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Abstract In this paper, we propose a new semantic descriptor based on axiomatic fuzzy set
(AFS) to describe facial expressions. The new descriptor has two advantages: The first one is
that it does not depend on priori-knowledge, when one uses it to construct semantic concepts.
According to the distribution of feature data, one can quickly establish semantic concepts using
the fuzzy membership degree. The second one is that the descriptor can describe complex
features by implementing operation on semantic concepts. The developed descriptor can
provide variations and relations of expression features. Finally, we implement our method
on FEI and CK+ database, and make semantic interpretations for various expressions.
Meanwhile, the performance is evaluated with the state-of-the-art methods such as C4.5,
Bayes, Decision Table, Cart and Reduced error pruning tree.

Keywords Semantic descriptor . Axiomatic fuzzy set . Expression features . Semantic
interpretation

1 Introduction

Facial expression plays an important role in our daily life and provides rich and powerful
source of communicative information about human emotions. In the past two decades, it not
only has attracted much attention, but also numerous solution approaches have been proposed
for expression recognition.

The existing methods for facial expression recognition can be generally categorized into
subspace methods [1, 41, 42], local feature methods [6, 43, 45], facial action unit methods [26,
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34] and geometric feature methods [3, 28]. The most popular subspace methods mainly focus
on principal component analysis (PCA) [39], linear discriminant analysis (LDA) [47] and
support vector machine [4]. These algorithms pay much attention on the image global
properties and extract the essential features. Based on a derived projection matrix, the original
expressions are represented in a new subspace. However, the facial expression images are
usually non-linear, and the details are distributed in different regions. Due to emphasis on
features of local region, local feature methods are usually applied to solve these troubles. For
example, the local binary patterns (LBP) and Gabor [10, 45, 48] have attracted much more
attention, because they can well solve expressional variations, illuminations and occlusions.
However, all above methods have ignored semantic descriptions/features of facial components.
When the facial action coding system (FACS) [9] emerged, it was rapidly used in expression
recognition [25, 26]. According to this system, the changes of facial expression could be
visually described, and clearly endowed by semantic concepts. However, the numerous
landmarks in this system increase difficulties of applications because they are manually
marked. Accompanied with the automatic landmark detector [5], geometric feature method
has attracted much attention on facial expression again [17, 44]. Generally, the fuzzy methods
are used to interpret the concepts of facial components, and related rules will be generated for
the corresponding results. Specially, these landmarks can well represent the shape of facial
components and bridge semantic gap between low-level visual features of image and high-
level semantic concepts. Usually, the combining feature including the facial action unit and
geometric feature is applied in facial expression recognition [2, 32, 38]. However, all these
methods need priori-knowledge such as fuzzy models and prior-defined semantic features.

After thorough comparisons, Axiomatic fuzzy set (AFS) [18, 20] has broken the limitation
of the existing fuzzy models, and it has extensive applications such as text recognition [33] and
knowledge discovery [35]. Specially, it has been applied in facial characteristics description
[16, 31] because of its advantage in semantic interpretability. In the AFS theory, fuzzy sets
(membership functions) and their logic operations are algorithmically determined according to
the distributions of original data and the semantics of the fuzzy sets. The AFS framework
facilitates the studies on how to convert the information in databases into the membership
functions and their fuzzy logic operations, by taking both fuzziness (subjective imprecision)
and randomness (subjective uncertainty) into account. The advantage of AFS framework is
that it does not be required to define membership function and initial value in advance as all
these can be learned from original database.

In this paper, a new descriptor is proposed in framework of AFS. This descriptor
not only interprets expression features using semantic concepts, but also serves as a
classifier for expression recognition. The contributions of this paper are listed as
follows:

& We propose a new descriptor extraction algorithm for facial expressions. In comparison
with traditional methods, it can directly extract semantic concepts by using the data
distribution.

& By considering differences among all these seven expressions, each semantic concept will
be built respectively, which can be comprehended by observers intuitively.

& Moreover, in order to verify our method, we have conducted experiments for analyzing
expressions on FEI [36, 37] and CK+ [13, 24]. Finally, there is a comparison about
performance with some of state-of-the-art methods such as C4.5 [29], Bayes [30], Decision
Table (DT) [12], Cart [15] and Reduced error pruning tree (REP) [8].
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The remainder of this paper is organized as follows: in section 2, we give a brief
introduction of related works. Section 3 describes facial expression features constructed by
landmarks, and details the process of the proposed method. Experimental results are reported
in section 4. Finally, we conclude the paper in Section 5.

2 Preliminaries

2.1 AFS theory

AFS theory was proposed by Liu [18–20], whose fuzzy sets (membership function) and
logic operations are algorithmically defined following the distributions of original data
and the semantic concepts of the fuzzy sets. In its framework, AFS does not demand pre-
defined membership functions as those can be learned from original data, so that it is
suitable for transforming facial characteristics to semantic concepts. In what follows, we
offer an illustration to AFS theory with one simple example. Let us assume that there are
three attributes BThe distance between the points of inner canthus and the points of inner
eyebrow ,̂ BThe angle between the point of inner canthus and the point of inner eyebrow in
right eye^ and BThe angle between the point of inner canthus and the point of inner
eyebrow in left eye^ to describe the facial characteristics. Let M = {mj,k 1 ≤ j ≤ 3,
1 ≤ k ≤ 3} be a set of simple semantic concepts, where mj,1, mj,2, mj,3 is respectively
corresponding to the semantic concept Blarge^, Bmedium^ and Bsmall^ associated with
feature fj. We will generate a complex semantic concepts ∏m∈A m(A ⊆ M) for each set of
concept terms using a simple concept set belonged toM, which represents a conjunction of
the concept terms in A. For example, let A1 = {m1,3, m2,1, m3,2} ⊆ M, a new fuzzy set Bm1,3

