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Abstract A new image encryption and decryption algorithm based on chaotic map and
dynatomic modular curve is proposed in this paper. Firstly, the definition of dynatomic
modular curve and its periodic points are introduced, and a property of the dynatomic
modular curve is proved. Secondly, the relationship between the Logistic map and the
dynatomic modular curve is discussed. Finally, the encryption algorithm which is com-
posed of permutation of pixels and substitution is given. In order to eliminate sufficiently
the relation between adjacent pixels in the image, pixel values of the original image are
sorted as index function, which derives from Logistic map and dynatomic modular curve.
And XOR operation is performed between the scrambled pixel sequence and projective
transformation sequence. Simulation experiments and nonparametric hypothesis test dem-
onstrate that the proposed algorithm is secure to resist different types of attacks and it can
be applied to real-time encryption.

Keywords Logistic map . Dynatomicmodular curve . Projective transformation .

Chi-Square test . K-S test

1 Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resource(e.g., network, servers, storage,
applications)that can be rapidly provisioned and released with minimal management effort
or service provider interaction. Attracted by these appealing features, both individuals and
enterprises are actively outsourcing their data to the cloud. But, outsourcing sensitive
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information (such as e-mails, personal health records, company finance data, government
documents, and secret images etc.) to remote servers will bring privacy concerns. The
general approach of preserving privacy data is to encrypt it before outsourcing [10]. From
a security point of view, this process mainly contains two aspects. On the one hand, the
inverted sort index of the file needs to be encrypted [5, 26]. On the other hand, the file to
be uploaded needs to be encrypted [18, 19]. Some encryption algorithms have been
proposed to solve the latter problem, such as AES and DES algorithm. But, comparing
these conventional encryption algorithms, chaos-based ones have suggested more secure
and fast encryption methods [15, 24].

The first chaos-based encryption algorithm was proposed in 1989 [12]. Since then
more and more researchers have investigated and analyzed many kinds of chaos-based
encryption algorithms. The improvement of encryption algorithm mainly includes
security and computational cost. In terms of security, some researchers were working
to eliminate sufficiently the relativity of adjacent pixel in images [8, 13, 17, 27, 29,
30]. In addition, other researchers were studying how to increase the size of the key
space to ensure the security of the encryption algorithm [7, 20, 28]. Moreover, some
people even put forward the method of keeping secret communication from the angle of
pulse synchronization [2, 22, 23, 25]. In terms of computational cost, a real-time and
fast encryption method was presented based on orthonormal matrices [3]. The algorithm
not only considers the statistical attack, but also pays more attention to the speed of
encryption. In [21], a two stage combinational approach for image encryption was
proposed. This algorithm need only one password for both stages and it had a low
computational complexity. The above mentioned schemes have made a great contribu-
tion to the security and computational cost. However, there are few algorithms which
can simultaneously take into account the two aspects. In [28], an image encryption
scheme was designed based on 2D hyper-chaotic system. They claimed that the
algorithm had high security. However, the computational cost of using two-
dimensional hyper chaotic system was relatively high. If 1-D chaotic system be used
in this algorithm, the speed of operation would be improved. But, the security could not
be guaranteed. Moreover, the encryption scheme based on chaotic hiding and modula-
tion of 1-D chaotic systems was decrypted by multi-step nonlinear prediction method.
So, it is a great challenge to design a low dimensional chaotic encryption scheme with
security and low computational cost. Fortunately, some people started to study this
problem. In [14], the author proposed a new image encryption algorithm based on
parameter-varied Logistic map. This method could resist the attack of phase space
reconstruction, and it has a low computational complexity. However, the difference
between some data which derived from Logistic map would be very small for different
parameters. It may cause a larger calculation error and reduce the security of the
algorithm. In order to make up for these deficiencies and expand the scope of the
data, this paper proposes a new image encryption scheme based on Logistic map and
dynatomic modular curve (DMC). In stage of diffusion, the original pixel values are
sorted as index function which derives from the logistical map and the DMC. In stage
of confusion, the XOR operation between the scrambled pixel sequence and projective
transformation sequence is performed. The simulation experiments show that the
proposed algorithm has a low computational complexity, and sensitivity to the key,
and it has a good property of resistance statistical attack, differential attack, and
malicious attack.
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The advantages of the proposed scheme are summarized as follows:

(1) The DMC is the first time to apply in image encryption. Not only it can help us improve
the calculation precision by increasing infinity point and infinity line, but also can expand
the scope of chaotic data.

