search in much larger databases in
less than one second, we need to organize the database features within an appropriate index
structure.

As the Euclidean distance is a metric function, we can use any metric-based search
technique to index the database features – see [55] for a survey. We further focus on disk-
oriented structures that do not require to keep the features in main memory. For example,
the database of 20M feature vectors occupies about 328GB (approximately 16KB per vec-
tor) and thus do not fit into main memory. On the other hand, if the features are stored on
disk, the primary bottleneck is their reading from disk into main memory for each query.

To reduce the number of disk read operations by orders of magnitude, we decide to uti-
lize a metric-based approximate search structure, called the PPP-Codes [35]. This index
structure defines a mapping of the feature vectors onto small codes composed of pivot per-
mutation prefixes from several pivot spaces. These codes are kept in memory; given a k-NN
query, the PPP-Codes algorithm combines candidate sets from independent pivot spaces
into a small but very accurate candidate set. Only vectors from this candidate set are read
from the disk and refined. The technical details about this structure and search process can
be found in [35].

4 Experimental evaluation of the similarity method

We thoroughly analyze the proposed similarity method on a search scenario by evaluat-
ing k-nearest neighbor queries from both effectiveness and efficiency points of view. We
analyze the impact of different motion normalizations and variously fine-tuned neural net-
work models on search effectiveness. We also analyze properties of the space generated by
the proposed method and evaluate its sensitivity to noisy data. Then we analyze the search
efficiency and compare the results against recent approaches.

4.1 Dataset

The search scenario is evaluated on the publicly available HDM05 [33] motion capture
dataset. This dataset contains 324 motion sequences performed by 5 distinct actors. The
dataset authors also provide the ground truth, which categorizes 2,345 manually segmented
motions (i.e., semantically meaningful parts of motion sequences) into 130 categories of
specific movement actions, such as the turn left, sit down on a chair, or clap with hands five
times. The average action length is 2.17 seconds – it corresponds to about 260 frames with

Multimed Tools Appl (2018) 77:12073–12094 12083

the dataset sampling frequency of 120Hz. We select the HDM05 dataset because it contains
the largest number of 130 categories when compared to the others, such as CMU2 (30
categories), NTU RGB+D [43] (60 categories), MSR [23] (20 categories) or MHAD [36]
(11 categories). Moreover, it is characterized with a subtle categorization, containing for
example separate classes for kicking with left or right leg, to the front or to the side. For
these reasons, the HDM05 dataset is very challenging for evaluating the search scenario.

To evaluate k-nearest neighbor queries for higher values of k, we ignore 8 categories with
less than 10 motion instances. Thus our resulting ground truth contains 122 categories with
2,328 motions in total. We denote such ground truth as HDM05-122.

4.2 Methodology

We evaluate the search accuracy by analyzing results of k-nearest neighbor (k-NN) queries.
Firstly, the HDM05-122 ground truth has to be preprocessed in order to:

1. Generate motion images according to the specific normalization method;
2. Divide the generated motion images into training and test sets;
3. Fine-tune the neural network model by the training motion images;
4. Extract a 4,096-dimensional feature vector for both sets of training and test images

based on the fine-tuned network model.

The test feature vectors are then used as query object arguments of k-NN queries that are
evaluated with five settings of k ∈ {1, 3, 5, 10, catmax}, where catmax is a special case
determined for each query independently as the maximum number of relevant objects to
be possibly retrieved, i.e., catmax value corresponds to the number of training objects that
belong to the same category as the query object.

Each k-NN query is then evaluated by searching for the most similar training vectors.
The precision of the query answer is traditionally calculated as a ratio between the number
of retrieved vectors of the same category as the query object and the number of all retrieved
vectors. Note that if k = catmax , the precision corresponds to the same value as the recall,
i.e., to the ratio of all relevant objects retrieved. The global search accuracy is then measured
as an average precision over all k-NN queries.

To analyze the influence of fine-tuning, we consider four different portions of training
data: 0%, 50%, 90% and 100%. In case of 50/90%, the 2/10-fold cross validation pro-
cedure is adopted to fine-tune 2/10 instances of neural network models, respectively. On
the other hand, special cases of 0% and 100% are evaluated on the basis of leave-one-out
procedure. The case of 100% of training data is used to fine-tune the network model on
all HDM05-122 motion images, while the 0% case uses the not-tuned network model, i.e.,
the reference model trained on ImageNet images (see Section 3.4). In all four cases, all the
HDM05-122 motions are gradually used as test queries.

