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Abstract Wireless multimedia sensor networks (WMSN), with self-organizing and high fault
tolerant characteristics, have achieved great advantages in target tracking region. However, the
capabilities of these tiny devices are limited by their battery power, storage capacity, compu-
tational ability and communication bandwidth. In this paper, hybrid wireless multimedia
sensors networks composed of acoustic and image sensors are proposed for target tracking.
When the target appears in the detection area, it may change the environment parameters
nearby, so acoustic sensors are used to gather target signal firstly. Then, a target location
method is executed based on the strength of the received acoustic signal. Furthermore, to
achieve energy-efficient target tracking with high reliability and robust, image sensors are used
as supplements to the acoustic sensors. This approach also reduces the power consumption
communication burden of the whole networks. In order to decrease the number of active
nodes, Gauss Markov mobility model is also adopted to predict the target trajectory and
minimize the tracking region with considering of vehicular kinematics. Simulation results
verify that, compared with other algorithms, our scheme can reduce the energy consumption
and improve tracking accuracy.
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1 Introduction

The advancement of MEMS technologies has made it possible to produce tiny wireless
multimedia sensor devices. These tiny sensors hold the promise of revolutionizing sensing
in a wide range of application domains because of their flexibility and low cost. High self-
organization and tolerant characteristics make wireless multimedia sensor networks be widely
used for target tracking. There are evident differences between WMSN and traditional wireless
sensor networks (WSN). Firstly, multimedia sensors provide high bit rate data that makes
existing protocols of WSN inefficient. The multimedia data requires compute-intensive pro-
cessing algorithms which are very energy consuming for sensor networks. Secondly, multi-
media data necessitates near real-time delivery of image content to the destination [13]. It is
imperative that packets containing acoustic and image information reach the destination before
a playout deadline otherwise they will be considered obsolete and simply dropped by
destination.

The fundamental design tradeoff in WMSN is between application-specific Quanlity of
Service (QoS) and energy consumption [9]. Specifically, for target tracking, QoS is decided by
the tracking error, which is defined by the average target location estimation error. The sensor
networks lifetime is solely determined by the network energy consumption, which is the
energy consumption rate of all sensor nodes. Thus, the fundamental design tradeoff can be
more explicitly presented by the tradeoff between the tracking error and the network energy
consumption. The processing capability of micro-sensor nodes is also limited due to the lack of
energy resource and cost. This prevents the implementation of complicated signal processing
algorithms on sensor nodes. Therefore, a fully distributed, lightweight target localization/
tracking algorithm is demanded [25].

Much work is present in the literature for target tracking within WSN, and most target
detection and localization algorithms require the sensors to work in groups in order to improve
the efficiency and accuracy of target tracking algorithms. This makes it necessary for deployed
sensors to discover and group together so that their coverage can be maximized. By now,
researchers have done much work on localization/tracking algorithm. CPA (Closet Point of
Approach) in literature [9] is a data fusion algorithm that relies on raw data gathered by
individual sensors. Each sensor monitors the acoustic information from the target with the help
of a microphone. Specifically, it monitors the signal energy for a given time. The sensor
confirms the presence of a target once the signal strength exceeds a certain threshold. CPA
algorithm is very simple, so it has large localization error. In order to enhance the tracking
accuracy, learning theories can be considered for sensor networks of limited capability, rather
than directly using raw measurements. Previous reports exist on kernel-based learning [14],
maximum likelihood parametric approaches [18], and distributed learning [15]. With distrib-
uted Kalman filter [8], the localization performance has been improved in terms of accuracy in
low cost and low-capability sensor networks.

In [4], the authors proposed a model integrating the human visual characteristics of video
motion, in the frequency multi-resolution wavelet domain, with multi-dimensional fuzzy infer-
ence perceptual model. However, due to the integration of fuzzy inference, the model is slow and
not suitable for real time WMSN application. In [17], authors introduced saliency model, along
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with face detection, to crop informative parts of images before reducing them to thumbnails. The
same model is also used by [3], with the addition of text detection, to crop regions of interest in
images for adaptation to small displays. In [23], the authors study the statistics of users’
interaction with images on small displays to determine regions of maximum user interest.