(2) The relationship between the Logistic map and the DMC is discussed, and it is used to
encrypt and decrypt image.

(3) Chi-square and Kolmogorov-Smirnov test are applied to verify the distribution of the
encrypted image pixels and correlation coefficients in performance analysis. They can
help us test the security of the encryption algorithm from the view of statistical analysis.

(4) The key space is extended by introducing the adjustment parameter and amplifi-
cation parameter.

The rest of this paper is organized as follows. In section 2, in order to find the
relationship between the Logistic map and the DMC, the definition of the DMC and the
type of period are introduced, and a property of the DMC is proved. In section 3, the
relationship between the Logistic map and the DMC is discussed, and its role in image
encryption is summarized. In section 4, image encryption and decryption algorithm based
on the Logistic map and the DMC are given. In section 5, some images which selected
from the USC-SIPI image database are used to test effectiveness of the proposed algo-
rithm. And the Chi-square test is used to verify the histogram distribution of the encrypted
image pixels. Performance analysis of the proposed algorithm is described in section 6. It
includes statistical analysis, adjacent pixels correlation analysis and simulation, NPCR and
UACI calculation and simulation, key sensitivity test, information entropy calculation and
algorithm intensity analysis. In this section, the distribution of correlation coefficient of
encrypted image is verified by K-S test, and the experimental results are compared with
other algorithms from correlation coefficient, key sensitivity and computational complex-
ity. Section 7 summaries the main innovative points of the proposed algorithm and lists
some research problems in the future.

2 Dynatomic modular curve

Firstly, we introduce the definition of dynatomic polynomial and its periodic point in projec-
tive space. And then, the conception of the DMC is put forward. Finally, a property theorem of
the DMC is proved.

Definition 1 [22] Φ*
n zð Þ is called the n -th dynatomic polynomial and is given by the

following formula,
Φ*

n zð Þ ¼ ∏
kjn

ϕk zð Þ−z� �μ n
kð Þ:

Here μ is the Mobius function. μ is defined byμ(1) = 1and

μ pe11 p
e2
2 ⋯perr

� � ¼ −1ð Þr; if e1 ¼ e2 ¼ ⋯ ¼ er ¼ 1;
0; if any ei≥2:

�
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ϕk(z)is the k -th iteration of ϕ. If we let ϕ(z) ∈K[z] be a polynomial, where K[z] is a
polynomial set on perfect field K. And consider that

ϕ zð Þ ¼ ϕc zð Þ ¼ −z2 þ c

Some expressions of Φ*
n zð Þ can be obtained,

Φ*
1 zð Þ ¼ Φ*

1 c; zð Þ ¼ ∏
kj1

ϕk zð Þ−z� �μ 1
kð Þ ¼ ϕ zð Þ−z ¼ −z2−zþ c; ð1Þ

Φ*
2 zð Þ ¼ Φ*

2 c; zð Þ ¼ ∏
kj2

ϕk zð Þ−z� �μ 2
kð Þ ¼ ϕ zð Þ−zð Þμ 2ð Þ ϕ2 zð Þ−z� �μ 1ð Þ

¼ ϕ zð Þ−zð Þ−1 ϕ2 zð Þ−z� � ¼ z2−zþ 1−cð Þ ;

