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Abstract Researchers face non-uniform illumination and low-contrast image challenges
during the image-processing stage. A new contrast enhancement method is proposed in this
paper to address these challenges. The proposed method first separates the dark and bright
regions of an image. Then, these regions are enhanced using two new enhancers, namely, dark
and bright. Modified clipped histogram equalization is then applied for contrast enhancement.
Finally, the details of the image are added back into the illumination-corrected and contrast-
enhanced image for the final output image. Visually, the proposed method successfully
produces better images with more uniform illumination and better contrast than the state-of-
the-art methods. This claim is supported by quantitative analysis that shows that the proposed
method produces the best average measure of enhancement, natural image quality evaluator,
and entropy values of 797 test images compared with other state-of-the-art methods.

Keywords Non-uniform illumination . Image enhancement . Contrast . Histogram . Entropy

1 Introduction

An image normally consists of two components: illumination and reflectance [6]. Illumination
may also be referred to as lighting, which excites the visual sensation of humans [1]. A poor
illumination condition during the image acquisition process produces a non-uniformly illumi-
nated image [18]. This situation occurs commonly at night [20] in microscopic images [7] and
in complex industrial environments [40]. A monochrome object in a non-uniformly
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illuminated image might exhibit varying intensity levels because of light transition. Differ-
ences in intensity levels cause difficulties during image processing, especially in segmentation,
because this process is based on either the discontinuity or the similarity principle. Regions
that differ in properties, such as intensity, color, texture, or other image statistics, are extracted
based on the discontinuity principle. Meanwhile, the pixels of images are grouped based on the
similarity principle according to common properties to extract the coherent regions [34].
However, the intensity of the object varies because of the non-uniform illumination, thereby
causing difficulties in the pixel intensity-based segmentation process. Thus, enhancing non-
uniformly illuminated images is necessary to produce uniformly illuminated and high-contrast
resultant images, which benefit the segmentation process.

Numerous approaches have been proposed to solve the non-uniform illumination problem
in images. Generally, these techniques can be categorized according to the concept used during
the enhancement process, such as histogram modification [13–15, 22, 27, 30, 42], fuzzy theory
[9, 23, 29], retinex [11, 12, 20, 28], and others [5, 10, 17, 25, 35, 38, 43]. Adaptive histogram
equalization (AHE) is one of the histogram modification-based contrast enhancement methods.
Most AHE-based methods can solve the non-uniform illumination issue, where the bright and
dark regions are darkened and brightened, respectively [32]. As a result, images with highly
uniform and homogeneous illumination could be produced. However, conventional AHE
suffers from two main drawbacks: (1) it is time-consuming because of the massive calculation
required by the HE algorithm and (2) unnatural appearance might occur in some resultant
images because of the amplification of unwanted noise [27]. Several new versions of the AHE
method have been proposed to address its weaknesses. Contrast-limited HE (CLAHE) [27],
partial overlapped sub-block HE (POSHE) [14], cascaded multistep binomial filtering HE
(CMBFHE) [15], overlapped sub-blocks and local histogram projection (NOSHP) [3], and fast
local histogram specification (FLHS) [22] were specifically designed to reduce the noise
enhancement and computational time of AHE. The computational cost of AHE has been
reduced after several improvements, but the noise amplification and unnatural appearance of
the resultant images are yet to be solved.

Histogram-adaptive image segmentation is another type of histogram modification method,
which was proposed to enhance low-quality images [30]. Low-quality images are defined to
have low contrast, low image detail, unnatural appearance, and non-uniform illumination.
Histogram-adaptive image segmentation algorithm widens the dynamic range of segmented
low-contrast areas, which results in better contrast and a brighter resultant image. This method
has successfully improved the illumination of images and the details of the resultant images are
relatively better. Subsequently, human visual system-based multi-HE (HVSMHE) was intro-
duced. Instead of employing the thresholding concept, HVSMHE employs the human vision
thresholding concept to detect and distinguish between the dark and bright regions of non-
uniformly illuminated images [21, 42]. Each region is enhanced using a different approach for
a better output image. HVSMHE provides good illumination enhancement. However, three
parameters need to be set to obtain a well-enhanced image, which is unsuitable for automated
applications. Gain-controllable clipped HE (GC-CHE) was proposed to reduce the effect of
noise amplification while preserving the mean brightness of the image [13]. GC-CHE clips the
histogram bin that is higher than the pre-specified threshold to control the noise amplification
and the maximum gain of the transformation function. Furthermore, GC-CHE introduces local
and global gains to increase the gain in the dark and bright regions for illumination correction.
The resultant images of GC-CHE have more uniform illumination and lower noise amplifica-
tion than the input images. The existence of four control parameters in GC-CHE limits its
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usage in real-time applications because these parameters require manual tuning. These param-
eters have to be tuned according to different illumination conditions to produce good-quality
resultant images.

In addition to the histogram modification-based technique, fuzzy set theory is also widely
applied for contrast enhancement and illumination correction purposes. The fuzzy set theory is
based on the principles of uncertainty, ambiguity, and vagueness [26]. Non-uniformly illumi-
nated images have no rigid boundaries between their dark and bright regions. The fuzzy set
theory is useful in distinguishing these areas. Fuzzy image processing has three main stages,
namely, image fuzzification, modification of membership values, and image defuzzification
[29]. Magudeeswaran and Ravichandran [23] proposed to apply the fuzzy set theory in HE,
that is, fuzzy logic-based HE (FHE). This algorithm can preserve the image brightness and
improve the local contrast of the original image. However, its performance in terms of detail
preservation can be improved further because some details are washed out during the process
of remapping the intensity level of the image. Hasikin and Isa [4, 9] introduced a new
parameter called contrast factor in their proposed technique, that is, the adaptive fuzzy contrast
factor enhancement (AFCFE). The contrast factor indicates the difference among the intensity
values in the local neighborhood. Then, a threshold, which is used to separate the bright and
dark regions is derived based on the contrast factor. The proposed AFCFE method has better
results on peak signal-to-noise ratio (PSNR) and entropy than several HE-based contrast
enhancement methods. However, the method requires longer processing time and produces
resultant images with low contrast levels in several cases.