4.3 Effectiveness of normalization

A suitable selection of motion data normalization influences the search accuracy. Figure 6
presents precision values of 8 variants of normalizations by combining different settings
of the position, orientation and skeleton normalization. The results are evaluated using
k-NN queries on both 100%-fine-tuned and not-tuned features (features extracted using

2http://mocap.cs.cmu.edu/.

http://mocap.cs.cmu.edu/

12084 Multimed Tools Appl (2018) 77:12073–12094

 40

 50

 60

 70

 80

 90

 100

1 3 5 10 catmax

P
re

ci
si

on
 (

%
)

k

(a) Not-tuned model

Pf_Of_So
Pf_Of_Sn

Pf_Oa_So
Pf_Oa_Sn
Pa_Of_So
Pa_Of_Sn
Pa_Oa_So
Pa_Oa_Sn

 40

 50

 60

 70

 80

 90

 100

1 3 5 10 catmax

P
re

ci
si

on
 (

%
)

k

(b) 100%-fine-tuned models

Pf_Of_So
Pf_Of_Sn

Pf_Oa_So
Pf_Oa_Sn
Pa_Of_So
Pa_Of_Sn
Pa_Oa_So
Pa_Oa_Sn

Fig. 6 Impact of different combinations of normalizations to the precision evaluated using k-NN queries
on (a) not-tuned and (b) fine-tuned features. The first/all (Pf/Pa) pose position normalization is denoted by
thick/thin line, first/all (Of/Oa) pose orientation normalization by solid/dashed line, and original/normalized
(So/Sn) skeleton by red/blue color

the reference model). In particular, the original/normalized (So/Sn) skeleton is denoted by
red/blue color, first/all (Of/Oa) pose orientation normalization by solid/dashed line, and
first/all (Pf/Pa) pose position normalization by thick/thin line. The precision values are
expected to have a decreasing trend with an increasing value of k. Focusing on the not-tuned
model in Fig. 6a, we can observe that:

– The blue lines are always above the red lines of the same thickness and type (i.e.,
the same position and orientation normalization) which emphasizes the importance of
skeleton normalization for the HDM05 dataset;

– All the dashed lines have a higher precision than the solid ones which results in
recommendation to apply the all-pose orientation normalization all the time;

– The first-pose position normalization has slightly better results than centering all the
poses, when fixing the skeleton and orientation normalization.

With a higher value of k, the normalization plays a more and more important role. For
example, by fixing k to 10, the difference between the best (Pf Oa Sn) and worst (Pa Of So)
combination of normalization is almost 14%. A similar behavior can be also observed for
the fine-tuned network models in Fig. 6b. The skeleton normalization is negligibly better
than original skeleton proportions, while the orientation normalization in all poses helps a
lot. The only difference is that centering all the poses achieves slightly better results than
the first-pose position normalization. It is caused by the fact that all the centered poses
utilizes a much smaller space in total and thus the color spectrum within the RGB cube is
more utilized. A better color spectrum utilization has to be learned by the neural network,
otherwise it is not so useful, as confirmed by experiments on the not-tuned model.

To sum up, the experiments show that absolute viewpoints and positions are rather
superfluous and not decisive for general action recognition on the HDM05 dataset. It is
the reason we decide to fix the combination of all-pose position, all-pose orientation, and
normalized-skeleton normalization (i.e., Pa Oa Sn) for the rest of experiments.

4.4 Effectiveness of fine-tuning a neural network

Figure 7 presents the search accuracy of feature vectors that are extracted using network
models on four different portions of training data. In case of 50% and 90% fine-tuned

Multimed Tools Appl (2018) 77:12073–12094 12085

 40

 50

 60

 70

 80

 90

 100

1 3 5 10 catmax

P
re

ci
si

on
 (

%
)

k

Search accuracy for different portions of training data

0%
50%
90%

100%

Fig. 7 Impact of different portions of training data to the search accuracy

models, the precision values are additionally averaged over 2 and 10 measurements (folds),
respectively. As expected, the search accuracy increases as the neural network is fine-tuned
on larger portions of data. On the other hand, differences between precisions of 50%, 90%
and 100% fine-tuned models are relatively small. For example, the difference between 50%
and 100% fine-tuned models is only 9% for k = 1. Note that a steeper precision decrease
of the 50% approach for k = 10 is caused by a limited number of relevant motions in the
training set, which equals to 8.5 on average.

The great advantage of the proposed concept is its ability to extract highly-descriptive
feature vectors even if the neural network is not fine-tuned at all, i.e., the reference model
trained on a completely different domain of 1,000 image categories is used. Although
no motion data are employed for training, the search accuracy surprisingly achieves high
values, e.g., 82.7% for k = 1. In such scenarios where training data are not known,
machine-learning approaches such as [12] cannot be applied at all.