and m2,1 and m3,2^ with the linguist interpretation: BThe distance between the points of
inner canthus and the points of inner eyebrow is smaller and The angle between the point
of inner canthus and the point of inner eyebrow in right eye is larger and The angle
between the point of inner canthus and the point of inner eyebrow in left eye is medium^
can be represented as ∏m∈A m = m1,3 m2,1 m4,2. Similarly, Let A2 = {m1,1, m2,3, m3,2},
A3 = {m1,3, m3,1} ⊆ M, a new concept set as the disjunction of ∏m∈A1 m, ∏m∈A2 m, ∏m∈A3

m, i.e., Bm1,3m2,1m4,2 or m1,1m2,3m3,2 or m1,3m3,1^ can be represented by ∑3 u= (∏m∈Au

m) = ∏m∈A1 m + ∏m∈A2 m + ∏m∈A3 m. The set EM can be defined in the following way.

EM ¼ ∑
i∈I

∏
m∈Ai

m

 !
Ai⊆M ; i∈I ; I is a non−indexing setj

( )
ð1Þ

In addition, there is an equivalence relation [22, 23] between α and β. For example, there
are two complex concepts, γ1 = m1,3 m2,1 m3,1 + m1,1 m2,2 m3,2 + m1,3 m3,1,
γ2 = m1,3 m2,1 m3,1 + m1,3 m3,1. They are equivalent according to equivalence relation.
This means that the concept Bm1,1m2,2m3,2^ is redundant. Meanwhile, AFS demonstrates
that (EM, , ) is a completely distributive lattice if the lattice operators B ^ and B ^ are
defined as follows: for any fuzzy sets ∑i∈I(∏m∈Bi m) ∊EM, ∑j∈J(∏m∈C j m) ∊EM.

∑
i∈I

∏
m∈Ai

m

 !
∧ ∑

j∈ J
∏

m∈B j

m

 !
¼ ∑

k∈I∪ J
∏

m∈Dk

m
� �

ð2Þ
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∑
i∈I

∏
m∈Ai

m

 !
∨ ∑

j∈ J
∏

m∈B j

m

 !
¼ ∑

i∈I ; j∈ J
∏

m∈Ai∪B j

m

 !
ð3Þ

where for any k∊ I∪J (the disjoint union of I and J, i.e., every element in I and every element in
J are always regarded as different elements in I∪J), Dk = Ak if k ∊ I, and Dk = Bk if k∊J.

In the AFS framework, the membership function is utilized to interpret concept of mj,k. Its
ordered relation is defined as follows. Let X be an observed data set, and M be a set of fuzzy
terms on X. For A ⊆ M, x∊ X, we define

A≻ xð Þ ¼ y∈X x≻my; for
��� any m∈A

n o
⊆X ð4Þ

where a linearly ordered relation is denoted by B≻ .̂ For m ∊M, Bx≻m y^ implies that the degree
of x belonging to m is larger than or equal to that of y. A≻ xð Þ is the set of all elements in which
their degrees of belonging to set∏m∈A m are less than or equal to that of x. A≻ xð Þ is determined
by the semantics of fuzzy set A and the probability distribution of data.

Theorem 1 ([20]) Let v be a fuzzy term on X. v: X⇒ R+ = [0,∞). ρv is called a weight function
of the simple concept v if ρv satisfies the following conditions:

1. For x∈X ; ρv xð Þ ¼ 0⇔x⊁mx;
2. For x; y∈X ; ρv xð Þ≥ρv yð Þ⇔x⊁my:

The coherence membership function is defined as follows:

μξ xð Þ ¼ sup
i∈I

inf
γ∈Ai

∑
u∈A≻

i xð Þ
ργ uð ÞNu

∑u∈Xργ uð ÞNu
;∀x∈X ð5Þ

where, Nu is the number of observed times of sample u. Some other properties and its
applications of AFS are detailed in the literature [20–23].

2.2 The max-dependency, max-relevance and min redundancy algorithm (mRMR)

In this section, a feature selection algorithm will be briefly introduced, which is established
according to mutual information theory [7, 27]. Its aim is to find a feature setM with n features
{mi}, which jointly exhibit the largest dependency on the target class C. Usually, it searches the
subset Mn − 1 with n − 1 features according to the contribution to the largest increase of
entropy I(Mn; C), which is presented as follows:

I Mn;Cð Þ ¼ ∫ ∫ p Mn;Cð Þ log
p Mn;Cð Þ
p Mnð Þp Cð Þ dMndC

¼ ∫ ∫ p Mn−1;mn;Cð Þ log p Mn−1;mn;Cð Þ
p Mn−1;mnð Þp Cð Þ dMn−1dmndC

¼ ∫⋯∫p m1;⋯;mn;Cð Þlog p m1;⋯;mn;Cð Þ
p m1;⋯;mnð Þp Cð Þ dm1⋯dmndC

ð6Þ
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where Mn = {Mn−1, mn} can be treated as a multivariate variable. Thus, by the definition of
mutual information, it can be represented in the form:

I Mn;Cð Þ ¼ H Cð Þ þ H Mnð Þ−H Mn;Cð Þ ¼ H Cð Þ þ H Mn−1;mnð Þ−H Mn−1;mn;Cð Þ ð7Þ
where H(·) represents the entropy of the respective multivariate (or univariate) variables.
Similarly, the quantity J(Mn) = J(m1, m2, …, mn) is defined for scalar variables m1, m2, …, mn

J Mnð Þ ¼ J m1;⋯;mnð Þ ¼ ∫⋯∫p m1;⋯;mnð Þlog p m1;⋯;mnð Þ
p m1ð Þ⋯p mnð Þ dm1⋯dmn ð8Þ