Retinex is another approach to solve the non-uniform illumination issue. In general, the
retinex theory suggests that color is independent of the flux radiant energy but is correlated
with the reflectance of the object [8]. Multi-scale retinex (MSR) was proposed to produce a
resultant image with good dynamic range compression and color constancy, as well as a good
tonal rendition [28]. MSR combines the dynamic range of the small-scale retinex (i.e., which
has poor tonal rendition) with the tonal rendition of the large-scale retinex (i.e., which has poor
dynamic range compression) to produce a more uniformly illuminated image. Subsequently,
several MSR improvements were proposed. For example, multi-scale retinex color restoration
(MSRCR) was proposed to solve the gray world assumption, which results in a grayish output
image with a certain dominant color [12]. Meanwhile, multi-scale retinex improvement for
nighttime image enhancement (MSRNIE) was proposed to enhance nighttime images that
have low and non-uniform illuminations [20]. This method replaced the logarithm function in
MSR with the sigmoid function to compress the Bextreme^ pixels rather than clip them to
avoid information loss. This method was also proposed to suppress noise and preserve
highlighted areas to avoid over brightening them. However, this method has a parameter that
needs to be set manually to obtain a well-enhanced image. It is also time-consuming because
of the weight factor calculation for noise suppression and highlight preservation.

Wavelet transform-based methods are also important in image enhancement. Wavelet
transformation can concentrate most of the signal energies of an image into a small subset
of wavelet coefficient, which is usually along the edges of an image [5, 35, 43]. This
feature has been exploited in image compression, denoising, and enhancement [5, 35].
Wan et al. [35] proposed a wavelet-based exact pixel ordering algorithm that can simplify
histogram specification. This method has low computational cost and low noise amplifi-
cation but limited contrast improvement. Isar [25] proposed to use the dual-tree complex
wavelet transform (DT-CWT) coupled with the bivariate Laplace model for local adaptive
contrast improvement. This method applies the bishrink filter in the DT-CWT domain to
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overcome the noise amplification issue. The resultant image of this method is character-
ized by low noise and high contrast, but the non-uniform illumination issue is barely
improved.

Instead of improving the illumination of general images, Wang et al. [16] proposed
an illumination compensation method for face recognition. The method derives an
illumination direction map from the input face image. Then, a partial least-square
plane fit is applied to the illumination direction map to select the category of the light
source. Finally, the illumination of the input image is compensated based on the
selected light source category. The illumination map proposed in this method is only
suitable for face images. Jiao et al. [10] proposed a method called partially overlapped
sub-block logarithmic transformation (POSLT). POSLT uses a sub-block with a certain
size to divide the input image into many partially overlapped sub-images and perform
logarithmic transformation on each sub-image. A trade-off between image quality and
computational complexity exists in POSLT. Applying a large sub-block with a small
step size in POSLT produces a natural and good illumination image but requires a
high computational cost. Lee et al. [17] proposed a contrast enhancement method
using dominant brightness level analysis and adaptive intensity transformation
(DBLAAIT). This method produces an image with good contrast, uniform illumina-
tion, and natural appearance. The weaknesses of this method are (1) the absence of
noise suppression and (2) the time-consuming manual tuning process required by its
four parameters.

Subsequently, Wang et al. [38] proposed the naturalness preserved enhancement
algorithm (NPEA), which focuses on illumination enhancement and naturalness pres-
ervation. This method proposes a bright-pass filter to decompose the illumination and
reflectance in the input image. Then, the illumination is processed using bi-log
transformation to ensure that spatial variation does not flood the illumination with
details while the lightness order is preserved. Finally, the reflectance and processed
illumination are synthesized together to obtain the final enhanced image. The study
claimed that the proposed technique could enhance the details and maintain the
naturalness of non-uniform illumination. However, the processing time is long and it
tends to amplify unwanted noises.

In summary, the aforementioned techniques face one or more of the following problems:

1. Manual control parameters are used to fine-tune the algorithm performance, which is a
time-consuming procedure [13, 17, 20, 42].

2. In some cases, resultant images with unnatural appearances are produced [12, 14,
15, 22, 27].

3. The techniques tend to amplify unwanted noise [10, 14, 15, 17, 22, 28–30, 38].
4. The methods suffer from loss of image details [14, 15, 23, 29, 30].

Thus, this study proposes a new image illumination correction method that does not require
parameter adjustment, can minimize loss of image details, reduces the effect of noise ampli-
fication, produces better contrast enhancement performance, and can preserve the naturalness
of resultant images. Five quantitative evaluations, namely, entropy (E) [37], measure of
enhancement (EME) [33], PSNR, contrast improvement analysis (C) [2], and natural image
quality evaluator (NIQE) [19], are selected to objectively evaluate the proposed method in
comparison with other state-of-the-art methods and measure the quality of images.