ð2Þ

Φ*
3 zð Þ ¼ Φ*

3 c; zð Þ ¼ ∏
kj3

ϕk zð Þ−z� �μ 3
kð Þ ¼ ϕ zð Þ−zð Þμ 3ð Þ ϕ3 zð Þ−z� �μ 1ð Þ

¼ z6−z5 þ 1−3cð Þz4 þ 2c−1ð Þz3 þ 3c2−3cþ 1
� �

z2

þ −c2 þ 2c−1
� �

z− c3−2c2 þ c−1
� �

:

ð3Þ

Similarly, other expressions of Φ*
n zð Þ (n = 4 , 5 ,⋯) can be obtained. Let Φn(P) = ϕ

n(P) − P,
we can make the following definition.

Definition 2 Let ϕ(z) ∈K[z] be a rational map and let P∈ ℙ1 be a periodic point for ϕ, where
P1 represents 1-dimensional projective space.

(1) P has period n if Φn(P) = 0.
(2) P has formal period n if Φ*

n Pð Þ ¼ 0.
(3) P has primitive (or exact) period n if Φn(P) = 0 and Φm(P) ≠ 0 for all m < n.

We set the notation

Pern ϕð Þ ¼ P∈ℙ1 : Φn Pð Þ ¼ 0
� �

;

Pern
* ϕð Þ¼ P∈ℙ1 : Φn

* Pð Þ ¼ 0
� �

;

Per**n ϕð Þ ¼ P∈ℙ1 : Φn Pð Þ ¼ 0 and Φm Pð Þ≠0 for all 1≤m < n
� �

:

Thus, Pern(ϕ) is the set of points of period n, Per*n ϕð Þ is the set of points of formal period n,
and Per**n ϕð Þ is the set of points of primitive (or exact) period n. This definition will be used to
prove proposition theorm1. Beyond that, we also need the definition of the DMC.

Replacing c with y in Eq. (1), (2), (3) and so on, we can obtain affine curve in affine space.
That is,

Definition 3 The dynatomic modular curve Y1(n)⊂A2 is the affine curve defined by the equation

Φn
* y; zð Þ ¼ 0:
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The normalization of the projective closure of Y1(n) is denoted by X1(n).Where A2

represents 2-dimensional affine space.
Indeed, Y1(n) is a curve in affine space, which satisfies the equation Φ1

∗(y, z) = 0. (y, z)
represents the coordinates of the curve Y1(n). When (y, z) is replaced by homogeneous

coordinates y
w ;

y
w

� �
, we can get projective curve X1(n) in projective space (w is a constant).

That is,

X 1 nð Þ : Φn
* y; z;wð Þ ¼ 0:

X1(n) is a curve in projective space, and there is a close correspondence between X1(n) and
Y1(n). Such as, affine curve Y1(1) satisfies Φ1

∗(y, z) = 0, that is, −z2 − z + y = 0. And, projective
curve X1(1) satisfies Φ1

∗(y, z,w) = 0, that is, z2 + zw − yw = 0. Similarly, the affine curve Y1(2)
satisfies z2 − z + (1 − y) = 0. And projective curve X1(2) satisfies z

2 − zw − yw +w2 = 0. In [21],
the author has shown that X1(1)and X1(2) are rational curve. Indeed, X1(3) is a rational curve too.

Proposition 1 Let dynatomic modular curve Y1(3) satisfies Φ3
∗(y, z) = 0. X1(3) is the nor-

malization of the projective closure of Y1(n). So the X1(3) is a rational curve.
Proof. In order to parameterize X1(3), suppose that ϕ(z) = Az2 − Bz +C is any quadratic

polynomial with a periodic point of primitive period 3. Note that, as long as the field K does
not have characteristic 2, the any quadratic polynomial ϕ(z) = Az2 − Bz +C can be put into the

form (−z2 + c) as the following method. Let f zð Þ ¼ B−2z
2A , which results to f −1 zð Þ ¼ B

