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Abstract Automated annotation of skin biopsy histopathological images provides valuable
information and supports for diagnosis, especially for the discrimination between malignant
and benign lesions. Currently, computer-aid analysis of skin biopsy images mostly relied
on some human-designed features, which requires expensive human efforts and experiences
in problem domains. In this study, we propose an annotation framework for automated
skin biopsy image analysis which makes use of a deep model for image feature represen-
tation. A convolutional neural network (CNN) is designed for local regions of skin biopsy
images which learns potential high-level features automatically from input raw pixels. The
annotation model is constructed in the multiple-instance multiple-label (MIML) learning
framework with the features learned through the network. We achieve significant improve-
ment of the model performance on a real world clinical skin biopsy image dataset and a
benchmark dataset. Moreover, our study indicates that deep learning based model could
achieve better performance than human designed features.
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1 Introduction

It is well-known that skin diseases are very common in life. There are many kinds of skin
diseases in which many of them are not harmful to our health while some of themwould lead
to serious problems if not been treated properly in their initial stages. Malignant melanoma
is a fatal skin cancer but it would look just like some harmless nevus in some cases. Pemphi-
gus characterizes in most cases by the development of blisters on skin is a rare skin disorder
which would lead to severe tissue infection. Many of the skin diseases can be diagnosed
easily through clinical symptoms, physical examination or laboratory examination. How-
ever, some skin diseases, especially the fatal ones, cannot be diagnosed correctly only by
simple examinations. To facilitate medical diagnosis for some serious skin disorders, doctor
prefers to do a biopsy and analyze histopathological images of lesion tissues. In fact, skin
biopsy histopathological images are widely used in dermatological department and critical
to dermatologists. It is well accepted they are the gold standard in diagnosis of skin cancers.
In many clinical departments related to dermatological department, especially department
of Surgery, Obstetrics and Gynecology, and Dermatology need biopsy examination for their
medical decisions.

The important role of biopsy histopathological analysis in dermatological department
poses the pressing need of an effective computer aid diagnosis (CAD) system on either
medical or machine learning researchers. Automated skin biopsy histopathological analysis
can release the burden of doctors from common but frequent-occurring histopathological
characteristics and make them focus on rare and obscure cases. A CAD system of skin
biopsy images can also give some suggestions of what histopathological features an image
indicates [24]. But there are some significant challenges in constructing a CAD system for
automated annotation of skin histopathological images. First of all, a single skin histopatho-
logical characteristic is only associated with some local regions in an image, while an image
may have several histopathological characteristics, as shown in Fig. 1.

In Fig. 1, letters A, B, C and D stand for epidermis erosion, blistering, acantholy-
sis and infiltration of lymphocytes, respectively, which are 4 common histopathological
characteristics in dermatology. The correspondences between local regions and a certain
histopathological characteristics have been manually labeled in Fig. 1. But the concept of
local region is subjective and fuzzy. When examining a skin biopsy image, a doctor proba-
bly will focus on the regions with conspicuous features at first glance. And then search some
regions to find whether there are histopathological features that would confirm his potential
diagnosis. But the local regions would not exist after the diagnosis is drawn, neither would
the above correspondences. In the database of diagnosis records, histopathological features
are associated with a whole image, which is addressed as annotation terms ambiguity in
multiple-instance studies [36, 37].

Meanwhile, a skin biopsy histopathological image has complicated features, such as
color, light, texture or inner structures, making it difficult to be modeled mathematically
or statistically [3]. Most machine learning models require good feature representations of
data samples either for training or predicting. For the problem of skin biopsy histopatholog-
ical image annotation, it is expensive for a doctor to explicitly express some key features
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Fig. 1 Histopathological characteristics and their corresponding local regions

to identify a certain histopathological feature based on his medical experience [14]. This
representation problem is also essential in solving many problems of machine learning
and artificial intelligence, which becomes a gap between human knowledge and machine
intelligence [4, 10].