In [7], the authors proposed a resource allocation scheme based on predictive mobility in
mobile wireless environments. In their paper, the directionality probability was introduced to
determine which cell the mobile target will visit next. The cell on the direction from the
previous cell to the current cell is regarded as the most likely visited cell. Their scheme can be
used for resource allocation in cellular networks having user’s mobility profile, but cannot be
used for the tracking of a mobile target whose mobility profile is unknown in WMSN. In [1],
authors modeled the mobile target as random walk, the mobile target can take any direction
from the current location since the vehicle kinematics are ignored. So, the area where the
mobile target cannot visit for some time belongs to the tracking area. On the other hand, since
our scheme models the mobile target’s movement based on the vehicular kinematics [2], only
the area where the mobile target can visit mechanically belongs to the tracking area. As a
result, we can reduce the number of working sensor nodes in each tracking area called the
minimal contour for the energy efficiency.

In this paper, we will propose an algorithm to estimate target location and reduce the
number of working sensors. The rest of this paper is organized as follows: In part II, we
introduce the architecture of WMSN for target tracking. In part III, we design target localiza-
tion scheme using acoustic and image sensors. In part IV, we propose GM algorithm to predict
target trajectory and the method to form tracking region. In part V, some experiments have
been done to demonstrated validity of our algorithm. In part VI, we make some conclusions.

2 Hybrid wireless multimedia sensors networks for target tracking

WMSN is used for target tracking in many fields. Unlike traditional data communication
networks, WMSN is usually not address-centric. An individual sensor node generally does not
have a globally unique ID in the networks. For target tracking applications specifically, the
data communication is event and location centric. Event centric suggests that network oper-
ation and wireless data exchange are triggered by acoustic and image information in the
interested region. Location centric suggests that the destination of wireless packets would be
the nodes within a specific location region instead of a particular node [5, 6].

Figure 1 shows the architecture of WMSN. A detailed discussion on WMSNs hardware,
architecture and existing test beds can be found in [16, 22].

Only sensors in sensing area are used to detect targets and to forward sensed data to the
sink, and all the other sensors go into a sleep state. This issue is commonly resolved using a
sensor wake-up scheduling protocol by which some sensors stay active to provide sensing
services while the others sleep to conserve their energy. We consider the sensor scheduling
problem to maximize network lifetime while maintaining both the target coverage and network
connectivity in WMSN.

Suppose for a tracking application within WMSN, an image is captured and required to be
sampled for storage as well as to be transmitted through wireless channel. The RF transmission
power control is also considered in WMSN. It is not only used to determine the neighboring
sensor nodes that can receive information, but also to reduce the communication cost among
clustered sensor nodes [11, 22]. In addition, as transmission performance is greatly affected by
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the transmission distance [19–21], the shortened transmission radius can also increase the
transmission performance. The directional antenna technology is used for mobile ad hoc
networks including WMSN for the parallel communication in MAC protocol level [10, 12].
Our tracking algorithm uses the directional antenna in order to reduce the number of RF
receiving sensors.

Based on the above literature, due to the limitations of acoustic sensors, it is
difficult to accurately determine the target location with acoustic sensors only. In this
paper, we propose a hybrid wireless multimedia sensors networks for target tracking.
An acoustic and image information processing scheme is required to achieve intended
target detection and tracking accuracy.

3 Acoustic and image information processing scheme for target localization

In physical world, mobile target will cause the change of environmental parameters, thus the
target can be tracked by sensing environmental parameters.

3.1 Acoustic information processing scheme

The intensity of an acoustic signal emitted omni-directionally from the target and
propagating through ground surface will attenuate at a rate that is inversely propor-
tional to the distance from the source. The process of target localization based on
acoustic sensors is shown in Fig. 2.

Fig. 1 Architecture of WMSN
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Fig. 2 Process of target localization using acoustic sensors
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We assume that the acoustic intensities of the target will be linearly superimposed without
any interaction among them [7]. We can be obtained,

Ei tð Þ ¼ γi
LT tð Þ−Lik k2Es tð Þ þ εi tð Þ ð1Þ

Where

Es tð Þ ¼ 1

N
∑
N−1

n¼0
s2 t þ n

f s

� �
ð2Þ

εi tð Þ ¼ 1

N
∑
N−1

n¼0
vi2 t þ n

f s

� �
ð3Þ

Then the expected target signal strength Es(t) at time t subject to the Gauss random
distribution, Es(t) ∼ N(ES, σs

2). σs
2 is variance. As vi

2(t + n/fs) is two order Chi-Square
random variables [7], which mean is σi

2 and variance is 2σi
4. When the samples are

large enough, according to the central limit theorem, εi(t) approximately subject to the
Gauss random distribution which mean is σi

2 and variance is 2σi
4/N.