J Mn;Cð Þ ¼ J m1;⋯;mn;Cð Þ

¼ ∫⋯∫p m1;⋯;mn;Cð Þlog p m1;⋯;mn;Cð Þ
p m1ð Þ⋯p mnð Þp Cð Þ dm1⋯dmndC ð9Þ

Then, the formula (11) and (10) can be easily derived as follows:

H Mn−1;mnð Þ ¼ H Mnð Þ ¼ ∑
n

i¼1
H mið Þ−J Mnð Þ ð10Þ

H Mn−1;mn;Cð Þ ¼ H Mn;Cð Þ ¼ H Cð Þ þ ∑
n

i¼1
H mið Þ−J Mn;Cð Þ ð11Þ

By substituting them in the corresponding term in formula (6), we can rewrite the form of
entropy I(Mn;C) as follows:

I Mn;Cð Þ ¼ J Mn;Cð Þ−J Mnð Þ ¼ J Mn−1;mn;Cð Þ−J Mn−1;mnð Þ ð12Þ
However, due to insufficient samples, high-dimensional and intensive computing required

in above estimation, it is hard to arrive at an accurate estimation. Therefore, the maximal-
relevance-minimal-redundancy (mRMR) algorithm [27], is proposed to select a subset of M,
by choosing mutually exclusive features via optimizing the maximal relevance criterion
D(M,C) and minimal redundancy condition R(M). In summary, by combining the above
constraints, the operatorΦ(D, R) can be defined. Here, the terms D and R need to be optimized
simultaneously. The simplest form is in the following form:

maxΦ D;Rð Þ ; Φ ¼ D − R

s:t: maxD M ;Cð Þ;D ¼ 1

Mj j ∑
mn∈M

I mn;Cð ÞminR Mð Þ;R ¼ 1

Mj j2 ∑
mi;m j∈M

I mi;mj
� �(

ð13Þ

where the mutually exclusive (independent) features are extracted through mining J(Mn) and
the max-relevance features will be chosen by maxing the J(Mn, C). Finally, mRMR can select
a compact set of superior features. The details are illustrated in literature [7, 27].

3 SDAFS: a semantic descriptor based on AFS

In this section, we will create a semantic descriptor based on AFS (SDAFS). The algorithmic
process mainly contains three stages. The first one is to select features. The second stage is to
establish semantic description for each individual. The third one is to optimize concept set for
obtaining the best interpretation for each expression. We first interpret the key symbols used in
this paper in Table 1.
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3.1 Construction of expression features construction

When expression is changed, the geometrical shape of facial components will be varied
intuitively (see Fig. 1).

According to literature [10, 14], the characteristics are main concentrated on facial principal
regions such as eyes, mouth and nose. Therefore, we construct 30 expression features by
landmarks [5] for describing expression variations. Let LK = {l1, l2, …, lk} be a set of
landmarks extracted from each expression image. li = (ri, ci) ∈LK presents the points of facial
component. ri and ci are i-th coordinates of point li. In this case, the d(lh, lk)(lh, lk ∈ LK)
represents the distance between two points. The ∠(lh, lk, lp)(lh, lk, lp∈LK) indicates the angle
among three points. Their calculations are illustrated as follows:

d lh; lkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lrh−l

r
k

� �2 þ lch−l
c
k

� �2q
ð14Þ

cos∠ lh; lk ; lp
� � ¼ d2 lh; lkð Þ þ d2 lp; lk

� �
−d2 lh; lp
� �

2� d lh; lkð Þ � d lp; lk
� � ð15Þ

For all the measurements including d(lh, lk) and cos∠(lh, lk, lp), there are 30 expression
features Ftotal = {f1, f2, · · ·, f30} to be established, which are listed illustrated in Table 2.

3.2 Construction of compact feature subset by using mRMR

The constructed features can well describe the characteristics of facial components. However,
the effectiveness is distinction among various features for different expressions. In this study,
mRMR is used to select the compact feature subset for differentiating expressions. The aim of
mRMR is to search a subset F∈Ftotal, which could satisfy the minimal redundancy and
maximal relevance simultaneously. This strategy consists of two steps.

& First, according to formula (13), the score S score j is built to evaluate the performance for
corresponding f j ∈Ftotal. Then, the score S score = {S score 1, S score 2, · · ·, S score 30} will
be obtained.

& Second, the element S score j∈S score will be sorted in a descent order. Then, according to
the score S score j, the feature subset F for each expression can be determined. The f j,
whose score is bigger, will be remained.

Table 1 The key symbols in this paper

Key symbol Description of symbol

F A set of expression features
xi The individual sample
X The set of all samples
XCi The i-th subset in X
mj,k The k-th semantic concept associated with the j-th expression feature
Mxi A set of semantic concepts for xi
EMCi The conjunction semantic set for Ci class
ξCi The semantic description for cluster Ci

δ1 A threshold value for selecting semantic concept of mj,k

δ2 A threshold value for selecting conjunction semantic
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Natural