2 −Az. Thus

ϕ f zð Þ ¼ f −1∘ϕ∘ f
� �

zð Þ ¼ −z2 þ B2

4
−AC þ B

2

� �
: ð4Þ

Then, conjugating by a linear map z↦αz + β, we may assume that the given 3-cycle has the
form 0→ 1 →t→ 0for some t.This gives the equations

ϕ 0ð Þ ¼ C ¼ 1 ;
ϕ 1ð Þ ¼ A−B þ C ¼ t ;
ϕ tð Þ ¼ At2−Bt þ C ¼ 0 :

8<
:

Solving for A, B, C in terms of t yields

A ¼ t2−t þ 1

t−t2
; B ¼ t3−t2 þ 1

t−t2
; C ¼ 1:

Put A, B and C into the expressions of ϕf(z) and f−1(z), we obtain

ϕ f zð Þ ¼ −z2 þ t6−4t5 þ 9t4−8t3 þ 4t2−2t þ 1

4t4−8t3 þ 4t2
;

f −1 0ð Þ ¼ t3−t2 þ 1

2t−2t2
:

It shows that for every value of t ∉ {0, 1}, the point

P* ¼ t6−4t5 þ 9t4−8t3 þ 4t2−2t þ 1

4t4−8t3 þ 4t2
;
t6−4t5 þ 9t4−8t3 þ 4t2−2t þ 1

4t4−8t3 þ 4t2

� �
;
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is a solution to the equation

Φ*
3 y; zð Þ ¼ z6−z5 þ 1−3yð Þz4 þ 2y−1ð Þz3 þ 3y2−3yþ 1

� �
z2

þ −y2 þ 2y−1
� �

z− y3−2y2 þ y−1
� � ¼ 0 :

It also can be verified by using a computer. That is to say, P*∈Per*3 ϕð Þ and it is formal
period 3. We have thus constructed a nonconstant rational map

ℙ1→X 1 3ð Þ; t↦
t6−4t5 þ 9t4−8t3 þ 4t2−2t þ 1

4t4−8t3 þ 4t2
;
t3−t2 þ 1

2t−2t2

� �
: ð5Þ

That is, rational map can be obtained for t ∉ {0, 1} from (5). Thus, X1(3) is a rational curve.
Moreover, X1(3) is birational to ℙ1 based on Lüroth’s theorem [6]. For it, we can make

further explanation. Assuming that (c, b) be a root ofΦ*
3, and set g(z) = (−b2 + c − b)z + b. So, g

sends 0 to b and 1 to ϕ(b). Then

g−1 zð Þ ¼ z−b
−b2−bþ c

;

and

ϕg zð Þ ¼ g−1∘ϕ∘g
� �

zð Þ ¼ − −b2−bþ c
� �

z2−2bzþ 1: ð6Þ
It can be computed that ϕg(0) = 1, ϕg(1) = b2 − b − c + 1 from (6), and

ϕg b2−b−cþ 1
� � ¼ b6−b5 þ 1−3cð Þb4 þ 2c−1ð Þb3 þ 3c2−3cþ 1

� �
b2

− c2−2cþ 1
� �

b− c3−2c2 þ c−1
� �

:

Since (c, b) is a root ofΦ*
3, that is to say Φ

*
3 c; bð Þ ¼ 0. Putting (c, b) into Φ*

3, we may obtain

ϕg b2−b−cþ 1
� � ¼ Φ*

3 c; bð Þ ¼ 0:

Thus we can get the 3-cycle for ϕg, that is, 0→ 1→ b2 − b − c + 1→ 0. Compared with the
above 3-cycle, it gives the map

X 1 3ð Þ→ℙ1; c; bð Þ↦b2−b−cþ 1; ð7Þ
which is inverse to (5), this can also be checked directly with a computer yet. For example, let

y tð Þ ¼ t6−4t5 þ 9t4−8t3 þ 4t2−2t þ 1

4t4−8t3 þ 4t2
; z tð Þ ¼ t3−t2 þ 1

2t−2t2
:

When t = 0.35, the correspondence y = 5.3964 , z = 2.7083. At this time,z2 − z − y + 1 =
0.35 = t.