8958 Multimed Tools Appl (2018) 77:8955–8978



2 Proposed method

Figure 1 shows the flowchart of the proposed method. The proposed method is divided into
three stages, namely, pre-processing, illumination correction, and post-processing. As
discussed in the previous section, the proposed method can reduce the effect of noise
amplification and loss of image details. Thus, unwanted noises and image details (i.e., edges
and surface textures) are extracted during the pre-processing stage to reduce noise amplifica-
tion and detail elimination during the illumination correction process. Then, the proposed
method determines and distinguishes between the dark and bright regions of the image. The
dark and bright regions are brightened and darkened, respectively, during the illumination
correction process. Finally, the contrast of the image is enhanced, and the details are added
back into the output image in the post-processing stage. The details of each process are
presented in the following subsections.

2.1 Pre-processing stage

In general, an image consists of two main components, namely, illumination and reflectance
[6, 11]. The mathematical representation of an image f(x,y) is stated in Eq. (1).

f ðÞ ¼ x; yð Þr x; yð Þ; ð1Þ
where i(x,y) and r(x,y) are the illumination and reflectance components, respectively [6, 11].
The proposed method assumes that the illumination variation in an image is the low-frequency
signal of the image [32]. Thus, illumination estimation can be performed by applying a low-
pass filter to the image. In the proposed method, a Gaussian low-pass filter is employed to
produce the illumination variation image. The Gaussian low-pass filter is selected because it
has good noise-filtering effects (i.e., better performance than the ideal low-pass and moving
average filters) [3]. The mathematical representation of the Gaussian low-pass filter is

h q; rð Þ ¼ 1

2πσ2
e
− −q2þr2ð Þ

2σ2 ; ð2Þ

where h(q, r) is the Gaussian low-pass filter, and q and r are the distances from the origin (i.e.,
center of filter) in the horizontal and vertical axes, respectively. σ is the standard deviation of
the Gaussian low-pass filter.

Standard deviation (σ) is one of the important parameters of the Gaussian low-pass
filter. The standard deviation value of a Gaussian filter is the radius that contains 68%
of the integrated magnitude of the kernel coefficient [32]. The kernel is a 2D
convolution operator applied to perform Gaussian filtering. A higher σ indicates a
wider integrated magnitude of coefficient spread. Thus, the filtered image becomes
more blurry (i.e., more details and noise are removed). Therefore, a high σ would
result in less illumination correction and contrast enhancement because some of the
illumination information are removed together with noises and image details. This
hypothesis is supported by Figs. 2 and 3. Figure 2 shows the relationship among the
standard deviation of the Gaussian filter, EME, and C according to the average results
of 375 test images (size, 640 × 480) of the Pasadena dataset [33]. This study
employed EME and C in the quantitative analysis. EME measures the local contrast,
while C measures the overall contrast of the output images. The details of EME and
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Fig. 1 Flowchart of the proposed
method
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C are discussed in Section 3. Fig. 2 shows that a higher σ would result in a lower C
value (i.e., overall contrast). Meanwhile, the EME value (i.e., local contrast) would
reach its peak between σ = 1 and σ = 2. The suitable standard deviation value (σ) for
the Gaussian filter of 1 (σ = 1) is used to maintain a balance between the local and
overall contrasts. Figure 3 shows the resultant images after applying a Gaussian filter
with σ = 1 and σ = 5. The magnified region (i.e., dark region) of Fig. 3 is shown in
Fig. 4. The overall appearance of Fig. 4(a) is brighter and clearer than the magnified
region of Fig. 4(b). As shown in the boxed region, the edges of the grass are more
observable in Fig. 4(a) than those in Fig. 4(b). This result shows that the Gaussian
filter with σ = 1 has better illumination correction than the Gaussian filter with σ = 5.
Based on the results presented in Fig. 2 and Fig. 3, the value of σ is set to 1.

Another important parameter of the Gaussian low-pass filter is the filter size. The
three-sigma rule is applied to decide the filter size because 99.7% of the values lie
within three standard deviations of the mean (i.e., mean ± 3σ) [31]. A further increase
in the size of the filter would not result in a significant difference. The mean is
represented by the center of the filter to apply the three-sigma rule in the Gaussian
low-pass filter. Therefore, the filter size should include one pixel for the filter center
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Fig. 2 Effect of standard deviation of Gaussian filter on EME and C of output images for 375 test images of the
Pasadena dataset

(a) (b)
Fig. 3 Enhanced image using Gaussian low-pass filter with standard deviation: (a) σ =1 and (b) σ = 5
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and the range should be within +3σ to −3σ pixels. The mathematical expression of
the filter size is shown in Eq. (3).

n ¼ 2 3σð Þ þ 1; ð3Þ
where n is the size of the Gaussian low-pass filter.

The reflectance assumption can be obtained by applying this assumption to Eq. 1.

i x; yð Þ≈I x; yð Þ; ð4Þ

r x; yð Þ≈ f x; yð Þ
I x; yð Þ ¼ R x; yð Þ; ð5Þ

where I(x,y) is the filtered image using Gaussian filter, and Eq. (5) is the reflectance assump-
tion. R(x,y) is the assumed reflectance, which is not a suitable output image because most its
details are removed during the division process. Thus, the R(x,y) obtained is then multiplied by
the median of the I(x,y) (i.e., denoted as median (I(x,y))) to act as the threshold for the
separation of the dark and bright regions. The median is selected as the multiplier of R(x,y)
because it produces the maximum segmentation entropy [36]:

Threshold x; yð Þ ¼ R x; yð Þ �median I x; yð Þð Þ
mean R x; yð Þð Þ ; ð6Þ

where median(I(x,y)) is the median of the histogram of I(x,y) and mean(R(x,y)) is the mean of
the histogram of R(x,y). Subsequently, the Gaussian filter is applied to the threshold mapping
to reduce the noises that exist (i.e., denoted as filtered Threshold(x,y)). Then, the dark and
bright regions are determined using Eqs. (6) and (7), respectively.