Many problem-oriented medical image feature representation methods have been pro-
posed in current literatures, and some of them have reported the success of building
disease-oriented analysis models [25, 40]. Bunte et al. [7] proposed a feature learning
method based on metric learning [6] for skin surface image classification. Their model
learns a vector of weights with a training set by performing a weighted combination of 8
color space feature vectors (e.g. RGB, LUV, HSV, etc.) together. The combined color feature
vector is the best feature representation given the training set. Their work shows a good sam-
ple of feature learning, in which the feature is learned through the combination of previous
designed features. However, their method can only work with color-based features having
the same dimensions. Heterogeneous features cannot fit in their method directly. Moreover,
basic features have to be designed or chosen manually and the learning task has to be per-
formed in a supervised manner. Another study on medical image feature representation is
the Bag-Of-Features (BOF) method [9, 15], which builds a matrix (codebook) containing
patches gathered from a training histopathological image set by a clustering-based method.
It expresses each training or test image as a histogram, indicating which and how many
patches in the codebook the image contains. The histogram is then converted into a feature
vector for training and test. The similarities between patches in the image and codebook
are measured by some distance function, e.g. Euclidean distance. Current studies show that
low level elements can build high level concepts through multiple layer network structures
[19], but histogram-based methods adopting simple statistical operations seem not able to
generate high level concepts.
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Some region-based feature extraction methods for histopathological image analysis have
been proposed recently [30, 35, 37]. In these methods, a skin biopsy image is segmented
into several visual disjoint regions based on textures or visual edges. Then a region-based
feature extraction procedure is applied to generate hybrid features based on color, texture,
structure and morphology. However, the region-based features are designed by experts and
most of them are previously successful in different application domains. In our previous
work [37], each region is first re-expressed in LUV color space, and then a 2D wavelet
transformation is applied to the region. The feature is composed of the means of L, U , V ,
wavelet transformation coefficients and some morphological factors of a region. Figure 2
briefly summaries the above methods.

Ali et al. [1] proposed a structure-based feature representation method for micro-
computed tomography images analysis. In their work, a region is treated as a set of pixels.
The method transforms an image into a graph in which each node is the centroid of a clus-
ter of pixels belonging to the same type of tissue. Then several numerical graph properties
are calculated as features of the original image. Though their method is an unsupervised

Fig. 2 Main steps of region-based histopathological image diagnosis
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one, it requires the number of different tissue types before running which cannot be directly
applied to different application domains.

To tackle the problems of current studies on skin biopsy image analysis, in this study, we
propose an unsupervised learning method for region-based feature extraction. The method
firstly cuts a histopathological image into disjoint regions with a self-adaptive strategy, so
as not to explicitly set the number of regions to be generated. Then a convolutional neural
network (CNN) is applied to each generated region to learn the feature representation, also
called region encoding. We train the CNN model in a supervised manner with a part of the
training dataset. Finally we solve the annotation problem with a multiple instance multiple
label (MIML) algorithm. The motivation of this study is twofold. On the one hand, a deep
model trained by a supervised manner can extract representative high-level features instead
of human-design shallow features. And on the other hand, to model the correspondence
between local regions and histopathological characteristics, a MIML method is applied for
annotation in which a skin biopsy histopathological image can be regarded as a set of local
regions and histopathological characteristics can be regarded as multiple labels attached to
a whole image. Though the ground truth correspondence between them may be unknown, a
MIML model can also work well as an annotator for a test skin biopsy image.

Deep learning models have been studied in many literatures recently [5], whose main
idea is to build network with multiple layers to represent original inputs as some high

Fig. 3 A deep network model
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level concepts. In some cases deep learning model can provide an End-to-End model which
means no additional human efforts are required when building the model. Figure 3 shows a
deep network model.