We also show that a fine-tuned network model is robust and can be used to extract
descriptive feature vectors for different kinds of motion actions. In particular, we
extract feature vectors using the existing 100%-fine-tuned model but for 1,464 motions
belonging to other 15 categories (this categorization is specified in [34]). The search
accuracy achieves very high values of 93.9%, 92.1%, 90.7%, 85.8% and 60.2% for
k = 1, 3, 5, 10 and catmax , respectively. These results demonstrate that a single net-
work model can be utilized for various action categories unknown during the training
phase.

4.5 Analysis of space generated by the similarity measure

We analyze the properties of a space generated by the feature vectors that are com-
pared by the Euclidean distance. In particular, we compute the average intra and inter
category distance for each HDM05-122 feature vector extracted using the 100%-fine-
tuned network model. The intra and inter category distances are then averaged over all
objects in the same category and illustrated graphically in Fig. 8. The lower the intra-
category and higher inter-category distance, the better clustering and also search accuracy.
For example, the “cartwheelLHandStart1Reps” category is well recognizable because
it has a very high inter-category distance even if having a quite high intra-category
distance.

12086 Multimed Tools Appl (2018) 77:12073–12094

 0

 10

 20

 30

 40

 50

rotateArm
sBothBackward3Reps

rotateArm
sLForward3Reps

rotateArm
sLBackward3Reps

cartwheelLHandStart1Reps

rotateArm
sRBackward3Reps

squat1Reps

standUpLieFloor

squat3Reps

walk2StepsLstart

jogRightCircle4StepsRstart

sitDownChair

walk2StepsRstart

elbowToKnee3RepsRelbowStart

elbowToKnee1RepsRelbowStart

staircaseUp3Rstart

clap1Reps

standUpSitTable

kickRFront2Reps

jogLeftCircle4StepsRstart

sneak4StepsLStart

shuffle2StepsLStart

jogLeftCircle6StepsRstart

punchRFront2Reps

hopRLeg2hops

sitDownFloor

standUpSitFloor

jum
pDown

staircaseDown3Rstart

throwBasketball

clapAboveHead5Reps

kickLSide1Reps

punchLFront1Reps

jogOnPlaceStartFloor4StepsRStart

punchLSide1Reps

runOnPlaceStartAir2StepsRStart

throwStandingHighR

kickRSide1Reps

depositFloorR

depositM
iddleR

walkOnPlace4StepsRStart

grabLowR

-1

-0.5

 0

 0.5

 1

D
is

ta
nc

e

S
ilh

ou
et

te
 c

oe
ffi

ci
en

t

Clustering properties of feature vectors extracted using the 100% fine-tuned model

Avg intra-category distance
Avg inter-category distance
Silhouette coefficient [-1, 1]

Fig. 8 The difference between average intra and inter cluster distances (left y-axis). The categories are sorted
according to the silhouette coefficient (right y-axis). For better clarity, only a subset of 41 categories out of
122 is illustrated

To determine how well the feature vectors are clustered, we calculate the silhouette coef-
ficient [40]. The silhouette coefficient refers to a method of interpretation and validation of
consistency within clusters of data. The coefficient ∈ [−1, 1] describes how similar a feature
vector is to its own cluster (category) compared to other clusters. A value near 1 indicates
that the feature vector is well matched to its own cluster and poorly matched to neighbor-
ing ones. A value near zero means that the vector is on the border of two clusters, while a
value near −1 suggests moving the vector to another cluster. The silhouette coefficient is
computed for each category by averaging coefficients of the vectors belonging to the given
category and visualized by a yellow color in Fig. 8. The most important observation is that
only 4 categories (“walkOnPlace2StepsRStart”, “hitRHandHead”, “grabLowR” and “grab-
HighR”) out of 122 have the silhouette coefficient within interval [−0.1, 0], i.e., lower than
zero. This means that the other categories are quite well clustered with an average silhouette
coefficient of 0.293, computed over all 122 categories.

4.6 Sensitivity to noisy data

In the following three subsections, we analyze how the proposed similarity method is toler-
ant towards noisy data by means of a decreased data quality, changed movement speed and
slightly cropped motions.