Dark x; yð Þ ¼ Threshold x; yð Þ−I x; yð Þ; if Threshold x; yð Þ≥ I x; yð Þ;
0; else

�
ð7Þ

Bright x; yð Þ ¼ I x; yð Þ−Threshold x; yð Þ; if Threshold x; yð Þ≤ I x; yð Þ;
0; else

�
ð8Þ

where Dark(x,y) and Bright(x,y) are the dark and bright regions of the image, respectively.
Both Dark(x,y) and Bright(x,y) record only the positive results, while the negative results
are set to 0.

(a) (b)
Fig. 4 Magnified dark region of enhanced image using Gaussian low-pass filter with standard deviation: (a)
σ = 1 and (b) σ = 5

8962 Multimed Tools Appl (2018) 77:8955–8978



From the determined dark and bright regions, the dark enhancer DE(x,y) and bright
enhancer BE(x,y) are derived. The DE(x,y) and BE(x,y) adjust the levels of illumina-
tion correction on the dark and bright areas, respectively.

DE x; yð Þ ¼ Dark x; yð Þ
max I x; yð Þð Þ �median I x; yð Þð Þ; ð9Þ

BE x; yð Þ Bright x; yð Þ
max I x; yð Þð Þ �median I x; yð Þð Þ; ð10Þ

where max(I(x,y)) is the maximum intensity value of I(x,y). A 3 × 3 average filter is applied to
both DE(x,y) and BE(x,y) to reduce the salt-and-pepper noises in the reflectance assumption.

2.2 Illumination correction

The reflectance assumption is not suitable to represent the output image because of
the unnaturalness and loss of image details. Thus, the proposed method performs
illumination correction based on the bright and dark enhancers derived according to
the following equations:

IC x; yð Þ ¼ I x; yð Þ 1þ DR� DE x; yð Þ−BR� BE x; yð Þ½ �; ð11Þ

DR ¼ meadian I x; yð Þð Þ−mean Dark x; yð Þð Þ
mean Dark x; yð Þð Þ

� �
; ð12Þ

BR ¼ meadian Bright x; yð Þð Þ−max meadian x; yð Þð Þ; mean I x; yð Þð Þð Þ
mean Bright x; yð Þð Þ

� �
; ð13Þ

where IC(x,y) is the illumination-corrected image, DR is the dark ratio, and BR is the bright
ratio. Mean(Dark(y,y)) and mean(Bright(x,y)) are the mean values of the histogram of
Dark(x,y) and Bright(x,y), respectively.

Both DR and BR act as control parameters to adjust the level of illumination
correction on the dark and bright regions, respectively. DR is derived to shift the dark
region toward the median of the I(x,y), which could increase the brightness. On the
contrary, the illumination correction on the bright area subtracts the estimated illumi-
nation of the bright area as shown in Eq. (11). A higher BR value would result in a
higher intensity level on the bright areas being subtracted. Therefore, a high BR value
would cause low contrast in the bright area and the unnatural appearance of the
resultant image. Thus, instead of shifting the bright region toward the median of the
image, it is shifted toward the maximum value between the mean and the median of
the image. This procedure can minimize the BR value. Therefore, more contrast and
naturalness can be preserved in the resultant image. In some extreme dark or bright
situations, the derived DR and BR extremely shift the dark and bright regions toward
the median, which would result in over enhancement and unnatural illumination
transition of the output image. Thus, DRlimit and BRlimit are proposed to avoid the
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over-enhancement problem. DR is set to DRlimit if it exceeds the DRlimit, while BR
is set to BRlimit if it exceeds the BRlimit.

DRlimit ¼ min median I x; yð Þð Þ;mean I x; yð Þð Þð Þ
2�max DE x; yð Þð Þ

� �
; ð14Þ

BRlimit ¼ max median I x; yð Þð Þ;mean I x; yð Þð Þð Þ
2�max BE x; yð Þð Þ

� �
; ð15Þ

where min and max are the minimum and maximum values of the number matrix tested,
respectively. DRlimit is derived by limiting the maximum increment of the dark region to less
than half of the minimum value between the mean and median of the image. BRlimit is derived
by limiting the maximum decrement of the bright region to less than half of the maximum
value between the mean and median of the image. This consideration is applied to prevent the
average of the dark region from shifting beyond the median intensity of the image and average
of the bright region to be shifted under the median intensity of the image. Over-shifting would
cause an unsmooth transition from the dark to the bright region, which would lead to an
unnatural resultant image.

2.3 Clipped histogram equalization

After the illumination correction, the contrast of IC(x,y) is reduced, which leads to a
grayish output image because both dark and bright regions are shifted toward the
median of the image. Therefore, the dynamic range of the output image is com-
pressed. Thus, performing contrast enhancement on IC(x,y) is necessary. A modified
clipped HE (CHE) is applied to balance between enhancing the contrast and ampli-
fying the noises of the image. CHE is proposed to restrict the slope of the mapping
function in HE to avoid over-enhancement [27]. Figure 5 shows the process of CHE
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Intensity
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Level

Number of pixels

Number of pixels

Intensity

Median Median

Median

(a) (b)

(c)

Uniform clipped pixels 
redistribu�on

Clipped pixels redistribu�on 
based on DR and BR ra�os 

Intensity

Fig. 5 (a) Clipped histogram, (b) uniform clipped pixel redistribution, and (c) proposed clipped pixel
redistribution
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and modified CHE, which is applied in the proposed method. In CHE, the number of
pixels, which is more than the predefined clipping level (i.e., shaded region in
Fig. 2(a)), is removed from the original histogram. Then, the clipped pixels are
distributed evenly to all histogram bins, as shown in Fig. 5(b). However, uniform
clipped pixel redistribution is not suitable for the proposed method because it does
not solve the non-uniform illumination problem. According to the HE idea, the
histogram for a good image has a flat or uniform distribution of pixels [34]. The
appropriate median of an 8-bit image should be 128 because the median of the
histogram is located at its center. The proposed method redistributes the clipped
pixels based on the DR and BR ratios as shown in Fig. 5(c). The proposed redistri-
bution can shift the median of the output image closer to 128, which could produce a
more uniform distribution and a better image quality.