In Fig. 3, each node is a nonlinear activation function. An edge between a pair of nodes
is associated with a weight. When a data sample passes through the network, each ele-
ment is multiplied by the edge’s weight before going into nodes in the next layer. The
feature learning of a deep network can be regarded as feature re-expressing, meaning that
the transformed features can be restored to original inputs with least information loss. This
is the main idea of most deep learning models, e.g. deep belief network [20], stacked auto-
encoders [19], deep neural network and convolutional neural network (CNN) [33]. Currently
deep learning becomes a hot topic in machine learning research. Ooi et al. [27] proposed
a distributed deep learning platform named SINGA that provides a fast implementation of
many deep models. Gao et al. [17] proposed a deep learning method for multimedia data
retrieval. Their method is scalable and a deep learning hashing algorithm is designed for
effective feature representation. Li et al. [22] proposed a method for joint embeddings of
shapes and images based on a convolutional neural network (CNN), which has been proved
to be a powerful model for image classification and annotation [26, 41].

The remainder of this paper is organized as follows. In Section 2 we present the main
methods, including the self-adaptive region cutting method for skin biopsy images, convo-
lutional neural network and MIML model. In Section 3 we present the settings of evaluation
of the proposed method, and report the evaluation results on a real world clinical histopatho-
logical image dataset and a benchmark dataset. In Section 4 we discuss some important
issues. And finally we conclude the paper in Section 5.

2 Methods

2.1 Multiple-instance multiple-label learning

Since most histopathological features are only associated with local regions, as presented in
the previous section, feature extraction methods designed for the whole image cannot pre-
cisely capture features to build an effective annotation model. We adopt multiple-instance
multiple-label learning (MIML) as the main annotation model. Figure 4 sketches the main
steps of the proposed model.

There are two key aspects when expressing an image as a MIML sample. The first is
multiple-instance decomposition. We proposed a method based on a famous image seg-
mentation algorithm, i.e. normalized cut [29], to generate local regions with a self-adaptive
strategy. It is worth noting that normalized cut performs a binary segmentation each time,
and the number of generated regions has to be set before running the algorithm. We intro-
duce a strategy to guide the cutting procedure, in which two issues are considered. The first
is the lower bound of region size measured by pixels, denoted as p. According to diagno-
sis experiences, too small regions may not have significant medical meaning or indicate a
histopathological feature. The second is how to choose a region to be further segmented,
since normalized cut performs binary segmentation in each round. From a general perspec-
tive, it is preferable to choose a large region for further cutting. However, a small region
containing complicated pixels may also require further cutting. Hence variances of all pix-
els in all candidate regions are calculated and the largest one is chosen for further cutting.
Algorithm 1 shows the above steps in detail.
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Fig. 4 Main steps of the proposed model

In Algorithm 1, a priority queue Q stores all of the generated regions ordered by their
variances. Initially the whole image is enqueued and each time a region is drawn from Q
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and then two newly generated regions are enqueued. NCut is an implementation of the nor-
malized cut method proposed by Shi and Malik [29], which performs a binary segmentation in
each round. Line 4 and 9 perform cutting control with preset parameters. With Algorithm 1,
an image can be expressed as a set of disjoint regions, which can be regarded as a multiple-
instance sample. Figure 5 shows the cutting result of a sample skin histopathological image.

Multiple-label is another important aspect when constructing MIML samples. Since an
image is associated with a paragraph of histopathological diagnosis in plain text containing
several standard terms, an image can be viewed as a multiple-label sample whose labels
are the standard terms appeared in the diagnosis text. After removing the linked words and
high-frequency words, a simple text-match method is applied to the plain text associated
with each image to find the existence of standard terms. We record the match results in a
binary vector. Then we got MIML samples and they can be fed to the proposed model for
feature extraction. Figure 6 gives an example.