Disgust

Happy

Surprise

Fig. 1 The geometrical shape of facial components in various expressions

Table 2 The expression features and their semantic interpretation

Feature Semantic interpretation

f1 The distance between the points of inner canthus and the points of inner eyebrow
f2 The angle between the point of inner canthus and the point of inner eyebrow in right eye
f3 The angle between the point of inner canthus and the point of inner eyebrow in left eye
f4 The angle between the point of outer canthus and the point of both ends of eyebrow in right eye
f5 The angle between the point of outer canthus and the point of both ends of eyebrow in left eye
f6 The radian of right eyebrow
f7 The radian of left eyebrow
f8 The height of eyes
f9 The width of eyes
f10 The angle between points of top and down of eye and inner canthus in right eye
f11 The angle between points of top and down of eye and inner canthus in left eye
f12 The area of right eye
f13 The area of left eye
f14 The angle between points of inner canthus of eyes and points of center of inner canthus eyebrows
f15 The height of mouth
f16 The width of mouth
f17 The perimeter of mouth
f18 The area of mouth
f19 The angle of right corner of the mouth
f20 The angle of left corner of the mouth
f21 The angle between corners of mouth and nasal peak
f22 The angle between corners of mouth and the top point of mouth
f23 The angle between corners of mouth and the down point of mouth
f24 The angle between points of outer canthus and the down point of mouth
f25 The distance between the point of nasal peak and the point of under-jaw tip
f26 The width of nose
f27 The length of nose
f28 The area of nose
f29 The angle between points of inner canthus and nasal peak
f30 The angle of under-jaw
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3.3 Semantic description for each expression

By using the mRMR, the compact feature subset F can be obtained. However, any
expression characteristics are different from others. Therefore, a new approach is
proposed in this section to extract the representative features, and establish semantic
concepts for describing various expressions. The process is divided into three steps,
and the flow chart is illustrated in Fig. 2.

3.3.1 Step A: features selected from each individual

According to the sample label, it is very important to extract salient features, which can
describe xi∈X effectively. By comparing with literature [31], we propose a new approach here
to select the valuable features according to discriminative power of features. Technically, let

F = {f1, f2, · · ·, fS} be a set of features, X = {x1, x2, · · ·, xn} be a set of samples. The ℛ f s
k=xi

(1 ≤ s ≤ S) denotes the k nearest neighbors around xi with f j ∈F, ℛF
k=xi presents the k nearest

neighbors around xi with F = {f1, f2, · · ·, fS}. Here, the distance Dis
(fs)(xi-xj) between xi and xj

The features selection for individual xi

Feature Set

Semantic

concept mj,kFeatures selection
Semantic concept

transformation

Select better semantic concepts for individual xi

Semantic

concept set Threshold value

Remained

semantic

concepts for xi

Conjunction

concept setMerge concepts

The semantic concepts are transformed in framework of AFS

F={f1, f2,…, fs}

ixM ixEM

The semantic concepts are merged based on AFS logical operation

Optimize semantic concepts for each expression

Optimization criterion

The best semantic

concepts ξi for i-th
expression

The semantic

concepts for i-th
expression

iCEM

Fig. 2 The flow chart of the proposed method
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(xi, xj∈XCi, xi ≠ xj) is estimated by the Euclidean Distance. Similarly, the distance Dis(F)(xi-xj)
between xi and xj is also estimated by the Euclidean Distance.

For each xi, we utilize the mutual neighbors to estimate the influence of fs between ℛ f s
k=xi

and ℛF
k=xi . If the neighbors of xi in fs are similar to that of xi in F, we consider fs could

represent xi in feature set F.

ℛ f s
N ¼ ℛ f s

k=xi
∩ℛF

k=xi ; f s∈Fð Þ ð16Þ

where ℛ f s
N is the number of neighbors between fs and F, which can be used to reflect the

performance of feature fs. It means that theℛ f s
N contains more discriminative information than

F on data X. Its extraction process is described in Algorithm 1.

3.3.2 Step B: semantic concepts for each individual

In section 3.2, we obtained a set of features F′ for each xi. And each f j is divided
into three semantic concepts Bmj,1^, Bmj,2^ and Bmj,3^, which corresponds to Blarge^,
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Bmedium^ and Bsmall^ respectively. Then, we can obtain the semantic concept set for
every xi as follows.

Mxi ¼ ∑mj;k μm j;k
xið Þ≥max μm j;k

xið Þ
n o

−δ1
���n o

ð17Þ

where δ1 is a threshold for selecting mj,k, which can describe xi well. However, when
the expression happens, several facial components will change their shape simulta-
neously. Therefore, the conjunction semantic concept set Axi is selected for describing
xi by:

Axi ¼ ∑Axi
remain μAxi

remain
xið Þ−δ2

��� ≥0
n o

ð18Þ

where δ2 is a threshold for selecting the semantic concept Axi. Then, Axi
remain ¼ ∏mj;k

mj;k⊂Mxi
� �

is a set of conjunction concepts set. However, we expect to obtain the best

description A xi select∈Axi for describing xi. Assume that ℛAxi
s

k=xi
is the k neighbors

around xi with semantic concept Axi
s ∈A

xi and for each xi, we can extract the best
semantic concept Axi

select according the number of mutual neighbors.

ℛAxi
s

N ¼ ℛAxi
s

k

.
xi

∩ℛAxi

k

.
xi
; Axi

s ∈A
xi

� � ð19Þ

where ℛAxi
s

N is the number of neighbors between Axi
s and Axi . Then the Axi

select

corresponding to maximum ℛAxi
s

N will be selected for xi. Similarly as in section 3.2,

the distance D Axi
sð Þ xi−x j
� �

between xi and xj (xi, xj∈XCi, xi ≠ xj) is measured by the

Euclidean Distance. However, the feature value, which describes xi under Axi
s , is

replaced by membership value calculated by formula (5).

3.3.3 Step C: optimizing the semantic concepts for each group

In this section, the main aim is to search the best semantic concepts for each expression. From
section 3.3.2, we have obtained the salient concept for each xi ∈XCi . Then, we can summarize
a set of concepts EMCi for Ci class as follows.