Since (7) is the inverse mapping of (5), there is a one to one mapping between P1 and X1(3).
This mapping can be used to encrypt and decrypt private data. This scheme has the following
two advantages.

(a) Increasing infinity point and infinity line can reduce effectively calculation error, and
improve the calculation accuracy.
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For example, let t1 = 0.000012. When reserved four decimal places, it will produce larger
rounding error by direct calculation in affine space. However, in projective space, we can let
w = 0.00001. Then we can obtain t1

∗ = 1.2, which will reduce calculation error if we use this
value to calculate.

(b) It can help us expand or compress the scope of data by choosing an appropriate value ofw.

For example, given arbitrarily t2 ∈ (0, 1), wemay choosew = 0.01, and it makes t2∗ ∈ (0, 100).
Similarly, if we choosew = 100, the scope of twill be compressed to (0, 0.01). This property can
be used to adjust the scope of chaotic attractor according to the requirement of the problem.

However, due to the existence of periodic points, it is not enough to use the above
properties to design the encryption algorithm. In order to get rid of periodic points, we must
build the relationship between the Logistic map and the DMC.

3 The relationship between logistic map and dynatomic modular curve

In this section, the relationship between the Logistic map and the DMC is discussed. In
addition, the periodic points are analyzed, in order to ensure the security of the proposed
algorithm.

Now we see that the expression of ϕ(z) = − z2 + c play an important role for dynatomic

polynomial Φ*
n zð Þ. It has close relationship for Logistic map.

z nþ 1ð Þ ¼ az nð Þ⋅ 1−z nð Þ½ �; a∈ 0; 4½ �; z nð Þ∈ 0; 1ð Þ ð8Þ
Given some parameters and initial values, some sequences can be obtained from (8), which

would be used in the next section. Equation (8) can be described by ψ(z) = a(z − z2), and it can
be transformed into the form −z2 + c based on the process of proposition1. Such as, let

h zð Þ ¼ 1
2 þ 1

2, thus h
−1 zð Þ ¼ − a

2 þ az.

Key (a, x0) 

Logistic 

System 

Projective 

Transform 

First Sequence 

Sorted 

Original Image 

Image 

Scrambling 

XOR 
Encrypted 

Image 
Second Sequence Transformation 

Extended Key (b, p) 

Fig. 1 Block diagram of the encryption algorithm

  1       2       3      4       5      6      7       8      9      10      11      12 

0.0858  0.3072 0.9747   0.1527  0.1485  0.5029  0.6209  0.1866  0.1977  0.2742  0.5332  0.5854 

0.0858 0.1485  0.1527  0.1866  0.1977  0.2742 0.3072 0.5029  0.5332  0.5854 0.6209 0.9741  

1       2       3      4       5      6      7       8      9      10      11      12 

Fig. 2 Index transform diagram between original and ascending order
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Then

ψh zð Þ ¼ h−1∘ψ∘h
� �

zð Þ ¼ −z2 þ a2

4
−
a
2

� �
:

The expression of ψh(z) is consistent with (4). Therefore, we can analyze Logistic map as
the method in section 2. That is to say, when a and t satisfies the equation

a2

4
−
a
2
¼ t6−4t5 þ 9t4−8t3 þ 4t2−2t þ 1

4t4−8t3 þ 4t2
; ð9Þ

we can obtain rational map (5) and (7). That is, Logistic map can be considered a special kind
of the DMC based on Eq. (9).