Figure 6 shows the relationship between the percentage of clipped pixels, EME [2],
and C [19] according to the average results of 375 test images [41]. According to the
test results shown in Fig. 6(a), a high percentage of clipped pixels results in better
overall contrast but lowers the local contrast. Thus, this study proposes to clip out
50% of the total pixels to maintain the balance in terms of the local and overall
contrasts. Figure 7 shows the flowchart of the clipping level identification. First, the
histogram of IC(x,y) is sorted from low to high. Then, the percentage of the clipped
pixels is determined using Eq. (16) repeatedly with an i increment of 1 until the
percentage of the clipped pixels exceeds 50%. The clipping level is the number of
pixels in the ith bin of the sorted histogram.

PCP ¼ 1−
∑i

jSorted histogram jð Þ þ Sorted histogram ið Þ � 256−ið Þ
total number of pixels

� 100%; ð16Þ

where PCP is the percentage of clipped pixels. Next, a clipped histogram is formed
using Eq. (17).

Clipped histogram ¼ minimum histogram of IC x; yð Þ; clippinglevelf g ð17Þ
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Next, the clipped pixels (CP) are divided into three portions, namely, dark gain (DG), bright
gain (BG), and global gain (GG), and added into the clipped histogram.

GG ¼ CP � 0:5; ð18Þ

DG ¼ CP � 0:5� DR
DRþ BR

; ð19Þ

BG ¼ CP � 0:5� BR
DRþ BR

; ð20Þ

Redistributed hisogram ¼ clipped histogram ið Þ þ GGþ DG; for i≤median
clipped histogram ið Þ þ GGþ BG; for i≤median

�
: ð21Þ

Fig. 7 Flowchart of clipping level identification
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Next, a transformation function (tf) is derived based on the redistributed histogram using
Eq. (22). tf is used to remap the input image into a contrast-enhanced resultant image.

Transformationfunction; tf ¼ cdf � 255; ð22Þ

cdf ið Þ− ∑i
j¼0redistributed histogram jð Þ
total number of pixels

; where i ¼ 0; 1; 2;…255 ; ð23Þ

where cdf is the cumulative density function of the redistributed histogram. Then, the IC(x,y) is
remapped using the derived transformation function.

Transformed IC ¼ tf IC x; yð Þð Þj∀ x; yð Þ∈ICf g; ð24Þ

2.4 Detail enhancement

As mentioned in Section 2.1, details of the images are removed throughout the process to
reduce the loss of details and noise amplification. Thus, the final stage of the proposed method
is adding image details into the transformed IC(x,y). The Gaussian filter is applied to both
I(x,y) and Threshold(x,y), where I(x,y) is the illumination assumption while Threshold(x,y) is
the reflectance assumption. The removal of both details is important for the resultant image.
Thus, detail enhancement is applied using Eq. (25).

Output image ¼ Transformed IC þ Detailillumination þ Detailreflectance; ð25Þ

Detailillumination ¼ f x; yð Þ−I x; yð Þ; ð26Þ

Detailreflectance ¼ Threshold x; yð Þ−filtered Threshold x; yð Þ; ð27Þ
where Detailillumination and Detailreflectance are the details removed in the illumination and
reflectance assumptions, respectively.

3 Benchmark and quality metric

Both qualitative and quantitative analyses were conducted to evaluate the proposed method.
The data samples used in this study comprised 375 images (size: 480 × 640) of the Pasadena
Buildings 2010 packages [41] and 422 images (size: 592 × 896) of Faces 1999 (Front)
packages [39], which were obtained from the California Institute of Technology database.
These datasets were selected because they contain different types of illumination conditions.
Some images in these datasets have bright foreground areas with dark background areas. Some
images have the opposite illumination condition, where foreground areas are dark while
background areas are bright. In addition, the illumination of images in some cases is not
uniform, such that some images could be categorized as underexposed images, while other
images are categorized as overexposed images. These different illumination conditions ensure
that the evaluation is not biased toward only one type of illumination condition. The proposed
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method was implemented on Intel i7 2.5GHz using MatLab R2014a and compared with
NPEA [38], MSRNIE [20], and GC-CHE [13].

The evaluation focused on contrast, detail preservation, and naturalness of the
resultant image. The qualitative analysis was based on the visual evaluation of four
different images with different illumination conditions. The conditions were (1)
overexposed, (2) underexposed, (3) bright background but dark foreground, and (4)
dark background but dark foreground. The analysis was conducted to evaluate the
robustness of the performance of the proposed method in different illumination
conditions. Four image characteristics, such as amount of image details, level of
contrast, uniformity of illumination, and naturalness of images, were considered in
the qualitative analysis. For the amount of image detail analysis, the resultant images
were magnified for the inspection of image details (e.g., leaves, grass, and surface
texture of walls). The resultant image with more observable details demonstrated
better detail preservation performance. The contrast level was mainly judged by the
distinctive level of the resultant image appearance. For example, the image with a
significant intensity level difference between the dark- and bright-colored objects is
said to have better contrast.