EMCi ¼ ∑
x¼xi;xi∈XCi

Axi
select

( )
ð20Þ

However, there are redundant concepts in EMCi, which may generate weak influence for Ci

class. As well known, the compactness within class and separability between classes are very
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important for discriminant feature selection. However, it is difficult to accomplish compactness
and separability simultaneously. Hence, we design a new optimization criterion for selecting the
best semantic concepts for each group according to compactness, separability and weighting.

maxξCi
ωη

� � ¼ RCi ωη

� � �WCi ωη

� � � GCi ωη

� �
;ωη∈EMCi

s:t:
RCi ωη

� � ¼ max θ ωη

� �� 	
; 0 < θ ωη

� �
< 1

WCi ωη

� � ¼ max φ ωη

� �� 	
; 0 < φ ωη

� �
< 1

GCi ωη

� � ¼ max ψ ωη

� �� 	
; 0 < ψ ωη

� �
< 1

8<
: ð21Þ

where RCi(ωη) is considered as a quotient for satisfying greater separability and smaller
compactness simultaneously. Here Classsep and Classcom signify the separability and compact-
ness respectively. And the quotient is larger, the result is better.

R ωη

� � ¼ Classsep
Classcom

¼
∑
C

Ci¼C1

∑
i¼1

ni

μωη
xið Þ−μωη

XCi


 ���� ���
∑
C

Ci¼C1

ni μωη
xCi


 �
−μωη

Xð Þ
��� ��� ¼

∑
C

Ci¼C1

∑
i¼1

ni

μωη
xið Þ− 1

ni
∑
i¼1

ni

μωη
xið Þ

����
����

∑
C

Ci¼C1

ni
1

ni
∑
i¼1

ni

μωη
xið Þ− 1

N
∑
N

j¼1
μωη

x j
� ������

�����
¼

∑
C

Ci¼C1;Ci≠C j

∑
i¼1

ni

μωη
xið Þ

∑
C

Ci¼C1;Ci≠C j

∑
i¼1

ni
μωη

xið Þ−ni
N

∑
N

j¼1
μωη

x j
� �" #

ð22Þ
where μωη

xið Þ represents the membership degree of xi under semantic concept ωη. ni is the

number of samples in i-th class. N is the total number of all samples. μωη
XCi

� �
is the mean

value of all samples in XCi. Then, we can introduce RCi(ωη), W
Ci(ωη) and GCi(ωη) as follows:

RCi ωη

� � ¼ max θ ωη

� �� 	
; θ ωη

� � ¼ R ωη

� �
∑ωη∈EMCi R ωη

� � ð23Þ

WCi ωη

� � ¼ max φ ωη

� �� 	
;φ ωη

� � ¼ ∑ni
i¼1μωη

xið Þ
∑ωη∈EMCi∑ni

i¼1μωη
xið Þ ð24Þ

GCi ωη

� � ¼ max ψ ωη

� �� 	
;ψ ωη

� � ¼ ∑ni
i¼1 μωη

xið Þ−max xtf g
h i

∑ωη∈EMCi∑ni
i¼1 μωη

xið Þ−max xtf g
h i ð25Þ
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where, xi∈XCi, ωη∈EMCi, xt∈X, xt ∉ XCi. XCi represents the i-th class. Then, the process of
optimizing semantic concepts for each group is described in detail as Algorithm 2.

3.4 Inference

In order to predict the class label for new samples which are not included in X, we need the
semantic concept set ξ expressedover theentire input spaceU1×U2× · · · ×Us⊆Rs(X⊆U1×U2× ·
· · × Us), where Ui is the feature associated with the semantic concept term mj,k in M. If the
distribution of data set is given, the membership function of semantic concept set γ can be
derived according to the observed data. For any semantic concept ξ∈EM, we expand its
universe of discourse X to U1 × U2 × · · · × Us. For each x = (u1, u2, · · ·, us) ∈ U1 × U2 × ·
· · × Us, ξ = ∑i∈I(∏m∈Ai m) ∈EM, the lower bound of membership function of semantic concept
set γ is defined over U1 × U2 × · · · × Us as follows:

μL
ξ xð Þ ¼ sup

i∈I
inf
γ∈Ai

∑u∈LxAi
ργ uð ÞNu

∑u∈Xργ uð ÞNu
ð26Þ

where LxAi
⊆X , i ∈ I are defined as LxAi

¼ y∈X x≻my;∀m∈Aijf g. We call μL
ξ xð Þ the lower bound

of membership function of ξ. In virtue of formula (26), we can expand the fuzzy set ξ ¼ ∑i∈I

∏m∈Ai
m

� �
∈EM , from the universe of discourse X to the universe of discourse U1 × U2 × · ·

· × Us. Therefore, by the fuzzy rule-base, we can establish fuzzy-inference systems whose
input space is U1 × U2 × · · · × Us. The membership function μL

ξ xð Þ is dependent on the

distribution of training examples and the AFS fuzzy logic.
When, new pattern x∈U1 × U2 × · · · × Us is provided with unknown class label, we can

calculate the membership degree μL
ξ xð Þ with (26), where ξCk

is the fuzzy description of the

class Ci. Finally, x belongs to the class Cq, if q ¼ argmax1≤ k ≤C μL
ξ xð Þ

n o
.
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4 Experimental results

In all the experiments, the membership functions of semantic concepts are determined by
formula (5) in Theorem 1; for any mj;k∈M j; ρm j;k

xið Þ ¼ 1; Nxi ¼ 1 denotes xi is observed

once. Three semantic concepts are defined on each feature f j. mj,1, mj,2, mj,3 are semantic
concept terms, Blarge^, Bmedium^, Bsmall^ associated with the feature f j in F. mj,1 with the
semantic meaning Bthe value on f j is large^, Bmj,2 with the semantic meaning Bthe value on f j
is medium^, and mj,3 with the semantic meaning Bthe value is closer to the small on f j^.