4.6.1 Quality of motion data

We show the elasticity with respect to the input quality of motion data in the terms of dif-
ferent frame-per-second (fps) rates. We simulate a decreasing data quality by reducing the
original 120-fps rate to the 60-, 40-, 20-, 12-, 6-, 3- and 2-fps rate. The inferior-quality
motion of the i-fps rate is obtained by considering only each (120/i)-th frame of the
original motion. We transform all 2,328 HDM05-122 motions to analyze each observed
frame rate separately. We use both 0% and 100%-fine-tuned models to extract feature
vectors from low fps rate motions which are evaluated by 1-NN queries. The results pre-
sented in Fig. 9a show how much a lower fps rate influences the search accuracy. These
results imply that the proposed method is able to search motion data with almost the same

Multimed Tools Appl (2018) 77:12073–12094 12087

 70

 75

 80

 85

 90

 95

 100

 10 100

P
re

ci
si

on
 (

%
)

Frame-per-seconds (log scale)

(a) Data quality

100%
0%

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14 16 18 20

Speedup

(b) Movement speed

100%
0%

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25

Imprecise segmentation (%)

(c) Imprecise segmentation

100%
0%

Fig. 9 Analysis of sensitivity towards a (a) decreasing data quality, (b) quicker movements and (c) imprecise
segmentation with respect to the 1-NN precision (evaluated using the 0% and 100%-fine-tuned network
models)

precision even if the original 120-fps rate is decreased 10 times. Both 0% and 100%
scenarios follow the same trend line, which can be also observed in the following two
experiments.

4.6.2 Different movement speed

To analyze the elasticity towards a different speed of performed actions, we simulate faster
movements. The faster movements are created by decreasing the original 120-fps rate simi-
larly as in the previous experiment but the accelerated motion is then evaluated against the
original motions. For example, having an original 2-second action of kicking, we only con-
sider every 2nd frame to simulate its two-times faster performance variant. For 2-, 3-, 6-,
10- and 20-faster motions, we evaluate the impact of a different speed to the precision in
Fig. 9b. The results show about the same precision values for motions which are up to 10-
times faster (i.e., 1-, 2-, 3-, 6- and 10-times faster). The precision only slightly drops for
20-times faster motions. This is practical since performing the same type of action as much
as twenty times faster is quite unrealistic scenario. These results imply that the proposed
method is very tolerant to a faster/slower movement performance.

4.6.3 Imprecise segmentation

The HDM05 dataset is already cut into parts that flawlessly correspond to well-segmented
actions (see Section 4.1). However, when automated segmentation methods are used, the
cuts can carry a certain degree of noise causing extra or missing parts in actions. In this
scenario, we show how segmentation mistakes influence the search accuracy. We simulate
an imprecise segmentation in 5 different scenarios by trimming each HDM05-122 motion
by 5, 10, 15, 20 and 25% of the original frames. For example, for the 10-% scenario and
motion of 260 frames, a random part of x ∈ [0, 26] frames is cut from the left side of the
motion and the rest of 26 − x frames is cut from the right side. The segmentation error is
distributed randomly on each of the sides of the motion but bounded in its total size. As in
the previous experiment, the trimmed motions are used as query objects of 1-NN queries
that are evaluated against the original HDM05-122 motions, excluding the exact match.
The results presented in Fig. 9c demonstrate that our method is still effective in searching
motions that lose as much as 10% of their content due to the bad segmentation. The error of
20% decreases the precision by 10–12% which is not so big gap against the original accu-
racies. These results are particularly interesting as more than 50 action categories interfere

12088 Multimed Tools Appl (2018) 77:12073–12094

in cyclic movements with another category (e.g., “walkLeft2Steps” and “walkLeft3Steps”
categories).

4.7 Indexing and scalability

We also evaluate efficiency of the proposed similarity method on a large-scale search sce-
nario. To obtain much more than 2,345 motions, as specified by the HDM05-122 ground
truth, we partition original long motion sequences into short motions. In particular, we gen-
erate 20 million motions of variable sizes by applying a segmentation technique [42] with
various settings on all the original 324 HDM05 motion sequences. The generated motions
are then preprocessed to extract 4,096-dimensional feature vectors, which takes about 6
days using a single graphics card. We store the extracted features on an SSD disk and index
them by the PPP-Codes [35] (see Section 3.5) that is initialized by 256 randomly selected
feature vectors as pivots.

In the retrieval phase, we measure an average search time to evaluate a single query
on the 20M database. We also control the level of PPP-Codes search approximation (i.e.,
tradeoff between search effectiveness and efficiency) by setting the maximum number of
feature vectors that are accessed during the search process. Since the ground truth is not
known for the generated 20M motions, we evaluate search effectiveness by a recall metric.
The recall determines the percentage of the same motions retrieved by the PPP-Codes with
respect to the sequential scan for each k-NN query. The recall values and search times are
then averaged for 1,000 randomly selected k-NN queries. Figure 10 shows values of k-NN
recall (left vertical axis) and of search times (right axis) with respect to the absolute number
of accessed vectors on the 20M database. We can see that the PPP-Codes can access two
orders of magnitude fewer motions than the sequential scan, while achieving a very high
recall. For example, we can achieve the 96% recall by accessing only 10,000 vectors (out
of 20M) in 800ms for k = 1. Note that the search time is not influenced by the setting of k

but only by the number of accessed feature vectors.
To sum up, assuming an average motion length of 260 frames as in the HDM05-122

ground truth, the 20M motion database constitutes 1.4 years of motion data which we can
search in real time. We believe that our similarity method can be utilized in future motion
retrieval technologies since it is both highly effective and scalable when equipped with an
appropriate index structure, such as the PPP-Codes.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000
 0