The uniformity of illumination represents the illumination correction capability of
the tested methods. Evaluation was performed by inspecting the brightness differences
of the bright and dark regions of the enhanced images. Lower brightness differences
correspond to better illumination uniformity. The noise level of the resultant images
was judged by the existence of speckles at the uniform intensity level area. Resultant
images with more speckles have higher noise level, and therefore a lower image
quality. The naturalness of the images was judged by the smoothness of the illumi-
nation transition of the resultant images.

Meanwhile, five quantitative evaluations, namely, entropy (E) [33], EME [2],
PSNR, C [19], and NIQE [24], were employed to objectively evaluate the proposed
method with other state-of-the-art methods.

Entropy was introduced by Shannon [33] to evaluate the amounts of details in
images. Images with higher entropy values contain more information. The E of the
image is given by

E ¼ −∑N
i¼1p ið Þlog2p ið Þ ð26Þ

where p(i) is the probability of the gray levels I as obtained in the image histogram.
EME is called the measure of enhancement or measure of improvement proposed by Agaian

[2] and is used to determine the average ratio of the maximum tominimum intensities as given by

EME ¼ 1

k1k2
∑k1

l¼1∑
k2
k¼120 log

Iwmax;k;l
Iwmin;k;l þ c

; ð27Þ

where the image is broken into k1 × k2 blocks, wk.,l (i,j). Iwmax;k;l is the maximum intensity of each

block. Iwmin;k;l is the minimum intensity of each block. k and l are the horizontal and vertical

coordinates of each sub-block, respectively, while w is the numbering of the sub-block. c is a
small constant equal to 0.0001 to avoid division by 0. EME divides an image into numerous
blocks, which is similar to the AHE idea. Therefore, EME is suitable for measuring the local
contrast of images. In this paper, all images were divided into 16 × 16 blocks for EME
measurement.
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In the third measurement, PSNR measured how much the enhanced images have
degraded compared to the input image, as shown in Eq. (28).

PSNR ¼ 20 log
L−1ffiffiffiffiffiffiffiffiffiffi
MSE

p
� ��

; ð28Þ

where L − 1 is the maximum gray level in the image.

MSE ¼ 1

WH
∑W

i¼1∑
H
j¼1 Rij−I ij
� �2

; ð29Þ

where Rij is the enhanced image, Iij is the original image, W is width of the image,
and H is height of the image.

C calculates the division of gray levels in the contrast improvement analysis. A
high value of C indicates a larger dynamic range of gray levels and has better overall
contrast. C is computed in decibels as follows:

C ¼ 10 log10
1

WH
∑W

x¼1∑
H
y¼1g

2 x; yð Þ− ∑W
x¼1∑

H
y¼1g x; yð Þ

��� ���2	 

; ð30Þ

where W and H are the width and height of the image, respectively, and g(x,y) is the
gray level of the pixel at (x,y).

NIQE was used to measure the quality of the images based on the construction of
a Bquality aware^ collection of statistical features based on a simple and successful
space domain natural scene statistics (NSS) model. NIQE assumes that the naturalness
of an image is affected by the amount of distortion that exists [24]. The image with a

(a) (b) (c)

(d) (e)

Fig. 8 Test Image 1: (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e) proposed method
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lower NIQE value indicates that less distortion exists in the image. Thus, the image
has better quality.

NIQE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v1−v2ð ÞT ∑1 þ ∑2

2

� �−1

v1−v2ð Þ
 !vuut ; ð31Þ

where v1, v2 and Σ1 ,Σ2 are the mean vectors and covariance matrices of the natural MVG
model and the multivariate Gaussian model of the distorted image, respectively.

4 Results and discussion

The results of the qualitative analysis of 4 of the 375 tested images, namely, Test Images 1, 2, 3
and 4, are shown in Figs. 8, 11, 13, and 15, respectively. Figures 9 and 10 show the magnified
area of Test Image 1, while Figs. 12, 14, and 16 show the magnified areas of Test Images 2, 3,
and 4, respectively. As supporting data, the results of the quantitative analyses of these four
images are reported in Table 1. The best results in Table 1 are in boldface, and the second best
results are underlined. These four tested images have different illumination conditions.
Figure 8(a) shows that Test Image 1 is categorized as an underexposed image, where most
areas are very dim. Figures 9 and 10 are the magnified images of the boxed area in Fig. 8(a).
The resultant image of GC-CHE did not show obvious improvement compared to the original
image. The resultant image of MSRNIE was slightly better than that of the GC-CHE because
MSRNIE brightened the bottom area of the Test Image 1 as shown in Fig. 8(c). Figure 8(d)
shows that NPEA produces the best illumination correction because all of the dark areas in the
image were brightened while the bright areas remained unchanged. However, some defects

(a) (b) (c) (d) (e)

Fig. 9 Magnified Test Image 1 area 1 of (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e)
proposed method

(a) (b) (c) (d) (e)

Fig. 10 Magnified Test Image 1 area 2 of (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e)
proposed method
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could be observed from the image. As shown in the boxed area of Fig. 9(d), the illumination
correction by the NPEA resulted in an unnatural appearance and the amplification of noise in
its resultant image. An unnatural appearance can be seen at the unsmooth illumination
transition area of the resultant images, where the dark regions were transformed into extremely
bright regions. Although the proposed method did not produce an illumination correction that
was as good as that of the NPEA, the contrast and brightness of the image details, such as the
tree, as shown in Fig. 9(e), and the curtain, as shown in Fig. 10(e), were successfully enhanced.
The comparison of Figs. 9(d) and 9(e) shows that the noise amplification of the proposed
method was obviously lower than that of the NPEA. The promising qualitative results
produced by the proposed method were supported by the quantitative analysis results as
presented in Table 1. The resultant image of the proposed method produced the best entropy
value and second best EME, PSNR, and C values. These results show that the proposed
method can preserve image details and produce decent local and overall contrast
enhancements.