2.2 Region-based unsupervised feature learning

Since several feature representation methods have been reported successful in literatures,
it is worth developing a general method with less human efforts, whose essential idea is
almost the same as that proposed in [7]. However, different from previous study, our model
does not make weighted combination of existing features, but considers all pixels in a region
as input instead, and let the model learn potential concepts in a supervised manner. There
are some considerable benefits. First of all, our model accepts pixels as input, instead of
human designed features, which simulates the structure and mechanism of human brain.
Since it directly processes the pixels, least information loss can be achieved if the model is
well trained. Secondly, by applying nonlinear transformation in each node, original inputs
are encoded into high level features, which provides a powerful way to express arbitrary
complex functions and abstract concepts [5].

We propose to use a convolutional neural network (CNN) as the main model. It performs
unsupervised feature learning such that the network outputs should be equal to the inputs
after processing by hidden layers. The traditional CNN model has two types of layers. The
first type is convolutional layer (C-layer) and the second is sub-sampling layer (S-layer).

Fig. 5 Cutting results of two skin biopsy histopathological images
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Fig. 6 Histopathological images and their corresponding diagnosis in plain text

In a C-layer a m ∗ m convolutional kernel matrix is sliding over the input image and the
convolution operation is performed at each position. Hence an input image with dimension
p × q would be transformed into a (p − m + 1) × (p − m + 1) matrix. In a S-layer, s × s

pixels are summarized as a single value by applying a average weighted summation, adding
a bias and then a nonlinear transformation (Relu function in this work). For the output of
the final C-layer or S-layer, some full-connected layers are attached in which each node
performs a weighted softmax function to generate a vectorial output. The model parameters
w are weights of connections between pairs of nodes belonging to the layers next to each
other. The training method for determining optimal w is almost the same as the famous BP
algorithm [34]. If the numbers of layers and channels are large, however, the model training is
time consuming.The detailed structure of theCNNmodel adopted in thiswork is shown inTable 1.

The column Layer Type indicates the type of each layer. The input layer is a direct-
pass pipe between the input image and the network. The adaptive sub-sampling layer is for
image scaling, as mentioned above. It calculates the ratio between the size of a region and
the model input. And then adaptively set the sub-sampling size, i.e. the size of rectangle for
sub-sampling. The column Channels indicates the how many kernels are used in the layer
for convolution or sub-sampling. Note that in a certain sub-sampling layer, the kernels that
applied to feature maps belonging to different channels are identical. The column Kernel
stands for the size of the kernel used in each layer. The size of a kernel is identical for each
channel. In line 7, the C-layer-5 has a full connection of all features maps of S-layer-4.

As an encoding network, CNN requires the inputs having the same sizes since the number
of nodes in input layer should be determined before training. But the regions generated
through normalized cut are of different sizes. We add an adaptive sub-sampling layer before
the first C-layer to perform image scaling, as shown in Table 1. The goal is to scale the input
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Table 1 The structure of CNN
model No. Layer Type Kernel Channel

1 input N/A N/A

2 adaptive sub-sampling N/A N/A

3 C-layer-1 35 × 25 - stripe 1 64

4 S-layer-2 4 × 4 - stripe 2 64

5 C-layer-3 35 × 25 - stripe 1 128

6 S-layer-4 4 × 4 - stripe 2, pad [0101] 128

7 C-layer-5 10 × 8 - stripe 1 - stripe 2 512

9 S-layer-6 4 × 3 - stripe 2 512

10 C-layer-7 6 × 5 - stripe 1 512

11 C-layer-8 1 × 1 - full 512

12 C-layer-9 1 × 1 - full 1204

13 output 1 × 1 N/A

region to a preset size 200 × 150. Since the regions are not rectangles, for conveniently
processing, we use Melkman algorithm to find its convex hull before scaling, i.e. minimum
bounding box with padding pixels.