εi tð Þ∼N σi
2;
2σi

4

N

� �
ð4Þ

In fact, if N>20, εi(t) approximately subject to the Gauss random distribution.
In the sensing field, the number of the sensor nodes that found the target is n,

which compose set S. By using optimal linear combination method [4], the target
coordinates LT tð Þ can be calculated by eq. (5)

L̂T tð Þ ¼ ∑ωiLi i∈S ð5Þ
In Eq.(5), ωi is undetermined coefficient to estimate which satisfy ∑ωi = 1 and i = 1 , 2… n,

according to Eq. (1), the following equation can be obtained,

E di2
� � ¼ E LT tð Þ−Lik k2

� �
¼ E

Es tð Þγi
Ei tð Þ−εi tð Þ
� �

ð6Þ

According to Eq. (4), the value of εi(t) is approximate subject to normal distribution, so we
can get

E di2
� � ¼ E

Es tð Þγi
Ei tð Þ−εi tð Þ
� �

¼ Es tð Þγi
ffiffiffiffiffiffiffiffiffiffiffiffi
N

4πσi4

r
∫þ∞
−∞

1

Ei tð Þ−σi2−x e
− x2N
4σi4dx ð7Þ

Considering of MRC theory [15], we can obtain the following equation

ωi ¼

1

E di2
� �

∑
n

j¼1

1

E d j
2

� � ð8Þ
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Define

μi ¼
Es tð Þ
E di2
� � ð9Þ

According to Eq.(7),the Eq. (9) can be expressed as,

μi ¼
1

γi

ffiffiffiffiffiffiffiffiffiffiffiffi
N

4πσi4

r
∫þ∞
−∞

1

Ei tð Þ−σi
2−x

e
− x2N
4σi4dx

ð10Þ

So Eq. (8) can be written as,

ωi ¼ μi

∑n
j¼1μ j

ð11Þ

When nodes receive target acoustic signal, ωi can be calculated by Eq. (11), and target
location is estimated by eq. (5).

3.2 Image information processing scheme

The energy consumption of the image sensors is much larger than that of the acoustic
sensors, so we arrange the acoustic sensors localize target firstly. In this way, WMSN
can achieve a rough localization of the target. After the acoustic sensor finding the
target, image sensor start monitor the target to obtain precise location. The image
sensors that can rotate 360 degrees and obtain the angle of the target. The detection
process of image sensors is illustrated in Fig. 3.

The challenge in image detection systems is the ability to accurately define the
background. Once the background is modeled, the foreground (moving target) can
easily be identified from the background. Accurately modeling the background is
challenged by the presence of changes in the background which are not part of the
object of interest. The background models must be constantly updated to compensate
for these effects. Once the background model statistics have been defined as described

s1

s3

s2

Fig. 3 The detection area of
image sensors
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above, subsequent image are tested to see if their pixels are within the high and low
range of the average background pixel. Pixels outside that range are defined as
foreground. Visual Studio.NET environment and OpenCV are used to implement the
proposed system [10].

After extracting the moving target, we employ a dynamic programming approach,
using the following procedure. First, motion parameters is extracted through a set of
images in time domain. Then, we build a weighted directed graph. A shortest path
algorithm through the graph selects the first optimal trajectory [16]. After this
trajectory is then smoothed, the tracking area can be constructed (Fig. 4).

The shortest path resulting from the previous stage has a noisy appearance. So a moving
average smoother is applied to the trajectory. With y(t) being the original data (raw trajectory)
at time t and ys(t) the smoothed one, the difference equation is:

ys tð Þ ¼ 1

2N þ 1
y iþ Nð Þ þ y iþ N−1ð Þ þ :…þ y i−Nð Þð Þ ð12Þ

Where N is the length of the span interval.
The performance of the algorithm is tested using a moving vehicle. In Fig. 5, the

moving target appears in different place in time domain. The localization of moving
target is execute by image sensors. In Fig. 6, red line is actual trajectory and yellow
line is calculated trajectory [12]. The yellow line is smooth by eq. (12). We can say
that the proposed scheme can achieve very accurate results.