We conduct our experiments on database FEI [36, 37] and CK+ [13, 24]. The FEI contains
2800 images coming from 200 different subjects (100 male, 100 female), which are gathered
by college students of Brazil. Each frontal face includes two expressions (natural and happy),
which are used in our experiment. CK+ [13, 24] is a sequence of images including 123
subjects. In which, the expression is changed from the neutral face to the corresponding peak.
In order to compare the differences among expressions, we only use the peak expression.

In addition, we extract the semantic concepts for interpreting the differences of expressions.
Meanwhile, we consider SDAFS as a classifier to have a comparison of performance with
some state-of-the-art classifiers such as C4.5 [29], Bayes [30], Decision Table (DT) [12], Cart
[15] and Reduced error pruning tree (REP) [8].

4.1 The semantic description for expression on FEI

In this section, we select natural and smile images from FEI (NH-FEI), which include 400
samples (natural 200, happy 200), to verify our method. In order to distinguish each expres-
sion, the symbol ξC1 and ξC2 represent a set of semantic concepts of natural and happy
respectively. The result is as follows:

ξC1 = m17,3. Its semantic interpretation is as follows: BThe perimeter of mouth is smaller^;
ξC2 = m17,1. Its mean is that: BThe perimeter of mouth is smaller is larger .̂

According to the semantic concepts, we can easily observe that the mouth can obviously
differentiate natural and happy (see Fig. 3). The result denotes that the mouth is best important
feature for distinguishing natural and happy. In addition, the result also implies the change
extent of facial component according to the semantic concept of mouth. For example, the
perimeter shows the open extent in happy is larger than that of natural.

In order to observe the effect of SDAFS, we make 10-fold cross-validation on NH-FEI.
And the experiments are executed 5 times. Here, BA^ represents average accuracy in one
experiment; BC^ denotes the average number of correct testing samples in one experiment;
BN^ is the number of testing samples; Bstd^ presents standard deviation of average accuracy.
The result is illustrated in Table 3.

4.2 The semantic description for expression on CK+

According to the results in [48], samples are often misclassified because of the similar appearance
variations between anger and sadness. In addition, due to the sample number of fear expression is
very small, we only select four expressions such as natural, disgust, happy and surprise in our
experiment, and the peak expressions of disgust, happy and surprise will be selected. And we
execute 10-fold cross-validation on each database to estimate the performance of classifiers.
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4.2.1 The difference description among natural, disgust and surprise

In this section, we extract natural, disgust and surprise images from CK+ as a new expression
database (NDS-CK+). It contains 225 samples (natural 83, disgust 59, surprise 83). The
symbol ξC1, ξC2, and ξC3 denote a set of semantic concepts of natural, disgust and surprise
respectively. The results are as follows:

ξC1 = m23,1 with the semantic concept is that: BThe angle between corners of mouth and
the down point of mouth is larger^;
ξC2 = m1,3 + m8,3 with the semantic concept is that: BThe distance between the point of
inner canthus point and the point of inner eyebrow^ or BThe height of eyes is smaller^;
ξC3 = m18,1 m19,1 + m15,1 m19,1 with the semantic concept is that: BThe area of mouth is
larger and the angle of right corner of the mouth is larger^ or Bthe height of mouth is
larger and the angle of right corner of the mouth is larger .̂

According to the above results, we can obtain the differences of various expressions with
semantic concepts. For example, ξC1 denotes three movements of facial components such as
eyebrows downed and eyes squinted. ξC3 presents the mouth is opened. Moreover, the result
illustrates the characteristics of disgust expression is concentrated on eyes region and that of
surprise is mouth region. The differences are described in Fig. 4.

Then, a 10-fold cross-validation is carried out 5 times for comparing with other
classifiers on NDS-CK+. The results are illustrated in Table 4. Here BA^ represents
average accuracy in one experiment; BC^ denotes the average number of correct
testing samples in one experiment; BN^ is the number of testing samples;Bstd^
presents standard deviation of average accuracy.

4.2.2 The difference description among natural, happy and surprise

In this section, we make a combining database, which includes natural, happy and surprise
(NHS-CK+). The database contains 235 samples (natural 83, happy 69, surprise 83). In order

Natural

Happy

Male Female

Fig. 3 The comparison between natural and happy on FEI

11788 Multimed Tools Appl (2018) 77:11775–11805



T
ab

le
3

T
he

ac
cu
ra
cy

ra
te
on

N
H
-F
E
I
(%

)

M
et
ho
d

1
tim

e
2
tim

e
3
tim

e
4
tim

e
5
tim

e
M
ea
n
va
lu
e

A
C
(N

)
A

C
(N

)
A

C
(N

)
A

C
(N

)
A

C
(N

)
A

C
(N

)
st
d

C
4.
5

90
.0
0

36
.0
0(
40
)

88
.5
0

35
.3
4(
40
)

88
.7
5

35
.5
0(
40
)

88
.0
0

35
.2
0(
40
)

89
.7
5

35
.9
0(
40
)

89
.0
0

35
.6
0(
40
)

0.
85

B
ay
es

88
.7
5

35
.5
0(
40
)

88
.7
5

35
.5
0(
40
)

90
.0
0

36
.0
0(
40
)

89
.2
5

35
.7
0(
40
)

90
.0
0

36
.0
0(
40
)

89
.3
5

35
.7
4(
40
)

0.
63

D
T

87
.5
0

35
.0
0(
40
)

88
.5
0

35
.4
0(
40
)

88
.2
5

35
.3
0(
40
)

88
.5
0

35
.4
0(
40
)

88
.7
5

35
.5
0(
40
)

88
.3
0

35
.3
2(
40
)

0.
48

C
ar
t

88
.2
5

35
.3
0(
40
)

87
.5
0

35
.0
0(
40
)

88
.0
0

35
.2
0(
40
)

89
.0
0

35
.6
0(
40
)