In most study of deep learning, there is an additional supervised weights fine-tuned
which will lead to better performance of the target encoding model [12, 20, 21]. The find-
tuned is guided by the concept labels of the training data samples. To do this, a softmax
[23] or linear SVM [31] is added at the top of the deep model to classify or predict. The
loss between the model output and the true value is measured and passed backward accord-
ing to the gradient of the network. A prerequisite is that function at the top layer should be
differentiable. Current study showed that either softmax or linear SVM meets the require-
ment. In these cases supervised fine-turned can be performed. However, in our study the
learning framework is different from those methods mentioned above. The data sample is
multiple-instance, meaning that there are one or more instances in a data sample, leading to
the so-called label ambiguity [37, 42]. As a result, it makes it difficult to measure the loss
between model output and the ground truth label. Hence in this study, we do not combine
the encodingmodel and theMIMLmodel together and only perform single-instance training for
the CNN model. Algorithm 2 summaries the main steps of training the encoding network.
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In Algorithm 2, line 1 initializes the network parameters W through the procedure
initCNN.The procedure mbb Line 3 processes the minimum bound box algorithm to regu-
larize a region. Line 4 performs an adaptive sub-sampling to scale the region and save the
result in matrix xs. Line 5 to 7 performs CNN output evaluation and error back-propagation.
We use a sofmax function in Line 6 to generate the evaluation result from the features
encoded by CNN. The label set Y has to be constructed manually since the label ambiguity
of MIML sample cannot be back-propagated through the CNN.

2.3 MIML annotation model

After feature extraction of regions, MIML samples can be expressed as sets of feature vec-
tors. Though there are a lot of MIML classifiers which have been proposed and reported
successfully in various tasks, we adopt a current proposed MIML annotation model called
S-MIMLGP, proposed in our previous work [38]. The motivation is twofold. Firstly it is
designed for skin biopsy image classification working with some traditional features, e.g.
color, texture, sub-structure. It has been proved to be effective in the classification of certain
histopathological characteristics. Secondly, the method works under a probabilistic founda-
tion and it is able to give the posterior distribution for each annotation terms, which indicates
the confidence of annotating a term to an skin image. Probabilistic models are preferable
for medical decision support. Another famous MIML classification model, MIMLBoost is
also implemented for comparison.

3 Evaluations

3.1 Data set and settings

We evaluate the proposed model on two datasets. The first is a clinical dataset from the
department of dermatology of a large hospital (denoted as D1) and the second is a skin
tissue image dataset (denoted as D2). The dataset D1 contains skin biopsy images and their
diagnosis descriptions in plain text. There are 12600 images in D1, each of which is taken
from lesion tissues of a patient and imaged under an electronic microscope. The image size
is 2048 × 1536 × 24b. We follow the above-mentioned processing method to transform
each image into MIML sample. In dataset D1, there are 15 standard annotation terms to
be taken into account. Table 2 shows the details of the histopathological features as well as
their occurrence rates in D1.

Dataset D2 is a skin tissue image dataset which was firstly analyzed by Angel et al.
in [2]. It has 2828 images belonging to 4 different skin tissues. The image size of D2 is
720 × 480 × 24b. Figure 7 shows sample images of the two datasets.

The parameters of the adaptive region cutting method are set as following: the maximal
number of regions R = 13 and the lower bound of total pixels in a region p = 1800. These
two parameters are determined by medical experience as our previous work [37] did. We
use S-MIMLGP, MIMLRBF and MIMLboost as the models for annotation.

To show the effective of the proposed model, 4 previous successful methods with dif-
ferent intuitions are implemented for comparison. For brevity, we denote them as F1 to F4.
Method F1 and F2 come from our recent work. F1 is a multiple-instance learning method
[35], in which the annotation problem is divided into several binary classification prob-
lems according to the annotation terms. F1 utilizes Citation-KNN as the main model and
region-based wavelet transformation algorithm to extract features. F2 makes use of a MIML
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Table 2 15 annotation terms and
their occurrence rates in D1 No. Name Rate