4 Mobile target tracking algorithm

Since most sensor nodes stay sleep to save power before the target arrives, the
manager node (the node that manage tracking region) should predict the target moving
direction and activate the right group of sensor nodes, which can detect the target and
monitor its surrounding area as soon as the target approaches.

4.1 Target trajectory prediction

As mobile target usually moves towards an explicit destination, rather than aimless
random motion, the target location, moving speed and angle have relationships in time
domain. In our proposed predictive distance-based mobility management scheme, the
future location of a target is predicted by the Gauss-Markov model based on its
location and velocity at the time of the last location. The prediction information is
made available to the sensor networks. Therefore, the sensor networks check target’s

Extract moving
target

Calculate
target mo�on

parameters

Merging
trajectories

Forming tracking
area

Tracking area
upda�ng

Images

Fig. 4 Process of target location using image sensors
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location periodically and perform location update whenever it reaches the threshold
distance away from the predicted location.

In systems with correlated velocity mobility patterns, unlike those with random-
walk mobility patterns, the current location of a target is relative to where the target
last reported. We assumed that the target localization interval is δ, so at the time kδ,

Fig. 5 Moving target at different times

Fig. 6 Comparison of calculated
trajectory and actual trajectory
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coordinate of target location is (xkδ , ykδ), and at the time slot (k + 1)δ, coordinate of
target location is (x(k + 1)δ , y(k + 1)δ). Based on piecewise linear fitting, the target
average velocity in kδ ~ (k + 1)δ is:

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x kþ1ð Þδ−xkδ
� �2 þ y Kþ1ð Þδ−ykδ

� �2r
δ

ð13Þ

And the motion angle is

tanθ ¼ y kþ1ð Þδ−ykδ
x kþ1ð Þδ−xkδ

ð14Þ

In target tracking system, Kalman algorithm is usually used to predict mobile target
trajectory [16], but it requires prior knowledge of mobile target motion parameters to make
accurate predictions. In most time, WMSN tracking system has no knowledge of target motion
parameters, especially for hostile target. So, here we adopt Gauss Markov (GM) algorithm for
target trajectory prediction, which can achieve better prediction result without the knowledge
of target motion characters.

In GM model, gkδ is a discrete time series, δ is time interval, and g(k + 1)δ can be expressed
by the following equation,

g kþ1ð Þδ ¼ ρgkδ þ 1−ρð Þμg þ z
ffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
ð15Þ

In eq. (15), z~N(0, σg
2), σg is variance of g, μg is mean value of g and ρ (1 > ρ > 0) is

correlation coefficient of g.
Because z is a zero mean Gauss random variables, according to linear least squares method,

we can obtain the maximum likelihood solution of g(k + 1)δ,

ĝ kþ1ð Þδ ¼ ρgkδ þ 1−ρð Þμg ð16Þ

If the sampling sequence length is N, then μg and ρg can be calculated by,

μg ¼
1

N
∑
N

k¼1
gkδ ð17Þ

ρ ¼ N
N−1

∑N
k¼2gkδg k−1ð Þδ
∑N

k¼1g2kδ
ð18Þ

Where θ is moving angle and v is velocity, considering of eq. (17), we can get θ kþ1ð Þ δ and
v̂ kþ1ð Þ δ in the following period,

θ̂ kþ1ð Þδ ¼ N
N−1

∑N
k¼2θkδθ k−1ð Þδ
∑N

k¼1θ
2
kδ

θkδ þ 1−
N

N−1
∑N

k¼2θkδθ k−1ð Þδ
∑N

k¼1θ
2
kδ

 !
1

N
∑
N

k¼1
θkδ ð19Þ
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v̂ kþ1ð Þδ ¼ N
N−1