The illumination condition of Test Image 2, as shown in Fig. 11(a), is opposite to
that of Test Image 1. Test Image 2 is an overexposed image, where most areas of the
image are very bright. Figure 12 shows the magnified image of the boxed area in
Fig. 11(a). Figure 11(a) shows that the main problem of an overexposed image is its
low contrast. For example, the boxed area in Fig. 11(a) is barely observable because
of the strong effect of sunlight. Figure 12 shows that GC-CHE, MSRNIE, and NPEA
methods failed to improve the contrast of the low-contrast area. Their resultant images
shown in Figs. 12(b), (c), and (d), respectively, have similar contrast with or very

Table 1 Results of quantitative analysis

Image Techniques EME NIQE Entropy PSNR C

1 GC-CHE 18.17 2.49 7.60 27.27 24.01
MSRNIE 29.98 2.71 7.49 21.41 24.00
NPEA 17.01 2.56 7.55 18.53 24.06
Proposed 29.62 2.71 7.61 22.18 24.05

2 GC-CHE 6.64 3.86 7.18 30.52 24.07
MSRNIE 5.98 3.69 7.06 26.00 24.07
NPEA 6.66 3.87 7.00 23.13 24.07
Proposed 12.29 3.77 7.36 24.79 24.04

3 GC-CHE 13.93 2.41 7.36 28.86 24.05
MSRNIE 14.65 2.33 7.56 27.04 24.05
NPEA 9.70 2.34 7.23 18.78 24.07
Proposed 22.26 2.90 7.36 25.15 24.06

4 GC-CHE 29.23 2.03 7.63 30.22 24.01
MSRNIE 35.84 1.95 7.75 21.66 24.02
NPEA 23.29 2.17 7.67 19.46 24.06
Proposed 34.83 1.95 7.75 22.65 24.03

Average of 375 images (building datasets) GC-CHE 19.16 2.38 7.54 29.45 24.05
MSRNIE 20.83 2.37 7.61 26.65 24.05
NPEA 15.11 2.38 7.43 20.59 24.06
Proposed 33.25 2.36 7.62 25.55 24.04

Average of 422 images (Face datasets) GC-CHE 34.13 3.32 7.56 28.24 23.98
MSRNIE 32.58 3.17 7.44 25.77 24.00
NPEA 33.55 3.14 7.45 20.22 24.03
Proposed 45.44 3.13 7.65 22.22 24.03

Bold is indication for the best result, underline is indication for second best results
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slightly better contrast than that in Fig. 12(a), where the image details, such as the
stitches on the fence (i.e., boxed area in Fig. 12(a)), are not emphasized. Thus, these
methods are not suitable for the illumination correction of overexposed images.
Meanwhile, the proposed method successfully enhanced the contrast of the aforemen-
tioned area. Figure 12(e) shows that the stitches on the fence can be observed easily.
The quantitative analysis results in Table 1 also support the proposed method as the
best method by producing the best result in the local contrast and image detail
preservation (i.e., the method produced the best EME and entropy values).

Test Image 3, as shown in Fig. 13(a), is an example of a non-uniform illuminated
image with a bright background area (i.e., for example, the field and sky) but a dark
foreground area (i.e., for example, the house and car). The resultant image of the
NPEA, as shown in Fig. 13(d), shows the best illumination correction performance
compared with other methods. The bright background region is darkened, while the
dark foreground region is brightened. As a result, the resultant image is more uniform
in illumination. Although GC-CHE, MSRNIE, and the proposed method had small
contrast improvements compared with the original image, the proposed method is the
best in local contrast improvement among the three methods as shown in Figs. 13(b),
(c), and (e). This finding can be clearly observed by comparing the magnified image

(a) (b) (c) (d) (e)

Fig. 12 Magnified test image 2: (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e) proposed
method

(a) (b) (c)

(d) (e)

Fig. 11 Test image 2: (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e) proposed method
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details shown in Fig. 14. The resultant image of the proposed method, as shown in
Fig. 14(e), is clearer and the image details are more observable than that of the GC-
CHE and MSRNIE methods, as shown in Figs. 14(b) and (c), respectively. The door
in Fig. 14(e) is more observable than those in Figs. 14(b) and (c). Another advantage
of the proposed method could be observed by comparing Figs. 14(d) and (e).
Although Fig. 14(d) is clearer than Fig. 14(e), higher noise effects could be observed
in Fig. 14(d), where speckles exist in the door region. The quantitative analysis, as
reported in Table 1, significantly supported these qualitative findings, where the
resultant image of the NPEA produced the best C value but the worst PSNR value,
which shows that the resultant image is highly affected by unwanted noise. Mean-
while, the resultant image of the proposed method produced the best EME and the
second best C. Although the PSNR of the proposed method is not as good as those of
the GC-CHE and the MSRNIE, it is far better than that of the NPEA. Therefore,
although the proposed method has a slightly lower contrast enhancement performance
than that of NPEA, it is more stable in reducing the noise amplification problem for
this type of image.