T 1 retraction space 28.65%

T 2 papillomatosis 22.71%

T 3 follicular plug 1.8%

T 4 hypergranulosis 32.15%

T 5 horn cyst 4.14%

T 6 basal cell liquefaction degeneration 6.48%

T 7 thin prickle cell layer 2.61%

T 8 infiltration of lymphocytes 9.12%

T 9 hyperpigmentation of Basal cell layer 36.99%

T 10 nevocytic nests 18.56%

T 11 Munro microabscess 7.72%

T 12 acanthosis 19.05%

T 13 absent granular cell layer 23.24%

T 14 parakeratosis 6.81%

T 15 hyperkeratosis 11.30%

learning model based on sparse Bayesian learning [37], it combined several probabilistic
MIML model with a relevant vector machine (RVM) [32] to find the optimal combina-
tion weights. F3 is a bag-of-features (BOF) data sample representation method with kernel
learner [8]. It constructed a codebook composing of image patches as basic features and
expressed each training or test example as a histogram based on the codebook. Method F3
had been used to classify biopsy tissues images. Method F4 comes from the famous DD-
SVM [11], which applied a clustering-based algorithm to cluster similar blocks together
and thus form regions. It represented an image as a multiple-instance sample and used DD-
SVM to classify it. Table 3 shows the references and the corresponding data representations
of these methods.

In the third column of Table 3, the data representation methods are provided. R0 stands
for the CNN based feature extraction method proposed in this work. R1 stands for the
combining feature of LUV color space and wavelet transformation. R2 stands for the Bag-
Of-Features (BOF) feature representation. R3 is a multiple-instance representation of a

Fig. 7 Sample images of the two datasets
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Table 3 Data representation and
their consistent methods Method Reference Data representation

CNN : Our method this work R0

F1: Citation Zhang et al. [35] R1

F2: SBL-MIML Zhang et al. [37] R1

F3: BOF Caicedo et al. [8] R2

F4: DD-SVM Chen et al. [11] R3

histopathological image, but it regards pixel clusters as regions, which may not be contigu-
ous. Hence it may not be able to obtain visual disjoint regions. To construct the evaluation
data set, we randomly divide the whole data set into training part and test part at size ratio
1 : 4. Then apply the feature extraction methods listed in Table 3 to construct the data set.

3.2 Evaluation criteria

We use two well-known multiple-label learning criteria [28] to measure the performance of
the methods. The first criteria is accuracy, denoted as acc, measuring the general perfor-
mance of an annotation model. It does not consider the relation between annotation terms.
However, it only calculates the mean accuracy of each label evaluated by a zero-one loss
function. The second criteria is hloss which measures the number of misclassified label
pairs. We also use the false positive rate (FPR) and false negative rate (FNR) of each label
to measure the performance of the proposed model. FPR measures the ratio of wrong anno-
tation per sample per label. FNR measures the ratio of missing annotation per sample per
label by the model.

3.3 Evaluation results

We report the overall accuracy of the proposed method and the methods for comparison,
as shown in Table 4. Since the dataset is multiple-label, the overall accuracy is the mean
value of all accurate rates for all terms. The best result in the table has been highlighted.
The proposed method achieves the best result among all evaluated methods. The column
Method shows the analysis methods for evaluation. Note that some of these methods are
composed of both feature extraction and annotation parts. For a comprehensive evaluation,
we record the performance of the original implementation which has been marked with a
superscript star. And we also use the feature extraction methods in our MIML annotation
model and record the performance, e.g. line 4 and 5 of Table 4.

In line 9, the method F3 only works with a multiple-class SVM classifier. This is because
it is a single-instance learning method. The S-MIMLGP and MIMLBoost cannot be applied
to single-instance samples generated by F3.

D2 is in fact a single-label dataset because every image is associated with only one of the
four categories. However, current study on MIML indicated that multiple-label classifiers
also work well on single-label datasets. Note that in this case the criteria hloss is of no use.
Figure 8 shows the overall accuracy of D2. It can be seen that the proposed CNN feature
representation method outperforms the other methods.