∑N
k¼2vkδv k−1ð Þδ
∑N

k¼1v2kδ
vkδ þ 1−

N
N−1

∑N
k¼2vkδv k−1ð Þδ
∑N

k¼1v2kδ

 !
1

N
∑
N

k¼1
vkδ ð20Þ

The target location in the following period is

x̂ kþ1ð Þδ
ŷ kþ1ð Þδ

 !
¼ xkδ

ykδ

� �
þ δv kþ1ð Þδ

cosθ kþ1ð Þδ
sinθ kþ1ð Þδ

 !
ð21Þ

4.2 Forming tracking region

When a target first enters the tracking region of the sensor networks, nodes that are awake and
close to the target can detect it. These nodes construct an initial tracking region by first
selecting a node to be the manager node of the tracking region based on a root election
algorithm [13]. A node in the tracking region only sends data to its manager node, which can
further reduce the redundancy in data transmission. Certainly, some manager nodes may fail.
This can be addressed by allowing a node to select another manager node when its current one
fails. As the target moves, many nodes in the tracking region may become far away from the
manager node, and hence a large amount of energy may be wasted to send their sensing data to
the manager node. In this case, a new manager node should be selected to replace the old one,
and the tracking region should be reconfigured accordingly.

Assuming target moves at maximum velocity, considering of different steering angle, there
exist a number of trajectories. These trajectories comprise a heart-shaped region that target may
appear in the following ΔT. Figure 7 is the contrast of two tracking areas. Based on our
method, the inside small region is composed of target trajectories. And the outside round
region proposed by OCR algorithm is obviously much larger than trajectory area [24].

Here, we take four wheels vehicle as analyzing object. The geometry relationship is shown
in Fig. 8.

Pf = (xf, yf) is the coordinates of front axle midpoint, Pb = (xb, yb) is the coordinates
of back axle midpoint, ϕ is the steering angle, and L is the length of front wheel to
back wheel. According to the vehicle kinetics, Pf = (xf, yf) locates on the circle with

V

A

target

Fig. 7 Contrast of two tracking
region
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radius Rf and Pb = (xb, yb) locates on the circle with radius Rb. So we can be
obtained the following equations,

R f ¼ L
sinϕ

ð22Þ

Rb ¼ L
tanϕ

ð23Þ

We use Pb = (xb, yb) represent coordinate of the target, Rb represent target turning radius, ϕ
represent wheel steering angle and V represent velocity of target. It is obviously that tracking
region changes with the characteristics of mobile target, and the region is the function of L,
ϕmax (maximum steering angle) and Vmax (maximum speed)

A ¼ f L;ϕmax;Vmaxð Þ ð24Þ

In Fig. 9, target location is the origin of coordinate, the direction of V is the positive
direction of axis Y. If target moving at maximum speed with a certain steering angle in the
same length of time, each trajectory has equal length that can be expressed by

S ¼ 2πRb ¼ 2πL
tanϕmax

ð25Þ

Rf

RbPb

Pf

V

L

Fig. 8 Geometry relations of
vehicle motion

bR

(x,y)

S

(R,0)

S

Y

X

Fig. 9 Geometry relations of
mobile target trajectory
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We take a trajectory to analyze. As the steering angle is different to each other, every
trajectory is a circular arc, whose radius is R and central angle is α. The relationship of R and α
can be expressed by

R ¼ S
α
¼ 2πL

αtanϕmax
ð26Þ

And the boarder of the tracking region can be expressed by following parametric equations

x ¼ 2πL
αtanϕmax

� sinα ð27Þ

y ¼ 2πL
αtanϕmax

� 1−cosαð Þ ð28Þ

With the knowledge of parametric equation, the area of tracking region is

A ¼ 2� ∫2π0 yx
0
dα ð29Þ

4.3 Tracking region refresh

The tracking region follows the target’s movement changing its refresh time based on the
target’s speed. The optimal tracking region size is also determined by the average trajectory
distance used for the optimization of refresh time given the target’s speed. So, we need to
maintain the constant contour shape by changing the refresh time according to the target’s
current speed with the average trajectory distance of the targets observed so far. We can see
that the refresh time means the lifetime of the current tracking region when the sensors within
it should continue to work for sensing the target [24] (Fig. 10).

Let T refresh be the refresh time to prepare for a new tracking region,

Trefresh ¼ Ttransþ Tcalþ Tsen ð30Þ
Where T trans is time cost of RF transmitting per hop for disseminating the minimal

contour information (0.2 s), Tcal is time cost of calculation in a manager node for determining
the minimal tracking region(0.02 s, Tsen is time cost of minimum working time for sensing
mobile target in each sensor node(0.5 s).