88
.2
5

35
.3
0(
40
)

88
.2
0

35
.2
8(
40
)

0.
54

R
E
P

87
.7
5

35
.1
0(
40
)

86
.0
0

34
.4
0(
40
)

88
.7
5

35
.5
0(
40
)

90
.5
0

36
.2
0(
40
)

89
.0
0

35
.6
0(
40
)

88
.4
0

35
.3
6(
40
)

1.
66

SD
A
FS

90
.2
5

36
.1
0(
40
)

90
.2
5

36
.1
0(
40
)

90
.2
5

36
.1
0(
40
)

90
.2
5

36
.1
0(
40
)

90
.2
5

36
.4
0(
40
)

90
.2
5

36
.1
0(
40
)

0.
00

Multimed Tools Appl (2018) 77:11775–11805 11789



to distinguish each expression, the ξC1, ξC2 and ξC3 indicate natural, happy and surprise
respectively. The results are as follows.

ξC1 = m23,1 with the semantic concept is that: BThe angle between corners of mouth and
the down point of mouth is larger^;
ξC2 = m21,1 with the semantic concept is that: BThe angle between corners of mouth and
nasal peak is larger^;
ξC3 = m15,1 + m15,1 m19,1 with the semantic concept is that: BThe height of mouth is
larger^ or BThe height of mouth is larger and the angle of right corner of the mouth is
larger .̂

According to these results, we can obtain the differences among natural, happy and
surprise, which are focused on mouth region (see Fig. 5.). For example, ξC2 denotes the mouth
corners will be stretched into sides, when happy happened. It leads to increasing the angle (f21).
However, ξC3 denotes that the surprise expression is also emphasized on mouth region.

In this case, we execute 5 times 10-fold cross-validation on NHS-CK+. Here, BA^
represents average accuracy in once experiment; BC^ denotes the average number of correct
testing samples in once experiment; BN^ is the number of testing samples;Bstd^ presents
standard deviation of average accuracy. The result is illustrated in Table 5.

4.2.3 The difference description among natural, disgust, happy and surprise

In this section, we make a combining database, which includes natural, disgust, happy and
surprise (NDHS-CK+). The database contains 294 samples (natural 83, disgust 59, happy 69,
surprise 83). In order to distinguish each expression, ξC1, ξC2, ξC3 and ξC4 indicate natural,
disgust, happy and surprise respectively. The results are as follows.

Natural

Male Female

Disgust

Surprise

49 55
58

52

58

49

25

30

19

35

29

31

34

36

49 55

58

25

30
19

35
29
31

34
36

52

58

49

Fig. 4 The comparison among natural, disgust and surprise on CK+
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ξC1 = m23,1 + m16,2 m23,1 with the semantic concept is that: BThe angle between corners of
mouth and the down point of mouth is larger^ or BThe width of mouth is medium and the
angle between corners of mouth and the down point of mouth is larger^;
ξC2 = m8,3 + m8,3m11,3 +m10,3m11,3 with the semantic concept is that: BThe height of eyes
is smaller^ or BThe height of eyes is smaller and the angle between points of top and
down of eye and inner canthus in left eye is smaller^ or BThe angle between points of top
and down of eye and inner canthus in right eye is smaller^;
ξC3 = m21,1 + m16,1 m21,1 with the semantic concept is that: BThe angle between corners of
mouth and nasal peak is larger^ or BThe width of mouth is larger and the angle between
corners of mouth and nasal peak is larger^;
ξC4 = m1,1 m15,1 + m15,1 m19,1 + m15,1 m20,1 + m15,1 m23,3 + m19,1 m23,3 with the semantic
concept is that: BThe distance between the points of inner canthus and the points of inner
eyebrows is larger and the height of mouth is larger^ or BThe height of mouth is larger
and the angle of right corner of the mouth is larger^ or BThe height of mouth is larger and
the angle of left corner of the mouth is larger^ or BThe height of mouth is larger and the
angle between corners of mouth and the down point of mouth is smaller^ or BThe angle of
right corner of the mouth is larger and the angle between corners of mouth and the down
point of mouth is smaller .̂

According to these semantic results, we can obtain two important observations of facial
expression. First, the differences of facial regions can be extracted in various expressions such
as natural, disgust, happy and surprise (see Fig. 6). Second, the movements of facial compo-
nents can be represented using semantic concepts clearly. For example, eyebrows frowned and
eyes squinted are two representative action in disgust expression. Grin is a typical action in
happy expression. Mouth opened and eyebrows rise are also two facial movements, when
surprise happens.

Natural

Male Female

Happy

Surprise

49
55

49 55

58
49 55

58

49 55

68

52

58

49

52

58

49

Fig. 5 The comparison among natural, happy and surprise on CK+
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Similarly, we can still execute 5 times 10-fold cross-validation on NDHS-CK+. Here, BA^
represents average accuracy in once experiment; BC^ denotes the average number of correct
testing samples in once experiment; BN^ is the number of testing samples;Bstd^ presents
standard deviation of average accuracy. The result is illustrated in Table 6.

4.3 Performance analysis

According to these experimental results, we can obtain some insights in the perfor-
mance of the classifier. However, those results do not provide enough support for
drawing a strong conclusion in favor or against any of the studied methods. In order
to achieve a convincing conclusion, we resort ourselves to statistical testing of the
results. The Friedman Test [11, 40] is a nonparametric test that is based on the
relative performance of classification method in terms of their ranks: for each dataset,
the methods to be compared are sorted according to their performance, i.e., each
method is assigned a rank (in case of ties, average ranks are assigned). Therefore,
under the null hypothesis, the Friedman statistic is as follows:

τχ2 ¼ 12N
k k þ 1ð Þ ∑

k

j¼1
Rj
� �2− k k þ 1ð Þ2

4

" #
ð27Þ

where k is the number of classifiers and N is the number of data sets. r ji is the rank

of classifier j on the data set i and Rj ¼ ∑N
i¼1r

j
ið Þ.