The FPR and FNR are important for the evaluation of effectiveness of the proposed
model. For brevity, we report the FPRs and FNRs of methodCNN , F2 and F4 onD1, which
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Table 4 Overall accuracy of D1
(acc: %) No. Method Annotation model acc hloss

1 CNN S-MIMLGP 81.75 0.221

2 CNN MIMLBoost 79.55 0.241

3 F1 Citation∗ 74.02 0.276

4 F1 S-MIMLGP 75.91 0.289

5 F1 MIMLBoost 77.12 0.250

6 F2 SBL-MIML∗ 78.88 0.257

7 F2 S-MIMLGP 75.91 0.289

8 F2 MIMLBoost 78.40 0.247

9 F3 SVM∗ 67.33 0.341

10 F4 DD-SVM∗ 69.56 0.313

11 F4 S-MIMLGP∗ 72.05 0.309

12 F4 MIMLBoost∗ 72.37 0.320

stand for different feature representation methods and learning models. Table 5 shows the
FPR and FNR of each annotation term.

It can be seen that our method also achieves the best results in a large body of annotation
terms. But the model performs poorly in some terms, such as T2, T3 and T10. We owe
this to the unbalanced occurrence of annotation terms in the data set. Note that we make
natural segmentation on the whole data set, meaning that we do not guarantee that each
label in either training set or test set is distributed equally as that in the whole data set.
The model may tend to annotate the frequent terms according to the training set, which

Fig. 8 the overall accuracy of D2
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Table 5 FPRs and FNRs of three methods on D1 (%)

CNN F1 − Original F4 − Original

Terms FPR FNR Total Terms FPR FNR Total Terms FPR FNR Total

T1 8.04 10.19 18.23 T1 7.87 11.35 19.21 T1 7.86 12.41 20.27

T2 10.05 10.57 20.62 T2 13.21 13.52 26.64 T2 13.42 10.99 24.42

T3 9.81 12.02 21.83 T3 11.48 13.02 24.51 T3 9.12 13.05 22.17

T4 5.13 5.59 10.72 T4 7.99 8.24 16.23 T4 5.22 6.91 12.13

T5 8.25 8.61 16.86 T5 10.95 7.44 18.40 T5 10.88 6.58 17.46

T6 9.78 7.65 17.43 T6 8.89 12.10 20.99 T6 11.88 11.32 23.20

T7 7.99 10.53 18.52 T7 8.46 12.16 20.62 T7 8.45 12.24 20.69

T8 6.21 7.34 13.55 T8 7.15 7.21 14.37 T8 5.79 10.56 16.34

T9 9.02 9.42 18.44 T9 9.71 13.52 23.23 T9 10.76 10.18 20.94

T10 11.50 12.06 23.56 T10 14.15 13.95 28.10 T10 11.71 12.22 23.93

T11 13.18 7.03 20.21 T11 6.68 14.78 21.46 T11 10.61 11.95 22.57

T12 5.51 6.00 11.51 T12 7.20 8.03 15.23 T12 11.06 5.40 16.45

T13 6.91 10.54 17.45 T13 7.56 12.14 19.70 T13 12.47 8.05 20.52

T14 6.40 8.81 15.21 T14 7.85 9.45 17.30 T14 5.97 13.16 19.13

T15 5.85 6.71 12.56 T15 10.43 7.46 17.89 T15 7.13 7.81 14.94

is called model bias in machine literatures [6]. Another reason may be that some of these
histopathological features do not have explicit expression in digital images. Our model is
ineffective to annotate these kind of features.

The dimension of the output of CNN and the number of hidden layers may significantly
affect the model performance. The output vector of CNN is the input of MIML model. We
vary the number of hidden layers and the dimension of output layer of the network, and
record the model mean loss of all annotation terms. See Fig. 9.

In Fig. 9, the x axis is the number of dimension of the encoding model output, and the
y axis is the accuracy value. We can seen that models with more hidden layers achieve
better performance. While the dimensions of encoding model outputs have little effects
on the model performance. It motivates us to use networks with more hidden layers and
low-dimension outputs.