Before the target leaves the current tracking region, the next tracking region is prepared. The
manager node broadcasts the target’s location and movement information to its neighbor

Fig. 10 Tracking region refresh
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sensors. The neighbor sensors determine whether they will participate in tracking region or not.
When the current tracking region’s refresh time expires, the sensors turn off their sensing
devices except for the sensors that continue to belong to the next contour [26]. The starting time
of sensing devices is determined considering the movement information message’s timestamp.

5 Experiments and analysis

In order to validate the performance of our localization algorithm, we use 16 nodes to do the
experiment. The relative locations of target and sensor nodes are shown in Fig. 11, in which
the hollow dots represent acoustic sensor nodes, solid dots represent image sensor nodes and

Fig. 11 Relative locations of target and sensor nodes

Fig. 12 Comparison of two methods
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the rectangle dots represent the targets. Here we use a buzzer to simulate a target in five
positions.

As shown in Fig. 11 (a), we first use acoustic sensor nodes only. In this experiment, the
mean value σi of measurement noise is 3. According to the algorithm in section 3, we set N =
50. Then, we exchange four acoustic nodes to image nodes in four corners of the detecting area
as shown in Fig. 11 (b). It can be concluded that the location 3 has the lowest localization error.
Because location 3 is the geometric center of sensor networks, and all sensor nodes uniformly
distributed around the location which can accurately perceive the target signal strength.
Compared to location 3, the others in the monitoring region are on the edge, and it is hard
to get precise target information. The location error of these two methods is shown in Fig. 12.

To validate the target tracking algorithm proposed in this paper, we model the WMSN and
vehicle with Matlab and contrast it to OCR [24] and DBA [11]. In the simulation process, all

Table 1 Simulation parameters

Parameters Values

Nodes spread Area/m2 400 × 400
Original position of the target (100,100)
Destination of the target (300 × 300)
Number of image sensor nodes 300
Number of acoustic sensor nodes 1000
Sample interval/s 1
Initialization power of nodes/mW 5
Working power of nodes/mW 2
Power of processor/mW 24
Power of receiving /mW 24
Power of transmitting/mW 48
Power of acoustic sensor/mW 32
Power of image sensor/mW 80

Fig. 13 Energy consumption of OCR compared with our algorithm
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the nodes are distributed randomly in the assigned area, and the simulation parameters are
shown in Table 1.

When L= 3 m and ϕmax = 25° the average energy consumption of this algorithm is 22%
lower than OCR, as shown in Fig. 13.

Figure 14 shows the relationship of energy consumption to L. When L increases, tracking
area also enlarges and contains more nodes. WhenL= 3 m and ϕmax = 25°, the average energy
consumption is 28% lower than L= 8 m.

Figure 15 shows the relationship of energy consumption to ϕmax. WhenL= 3 m and ϕmax
= 20°, the average energy consumption is lower than ϕmax = 30°. With the increasing of

Fig. 14 Energy consumption of different L

Fig. 15 Energy consumption of different ϕmax
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ϕmax, the tracking region update time has been shorten, so it needs more energy to reform
tracking region.

When L= 3 m and ϕmax = 20°, the average localization accuracy of hybrid WMSN is
compared to OCR and DBA in Fig. 16. We can see that the tracking accuracy of hybrid
WMSN is much higher than OCR and DBA. In our hybrid WMSN, the image sensors can
accurately identify the moving target, and calculate it’s location and motion parameters. But
the other two algorithms use acoustic sensors only, it is hard to achieve high tracking accuracy.

WhenL= 3 m and ϕmax = 20°, the energy consumption of hybrid WMSN is compared to
OCR and DBA in Fig. 17. We can see that the energy consumption of hybrid WMSN, OCR
and DBA is approximately equal.

Fig. 16 Localization accuracy of three algorithms

Fig. 17 Energy consumption of three algorithms
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6 Conclusion

In this paper, a novel target tracking method has been proposed based on hybrid
WMSN. Contributions and achievements of the proposed method are highlighted as
follows. First of all, the architecture of hybrid WMSN is introduced. Second, the
collaboration schemes of acoustic and image sensors are designed to calculate the
target trajectory and update the tracking region. At last, vehicle kinetics is adopted in
this paper to active the tracking region that mobile target can reach. Extensive
simulations have been conducted, and the simulation results verify that the tracking
accuracy of hybrid WMSN is much higher than OCR and DBA without extra energy
consumption.
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