 200

 400

 600

 800

 1000

k-
N

N
 r

ec
al

l (
%

)

Q
ue

ry
 s

ea
rc

h
tim

e
(m

s)

of accessed feature vectors ~ # of disk read operations

Search efficiency on the 20M motion database using the PPP-Codes

1-NN recall (left)
10-NN recall (left)
100-NN recall (left)
Search time (ms) (right)

Fig. 10 k-NN recall and search times with respect to the number of accessed feature vectors stored on SSD
disk using the PPP-Codes structure

Multimed Tools Appl (2018) 77:12073–12094 12089

4.8 Comparison with the state-of-the-art methods

We compare effectiveness of the proposed similarity method against state-of-the-art
approaches in Table 1. The table depicts only the approaches reaching the highest achieved
precision on different subsets of motion datasets. Since existing methods work almost per-
fectly on MHAD and CMU datasets with a smaller number of 11 and 30 categories, we
primarily focus on the most challenging HDM05 dataset having up to 130 categories.

There is the only one approach of Elias et al. [13] that enables pair-wise motion com-
parison. They use a similar concept of motion images but compare them by MPEG-7
visual descriptors. We outperform this approach on the HDM05-14 dataset by increasing
the search precision from 87.4% to 94.3%, even if the neural network is not fine-tuned
on the HDM05-14 ground truth. All the other stated methods [9, 12] are purposely trained
classifiers to achieve the highest possible accuracy just in the classification task. Even if
our method is not a classifier, we simply implement it by searching for the nearest neighbor
motion (1-NN query) and taking the category label of the retrieved motion as the classi-
fication result. We demonstrate that our approach is only slightly worse in classification
effectiveness on the HDM05-65 dataset than the best classifiers [9, 12]. On the other hand,
the best methods need 90% of training data, while our approach achieves a high accuracy
of 93.5% with only 50% of training data on the HDM05-65 dataset. In addition, we reach
the 91.7% accuracy with 90% of training data by classifying the HDM05-122 motion set
into 122 categories, which is almost two times more categories than it is considered in the
state-of-the-art papers.

The main advantage of our similarity method is efficiency and applicability in large-
scale retrieval due to the possibility of pair-wise motion comparison. Although the surveyed
classifiers may achieve slightly higher effectiveness, they pay a little attention to efficiency,

Table 1 Classification rates of state-of-the-art approaches compared to our search-based 1-NN approach on
selected subsets of four motion datasets: MHAD [36], MSR [23], CMU and HDM05 [33]

Dataset # of # of Training Accuracy Approach

categories motions motions

MHAD 11 659 58% 100% Chaudhry et al. [7]

58% 100% Du et al. [12]

MSR 20 557 50% 92.5% Vemulapalli et al. [46]

50% 94.5% Du et al. [12]

CMU-14 14 267 85% 98.1% Wu et al. [53]

CMU-30 30 278 80% 99.6% Kadu et al. [16]

HDM05-14 14 1,034 0% 87.4% Elias et al. [13]

0% 94.3% Our approach

HDM05-65 65 2,345 90% 95.6% Cho et al. [9]

90% 96.9% Du et al. [12]

50% 93.5% Our approach

90% 93.9% Our approach

HDM05-122 122 2,338 50% 87.0% Our approach

90% 91.5% Our approach

The fourth column “Training motions” presents a percentage of motions (with respect to the number of
dataset motions) which are used in the training phase

12090 Multimed Tools Appl (2018) 77:12073–12094

scalability and applicability issues. In particular, with respect to our approach, the surveyed
classifiers:

– Cannot apply any indexing;
– Are infeasible to be used for (subsequence) searching or motion clustering;
– Can classify only samples from categories that have been available during the training

phase.

Importantly, we clearly outperform related work in efficiency. We can index and search
datasets comprising months of motion data in real time – such data volumes are not con-
sidered in related work at all. For instance, the approach in [4] needs about 36 seconds to
search the 100K motion database, which is more than three orders of magnitude slower
than our approach. For best-performing classifiers [9, 12], it is even infeasible to process a
database of 20 million motions in real time.

5 Conclusions

We present an effective and efficient method for similarity searching in motion capture
data. The similarity is based on extracting 4,096-dimensional feature vectors for rather short
motion sequences of variable lengths. These feature vectors are extracted from a compact
visualization of normalized motions using a fine-tuned deep neural network. The machine-
learning part enables to effectively learn intrinsic motion characteristics of the training data,
while the distance-based comparison enables efficient indexing by any multi-dimensional
or metric-based index structure.