Fig. 9 Overall loss of different number of hidden layers and output dimension
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Fig. 10 Overall loss of different number of hidden layers and output dimension

Finally, we report how the trained CNN network affects the MIML model, i.e. whether
the larger size of manually labeled region dataset means better performance of the target
model. We train the CNN model with portions of training data from 10% to 50% by step
10% and model the overall performance. And we keep the settings of MIML annotator the
same so as to highlight the quality of feature extraction deep network. Figure 10 shows the
relationship between the MIML model performance and the labeled dataset size for CNN
training.

4 Discussions

We give some discussions related to this study. In the first place, we would like to discuss the
relationship between region cutting and feature extraction through deep model. A natural
question is why we do not directly feed a whole histopathological image to the CNN model.
The reason lies in the high computational cost. The network is not able to process an image
of large size. Hence we cut an image into regions, and extract feature per region, so as to cut
down the computational cost. There may be information loss in the cutting process. But the
cutting method generates visual disjoint regions which are supported by medical knowledge
and experience.

The second problem is whether we can perform supervised fine-tune of the model
weights. It is a challenging problem, since the encoding network can only accept instance
(region). In order to launch a BP like algorithm to adjust the network weights, the directly
connection between instances and labels have to be established. However, due to the label
ambiguity of MIML learning, the relation cannot be directly expressed. Hence we use
manually labeled region for the model training and apply the trained network for feature
extraction. Meanwhile, there are studies that establish the connection between multiple-
instance samples and target labels. In He et al.’s work [18], a likelihood function establishes
the connection between instances in a bag and its labels by introducing a vector of hidden
variables. Thus the posterior distribution of labels given a bag can be derived by integra-
ting out all hidden variables. In our model this kind of relation seems not easy to establish.
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Since the number of instances in each bag may be different, it is not possible to input them
into the model at the same time. To encode a data sample of complicated structure needs to
be further studied.

The third problem is how different multiple-instance assumption affects the model per-
formance. As proposed in [16], difference of background information may lead to different
multiple-instance assumptions, which in fact define the relation between instances within
a bag and the corresponding labels. In our model, we use the original multiple-instance
assumption which was proposed by Dietterich et al. in 1997 [13]. It assumes that in binary
classification case, a bag is labeled positive if and only if it has a positive instance, and neg-
ative otherwise. The assumption is roughly suitable for our skin histopathological image
annotation problem. If an image contains a region that should be annotated to a term, the
whole image should be annotated to this term as well. Though this assumption does not
take the relationship of instances and labels into consideration, the model based on it can
achieve good performance even if the problem domain indicates much complicated assump-
tions [39]. In the literatures of multiple-instance learning, there have been reported powerful
models to support different assumption [42], which require additional computational costs
to model the quantity or structure information of instances within a bag. We place our study
under the standard multiple-instance assumption to simplify the annotation model, so as to
focus on the feature representation by the CNN model.

5 Conclusions

In this paper we proposed a feature representation method based on deep learning for skin
biopsy histopathological image annotation. Different from previous methods that adopt
human designed features, we proposed to learn features from low level pixels in a super-
vised manner. CNN is used as a feature learning model. The proposed method learns
abstract features through multiple-layer weighted combination and nonlinear transforma-
tion of the original features. Then a supervised MIML learning model is placed at the top
of the deep model to generate annotation results. Evaluation results on a real clinical data
set and a famous benchmark dataset show the proposed method are superior to recent meth-
ods. Though the feature extraction method is region-based and requires manually labeled
regions, it can achieve better features than the original ones. The model simulates the
structure of human brain and attempts to be trained and work like what the human brain does.

There are some problems yet to be solved. One problem is that the proposed method only
performs region-based supervised learning. Due to the label ambiguity of multiple-instance,
the loss of model output cannot be propagated through the network, which leads to the
failure of supervised fine-tune of the network weights. Another problem to be solved is the
design of multiple-instance data sample CNN. The essence of this problem is the question
whether we can design a CNN model to encode a multiple-instance sample, instead of an
instance (region). These two problems will be studied in our future work.
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