(a) (b) (c) (d) (e)

Fig. 14 Magnified Test Image 3: (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e) proposed
method

(a) (b) (c)

(d) (e)

Fig. 13 Test Image 3: (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e) proposed method
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Test Image 4, as shown in Fig. 15(a), is an example of an image with a bright
background area (i.e., the building) but dark foreground area (i.e., the tree). The
results in Fig. 15 show that GC-CHE, MSRNIE, NPEA, and the proposed method
produced quite similar enhancements on the bright background (i.e., the building
areas). However, a significant difference could be observed at the tree area (the boxed
region), as shown in Fig. 15(a). Fig. 16 shows the magnified image of the tree area.
Based on both figures, MSRNIE improved the contrast of Test Image 4. However,
some details of the image, especially those of the tree (i.e., as shown in Fig. 16),
were poorly emphasized by MSRNIE. For example, the tree bark in the rectangle area
in Fig. 16(c) is hardly observable. Meanwhile, GC-CHE emphasized the details better
than MSRNIE, as shown in Fig. 16(b). However, the overall contrast of its resultant
image is not as good as that of MSRNIE, which can be observed in Fig. 15. This
finding shows that GC-CHE is probably good for local contrast enhancement but not
for global contrast enhancement. The third state-of-the-art method, the NPEA, pro-
duced a better resultant image in terms of the visibility of the tree bark. However, the
unsmooth transition of light and the amplification of noises, as shown in Fig. 16(d),

(a) (b) (c) (d) (e)

Fig. 16 Magnified test image 4: (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e) proposed
method

(a) (b) (c)

(d) (e)

Fig. 15 Test image 4: (a) original image, (b) GC-CHE, (c) MSRNIE, (d) NPEA, and (e) proposed method
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resulted in an unnatural output image. On the contrary, Fig. 16(e) shows that the
proposed method has the ability to produce a resultant image with better contrast,
which successfully emphasized the tree bark. In addition, it can also reduce the effect
of noise amplification because a smoother transition of light could be observed at the
tree bark. Therefore, the proposed method is the best among the tested algorithms for
the enhancement of Test Image 4.

From the average results of the 375 images tested, the proposed method is ranked
the best in terms of the EME, NIQE, and entropy, while GC-CHE and NPEA are
ranked the best in terms of the PSNR and C, respectively. MSRNIE is ranked second
in all measured aspects (i.e., EME, NIQE, entropy, PSNR, and C). The average EME
value of the proposed method is 59.6% higher than the second ranked method (i.e.,
MSRNIE) and 73.6% higher than the worst ranked method (i.e., NPEA). This finding
proves that the proposed method exhibits decent improvement in the local contrast of
resultant images compared with other state-of-the-art methods. In the comparison of
the averages of the NIQE values, the proposed method is 0.6% and 1.0% higher than
the second best (i.e., MSRNIE) and the worst (i.e., GC-CHE) ranked methods,
respectively. Therefore, the resultant image of the proposed method has the lowest
distortion among the various methods. In terms of the average entropy value, the
proposed method is 0.2% and 2.6% higher than the second (i.e., MSRNIE) and the
worst (i.e., NPEA) ranked methods, respectively. This finding implies that the pro-
posed method exhibits the best detail preservation among the various methods. The
proposed method is ranked third in terms of the PSNR, where the average PSNR
value of the proposed method is 15.3% lower than the best ranked method (i.e., GC-
CHE) but 24.1% higher than the worst ranked method (i.e., NIQE). Although the
noise amplification of the proposed method is higher than those of the GC-CHE and
MSRNIE, it is much lower than that of the NIQE. Thus, the noise amplification of
the proposed method is acceptable compared with that of the NIQE. The proposed
method is ranked fourth in the average C values. Nevertheless, the difference between
the proposed and the best ranked methods (i.e., NIQE) is only 0.1%. Thus, the
difference in the overall contrast is negligible.

In summary, the GC-CHE has limited capability in terms of illumination correction and
contrast enhancement, but is good in terms of noise suppression. The quantitative analysis
results in Table 1 show similar findings. The GC-CHE is ranked the best in terms of the PSNR
in both the Pasadena Building and Face datasets, and ranked third in terms of the EME,
entropy, and C in the Pasadena Building dataset. The MSRNIE has a moderate illumination
correction quality, although it has a good local contrast enhancement performance. This
qualitative analysis is supported by the quantitative results of the MSRNIE. The MSRNIE
produces the second best EME, entropy, NIQE, PSNR, and C results in the Pasadena Building
dataset but the worst EME and entropy in the Face dataset. The NPEA performs excellently in
terms of illumination correction but with drawbacks in noise amplification and limited local
contrast enhancement. This finding is supported by the quantitative measurements of the
NPEA, which has the best C value but the worst PSNR values in both the Pasadena Building
and Face datasets. The proposed method has good illumination correction and excellent local
contrast improvement, but limited global contrast enhancement. The best average EME,
entropy, and NIQE values produced by the proposed method in both the Pasadena Building
and Face datasets prove that it has the best local contrast enhancement and image detail
preservation capability, which could produce resultant images that are more natural.
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5 Conclusion

This study proposes a new method to enhance non-uniform illumination and low-contrast
images. The proposed method applies the illumination and reflectance assumption to separate
the dark and bright regions of an image. Then, these regions are enhanced using specifically
designed dark and bright enhancers, respectively. The modified CHE is applied to the contrast
enhancement. Finally, image details are added into the illumination-corrected and contrast-
enhanced image as an output image. According to the qualitative analysis, the proposed
method performs better than the state-of-the-art methods in terms of improving local contrast,
preserving the details and naturalness of images, and reducing the effect of noise amplification.
These findings are supported by the best EME, entropy, and NPEA results in the quantitative
analysis. In addition, the implementation procedure of the proposed method does not require
tuning any parameter. These advantages favor the proposed method as a good contrast
enhancement method in automated applications.

Acknowledgements This project entitled BFormulation of a robust framework of image enhancement for non-
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