We demonstrate that our search-based approach achieves competitive effectiveness
results even if it is compared to specifically trained machine-learning classifiers. More-
over, we achieve the 91.5% precision using 1-NN queries with 90% of training data on the
HDM05-122 ground truth with 122 categories, which is almost two times more categories
than it is considered in the state-of-the-art papers. We can additionally achieve the 87.0%
precision by utilizing only 50% of training data on the same HDM05-122 ground truth.
We also demonstrate that the accuracy remains almost unchanged even if the data quality
decreases ten times to 12 frames per second. Having the data quality of 120 fps, the method
can recognize up to 10 times faster actions almost without any error. Moreover, only a slight
inaccuracy occurs when recognizing badly-segmented actions up to 20% of their length.
On the other hand, high efficiency can be reached by indexing the fixed-size vectors using
any metric-based index structure. For example, by employing the PPP-Codes structure, we
can easily search a 20M database of rather short motions in real time.

The main advantages against state-of-the-art approaches are that (1) feature vectors have
a fixed size formotions having avariable length in order of seconds,which enables their efficient
indexing, (2) features have a high descriptive power even for motion categories that have not
been provided during the training phase, and (3) our approach is not just a simple classifier
but can be also used for a wide range of applications, such as clustering and retrieval.

In the future, we plan to compress the feature vectors that are sparse in descriptive values
and dense in zeros. We also intend to study how to utilize our approach for stream processing
(e.g., for action detection and recognition) and for motion data containing imprecise joint
coordinates.

Acknowledgements This research was supported by GBP103/12/G084.

Multimed Tools Appl (2018) 77:12073–12094 12091

References

1. Barnachon M, Bouakaz S, Boufama B, Guillou E (2013) A real-time system for motion retrieval and
interpretation. Pattern Recogn Lett 34(15):1789–1798

2. Barnachon M, Bouakaz S, Boufama B, Guillou E (2014) Ongoing human action recognition with motion
capture. Pattern Recogn 47(1):238–247

3. Baumann J, Wessel R, Krüger B., Weber A (2014) Action graph: a versatile data structure for action
recognition. In: International conference on computer graphics theory and applications (GRAPP 2014).
SCITEPRESS, pp 1–10

4. Beecks C, Hassani M, Obeloer F, Seidl T (2015) Efficient query processing in 3D motion capture
databases via lower bound approximation of the gesture matching distance. In: 2015 IEEE International
symposium on multimedia (ISM 2015), pp 148–153

5. Bouchard D, Badler N (2007) Semantic segmentation of motion capture using Laban movement analysis.
Springer Berlin Heidelberg, Berlin Heidelberg, pp 37–44

6. Cai M, Zou B, Gao H, Song J (2014) Motion recognition for 3d human motion capture data using support
vector machines with rejection determination. Multimed Tools Appl 70(2):1333–1362

7. Chaudhry R, Ofli F, Kurillo G, Bajcsy R, Vidal R (2013) Bio-inspired dynamic 3d discriminative skeletal
features for human action recognition. In: Computer vision and pattern recognition workshops (CVPRW
2013), pp 471–478

8. Chen X, Koskela M (2013) Classification of RGB-D and motion capture sequences using extreme
learning machine. Image Anal 640–651

9. Cho K, Chen X (2013) Classifying and visualizing motion capture sequences using deep neural networks.
CoRR arXiv:abs/1306.3874

10. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low- and
high-dimensional approaches. IEEE Trans Syst Man Cybern: Syst 43(4):996–1002

11. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional
activation feature for generic visual recognition. In: International conference in machine learning (ICML
2014), pp I–647–I–655

12. Du Y, Wang W, Wang L (2015) Hierarchical recurrent neural network for skeleton based action
recognition. In: International conference on computer vision and pattern recognition (CVPR 2015), pp
1110–1118

13. Elias P, Sedmidubsky J, Zezula P (2015) Motion images: an effective representation of motion capture
data for similarity search. In: 8th International conference on similarity search and applications (SISAP
2015). Springer, pp 250–255

14. Huynh DQ (2009) Metrics for 3d rotations: comparison and analysis. J Math Imag Vis 35(2):155–164
15. Ijjina E, Mohan C (2015) Human action recognition based on motion capture information using fuzzy

convolution neural networks. In: 8th International conference on advances in pattern recognition (ICAPR
2015), pp 1–6