N
is the average rank of classifier j.

The Friedman statistic is asymptotically χ2-distributed with k − 1 degrees of freedom.
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Fig. 6 The comparison among natural, disgust, happy and surprise on CK+
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If N and k are not large enough, it is recommended to use the following correction
that is F-distributed with (k − 1) and (k − 1)(N − 1) degrees of freedom:

τ F ¼ N−1ð Þτχ2

N k−1ð Þ−τχ2

ð28Þ

We now evaluate the performance using the Friedman test. The values of N and k are set to
3 and 7 respectively. First the average rank Rj is determined (see Table 7).

According to formula (28), the value of _F is 11.483, while the critical value for the
significance level α = 0.05 is 2.901. Thus, the null-hypothesis can quite safely be rejected,
which means that there are significant differences in the classifiers performance. Given the
result of the Friedman Test, we conducted the Nemenyi Test [11] as a post-hoc test to compare
the classifiers in a pairwise manner. According to this test, the performance of two classifiers is
significantly different if the distance of the average ranks exceeds the critical distance CD.

CD ¼ qα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k þ 1ð Þ

6N

r
ð29Þ

where the qα is taken from the table of normal distribution, the value CD = 3.770. According
to Rj in Table 7, the performance among classifiers can be observed in detail in Fig. 7. From
Fig. 7, we evaluate the performance of various classifiers. Here, the performance of SDAFS
and Bayes is similarity; the performance of C4.5 and Cart is similarity; the performance of
Cart, REP and DT is similarity. And, the performance of SDAFS and Bayes is better than that
of REP and DT.

However, considering the semantic interpretation of expression, the proposed approach is
quite convincing. Then, in order to compare the effect, the pixel features will be addressed in
expression recognition.

4.4 Expression recognition with holistic features

In last section, we will execute two experiments to show the holistic pixel features are not as
effective as the features extracted in this paper. For this purpose, PCA [39], LDA [47] and
Local Binary Patterns (LBP) [46] are used to recognize expressions using pixel features.
Meanwhile, we carry out 10-fold cross-validation in experiments. In order to ensure the same
resolution, all images are cropped into a new size 100 ∗ 100 (see Fig. 8).

Here, BA^ represents average accuracy in one experiment; BC^ denotes the average number
of correct testing samples in one experiment; BN^ is the number of testing samples. The result
is illustrated in Tables 8, 9, and 10.

Table 7 The rank of various classifiers

Data set Classifiers

C4.5 Bayes DT Cart REP SDAFS

NH-FEI 3 2 5 6 4 1
NDS-CK+ 3 2 6 4 5 1
NHS-CK+ 3 2 6 4 5 1
NHDS-CK 2 1 6 5 3 4
Average Rj 2.75 1.75 5.75 4.75 4.25 1.75

11796 Multimed Tools Appl (2018) 77:11775–11805



By comparing with the performance results by using the geometry features and
pixel features on NDS-CK+, NHS-CK+ and NDHS-CK+. The pixel features are much
worse than that of geometry features. The results indicate that the illumination
intensity can influence pixel values, which could lead to error in recognition process.
In addition, another advantage of geometry features is that it breaks the limitation of
image resolution and illuminations.

Natural

Happy

Surprise

Disgust

Fig. 8 A segmental facial expression images on CK+

0 1 2 3 4 5 6 7 8

Critical Difference

SDAFS

CartC4.5

Bayes

DT

REP

Fig. 7 The performance
comparison among classifiers
based on Friedman Test
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5 Conclusions

In this paper, we propose a new approach for facial expression based on the framework of AFS
theory. The developed descriptor not only describes the characteristics of various expressions,
but also bridges the gap between primitive features and semantic concepts. When certain
expression happened, its shape could directly reflect the differences among expressions.
Firstly, we establish expression features using landmarks, and then extract the semantic
concepts with its distribution. Secondly, we design a method to select the effective features.
In the same class, we estimate representative effectiveness of features for each sample. We
finally select the better features as its representation. Eventually, an optimization criterion is
built to extract semantic concept sets for each expression. Then, we estimate four combining
data sets such as NH-FEI, NDS-CK+, NHS-CK+ and NDHS-CK+, and conduct the experi-
ments for analyzing expression characteristics respectively. The results obtained on NH-FEI
show that if one only differentiates the natural and happy, the feature of mouth is obvious
(m17,3 and m17,1). Then, we have a study on disgust and surprise. For example, the result on
NDS-CK+ represents that the differences among natural, disgust and surprise focuses on eyes
(m8,3), and eyebrows (m1,3) and mouth (m15,1, m18,1 and m19,1). Similarly, the results on NHS-
CK+ indicate the main differences among natural, happy and surprise still concentrate on
mouth (m23,1, m21,1, m15,1 and m19,1). Finally, the experiment on NDHS-CK+ denotes the
regions of eyes and mouth are important to analyze facial expressions. In addition, the results
demonstrate SDAFS can describe the various expressions using semantic concepts, which
conforms to real variation of facial components in various expressions.

Furthermore, we have an accuracy rate test between SDAFS and some state-of-the-art
methods such as C4.5, Bayes, DT, Cart and REP. In order to compare their performance, the
Friedman Test is applied in examination. The results show that the performance of SDAFS and
Bayes is similar, and better than that of REP and DT in analyzing facial expressions.

In the future, the expression images will be collected continuously. Meanwhile, more
advanced optimization schemes will be researched. Specially, we will have a deep research
about facial expression in different cultural backgrounds.
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