16. Kadu H, Kuo CC (2014) Automatic human mocap data classification. IEEE TransMultimed 16(8):2191–
2202

17. Kapadia M, Chiang IK, Thomas T, Badler NI, Kider JT Jr (2013) Efficient motion retrieval in large
motion databases. In: ACM SIGGRAPH Symposium on interactive 3D graphics and games (I3D 2013).
ACM, New York, pp 19-28

18. Keogh E, Palpanas T, Zordan VB, Gunopulos D, Cardle M (2004) Indexing large human-motion
databases. In: 30th International conference on very large data bases (VLDB 2004), VLDB 2004, pp
780–791. VLDB Endowment

19. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural net-
works. In: Pereira F, Burges C, Bottou L, Weinberger K (eds) Advances in neural information processing
systems 25. Curran Associates Inc, pp 1097–1105

20. Krüger B, Tautges J, Weber A, Zinke A (2010) Fast local and global similarity searches in large motion
capture databases. In: ACM SIGGRAPH/Eurographics symposium on computer animation, SCA 2010.
Eurographics Association, pp 1–10

21. Lan R, Sun H (2015) Automated human motion segmentation via motion regularities. Vis Comput
31(1):35–53

22. Li M, Leung H (2016) Graph-based representation learning for automatic human motion segmentation.
Multimed Tools Appl 75(15):9205–9224

23. Li W, Zhang Z, Liu Z (2010) Action recognition based on a bag of 3d points. In: Computer vision and
pattern recognition workshops (CVPRW 2010), pp 9–14

http://arxiv.org/abs/abs/1306.3874

12092 Multimed Tools Appl (2018) 77:12073–12094

24. Liang Y, Lu W, Liang W, Wang Y (2014) Action recognition using local joints structure and histograms
of 3d joints. In: 10th International conference on computational intelligence and security (CIS 2014), pp
185–188

25. Liu Y, Zhang X, Cui J, Wu C, Aghajan H, Zha H (2010) Visual analysis of child-adult interactive behaviors
in video sequences. In: 16th International conference on virtual systems and multimedia, pp 26–33

26. Liu Y, Cui J, Zhao H, Zha H (2012) Fusion of low-and high-dimensional approaches by trackers sam-
pling for generic human motion tracking. In: 21st International conference on pattern recognition (ICPR
2012), pp 898–901

27. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2016) Action2activity: recognizing complex activities
from sensor data. CoRR arXiv:abs/1611.01872, 1–7

28. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition.
Neurocomputing 181:108–115. Big data driven intelligent transportation systems

29. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic
interval-based model. In: AAAI, pp 1266–1272

30. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2016) Towards unsupervised physical activity recognition
using smartphone accelerometers. Multimed Tools Appl 1–19

31. Milovanovic M, Minovic M, Starcevic D (2013) Walking in colors: human gait recognition using kinect
and cbir. IEEE MultiMed 20(4):28–36

32. Müller M, Röder T, Clausen M (2005) Efficient content-based retrieval of motion capture data. In: ACM
SIGGRAPH. ACM, pp 677–685

33. Müller M, Röder T, Clausen M, Eberhardt B, Krüger B, Weber A (2007) Documentation Mocap
Database HDM05. Tech. Rep. CG-2007-2 Universität Bonn

34. Müller M, Baak A, Seidel HP (2009) Efficient and robust annotation of motion capture data. In: ACM
SIGGRAPH/Eurographics symposium on computer animation (SCA 2009). ACM Press, pp 17–26

35. Novak D, Zezula P (2014) Rank aggregation of candidate sets for efficient similarity search. In: 25th Int.
Conference on database and expert systems applications (DEXA 2014), pp 42–58

36. Ofli F, Chaudhry R, Kurillo G, Vidal R, Bajcsy R (2013) Berkeley mhad: a comprehensive multimodal
human action database. In: International workshop on applications of computer vision (WACV 2013),
pp 53–60

37. Poppe R, Van Der Zee S, Heylen DJ, Taylor P (2014) Amab: automated measurement and analysis of
body motion. Behav Res Methods 46(3):625–633

38. Presti LL, Cascia ML (2016) 3D skeleton-based human action classification: a survey. Pattern Recogn
53:130–147

39. Raptis M, Kirovski D, Hoppe H (2011) Real-time classification of dance gestures from skeleton anima-
tion. In: ACM SIGGRAPH/Eurographics symposium on computer animation (SCA 2011), SCA 2011.
ACM, pp 147–156

40. Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
J Comput Appl Math 20(1):53–65

41. Sedmidubsky J, Valcik J, Zezula P (2013) A key-pose similarity algorithm for motion data retrieval.
In: Advanced concepts for intelligent vision systems (ACIVS 2013), LNCS, vol 8192. Springer,
pp 669–681

42. Sedmidubsky J, Elias P, Zezula P (2016) Similarity searching in long sequences of motion capture data.
In: 9th International conference on similarity search and applications (SISAP 2016). Springer, pp 271–
285

43. Shahroudy A, Liu J, Ng TT, Wang G (2016) Ntu rgb+d: a large scale dataset for 3d human activity
analysis. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 1010–1019

44. Trajcevski G, Ding H, Scheuermann P, Tamassia R, Vaccaro D (2007) Dynamics-aware similarity of
moving objects trajectories. In: 15th Annual ACM international symposium on advances in geographic
information systems, GIS ’07. ACM, New York, pp 11:1–11:8

45. Valcik J, Sedmidubsky J, Zezula P (2016) Assessing similarity models for human-motion retrieval
applications. Comput Anim Virt Worlds 27(5):484–500

46. Vemulapalli R, Arrate F, Chellappa R (2014) Human action recognition by representing 3d skeletons as
points in a lie group. In: International conference on computer vision and pattern recognition (CVPR
2014), pp 588–595

47. Vögele A, Krüger B, Klein R (2014) Efficient unsupervised temporal segmentation of human motion.
In: ACM Symposium on computer animation, pp 167–176

48. Wang JY, Lee HM (2009) Recognition of human actions using motion capture data and support vector
machine. In: World Congress on software engineering (WCSE 2009), vol 1, pp 234–238

49. Wang Y, Neff M (2015) Deep signatures for indexing and retrieval in large motion databases. In: 8th
ACM SIGGRAPH conference on motion in games. ACM, pp 37–45

http://arxiv.org/abs/abs/1611.01872

Multimed Tools Appl (2018) 77:12073–12094 12093

Jan Sedmidubsky is a researcher of computer science at Masaryk University (Czech Republic) where he
received the Ph.D. degree in 2011. His research activities are concentrated on efficient similarity search
algorithms, face recognition and motion capture data processing.

Petr Elias received the M.Sc. degree at Masaryk University (Czech Republic). Currently, he is a Ph.D.
student and focuses on handling motion capture data with a special interest on action recognition.

50. Wang J, Liu Z, Wu Y, Yuan J (2012) Mining actionlet ensemble for action recognition with depth
cameras. In: International conference on computer vision and pattern recognition (CVPR 2012). IEEE
Computer Society, pp 1290–1297

51. Wang H, Su H, Zheng K, Sadiq S, Zhou X (2013) An effectiveness study on trajectory similarity
measures. In: 24th Australasian database conference, ADC ’13. Australian Computer Society, Inc.,
Darlinghurst, pp 13–22

52. Wang X, Chen L, Jing J, Zheng H (2016) Human motion capture data retrieval based on semantic
thumbnail. Multimed Tools Appl 75(19):11,723–11,740

53. Wu S, Wang Z, Xia S (2009) Indexing and retrieval of human motion data by a hierarchical tree. In:
16th ACM Symposium on virtual reality software and technology (VRST 2009). ACM Press, New York,
pp 207–214

54. Zanfir M, Leordeanu M, Sminchisescu C (2013) The moving pose: an efficient 3d kinematics descriptor
for low-latency action recognition and detection. In: International conference on computer vision (ICCV
2013), pp 2752–2759

55. Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search: the metric space approach, advances
in database systems, vol 32. Springer-Verlag

56. Zhao X, Li X, Pang C, Zhu X, Sheng QZ (2013) Online human gesture recognition from motion data
streams. In: 21st International conference on multimedia (MM 2013). ACM, pp 23–32

12094 Multimed Tools Appl (2018) 77:12073–12094

Pavel Zezula is a professor of computer science at Masaryk University (Czech Republic). His professional
interests mainly focus on contentbased retrieval, large-scale similarity search, and big data analysis. He is
a co-author of a famous metric-based similarity search structure MTree and book “Similarity Search: The
Metric Space Approach”.

	Effective and efficient similarity searching in motion capture data
	Abstract
	Introduction
	Related work
	Motion features
	Comparing motions based on similarity
	Distance-based methods
	Machine learning methods

	Content-based searching
	Our contribution

	Visualization-based similarity
	Motion data definition
	Motion data normalization
	Position normalization
	Orientation normalization
	Skeleton size normalization

	Motion data visualization
	Extraction and comparison of fixed-size feature vectors
	Feature extraction

	Large-scale retrieval by metric-based indexing

	Experimental evaluation of the similarity method
	Dataset
	Methodology
	Effectiveness of normalization
	Effectiveness of fine-tuning a neural network
	Analysis of space generated by the similarity measure
	Sensitivity to noisy data
	Quality of motion data
	Different movement speed
	Imprecise segmentation

	Indexing and scalability
	Comparison with the state-of-the-art methods

	Conclusions
	Acknowledgements
	References