Let a = 3.8355, then t = − 0.7356 from (9). It makes (1.76, 0.0238) is the solution to

Φ*
3 y; zð Þ ¼ 0. So, 0.0238 is the formal period 3 point of ψ. According to Li-Yorke theorm, ψ

can produce chaos when a = 3.8355. Thus, the chaotic state of the Logistic map is verified from
the perspective of the DMC. Since 0.0238 ∈ (0, 1), we should get rid of this periodic point in
encryption algorithm. Therefore, for arbitrary parameters a ∈ [0, 4], we need remove the periodic
point which belongs to (0, 1) to improve the security of the algorithm. But, when a = 4, there
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(a) Original Lena image and its histogram (b) Encrypted Lena image and its histogram

Fig. 3 The histograms of the original and encrypted gray image (256 × 256)
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(a) Original Lena image and its histogram (b) Encrypted Lena image and its histogram

Fig. 4 The histograms of the original and encrypted color image (256 × 256)
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exists t = 2.8794, whichmakes (2, 1.5321) is the solution to the equationΦ*
3 y; zð Þ ¼ 0. So, 1.5321

is also the formal period 3 point ofψ. Since 1.5321 ∉ (0, 1) in Logistic map, we can use sequences
to encrypt the image directly, instead of eliminating it in advance. Anyhow, the processes of
removing the periodic points need to be discussed in design of algorithm.

In order to obtain more secure encrypted image, not only we should get rid of those periodic
points, but also ensure that sequence after transformation is far from them. Therefore, an
adjustment coefficient b is introduced into the encryption algorithm.

4 Image encryption based on chaos and dynatomic modular curve

4.1 Image encryption flowchart

From Fig. 1, we can see that the proposed algorithm mainly adopts Logistic map, and
the most important step is projective transform. After it, we can obtain two sequences.
One is used to scramble the original image pixels and another is used to replace pixel
values.
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(a) Decrypted gray image and its histogram (256 256) (b) Decrypted color image and its histogram (256 256)

Fig. 5 The histograms of the decrypted images
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(a) Original filtration image and its histogram (b) Encrypted filtration image and its histogram

Fig. 6 The histograms of the original and encrypted gray image
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4.2 Encryption and decryption algorithm

According to the flowchart, the process of the proposed algorithm can be summarized as
follows:

Step 1: Set effective parameter and initial value, and one sequence T = {t1, t2, ⋯ , tN} can
be generated from the Logistic map. N =m × k is the length of the sequence,
where m is the number of rows of the image matrix and k is the number of
columns of the image matrix.

Step 2: Projective transform. Suppose ti ∈ T, i = 1 , 2 , ⋯ ,N.Using the projective transform

(5), ti is changed into (yi, zi), yi forms a set Y. And another set Z ¼ z
0
i

� �
can be

obtained by the following function.

z
0
i ¼ 10p⋅ bzi− bzib cð Þb cmod 256 ð10Þ

where b is called adjustment coefficient and p is called amplification parameter. zi(i =
1, 2, ⋯ , N) can be converted to some other elements which belong to [0, 255] by
Eq. (10).

Step 3: Image scrambling. Assume that the original image matrix X = {xij|i = 1, 2, ⋯ ,m; j =
1, 2, ⋯ , k}.
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(a) Original vegetables image and its histogram (b) Encrypted vegetables image and its histogram

Fig. 7 The histograms of the original and decrypted color image (512 × 512)
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Fig. 8 The histograms of the original and encrypted color image (600 × 400)
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Then the elements of Y are sorted by the ascending order. In fact, this rearrange-
ment is a kind of transformation. We can rearrange original image pixels according to
this transformation function. The pixel set after scrambling is denoted as

X
0 ¼ x

0
ij i ¼ 1; 2;⋯;m; j ¼ 1; 2;⋯; kj

n o
.

Step 4: Pixel replacement. Performing the operation of XOR between the sequence Z and the
scrambled image sequence X′ as follows:

yij ¼ z
0
i⊕x

0
ij: ð11Þ

Then, we obtain a set Y′ = {yij|i = 1, 2, ⋯ ,m; j = 1, 2, ⋯ , k}, which is the pixel set of the
encrypted image.

The decryption is the inverse process of the encryption. Firstly, do the operations as step 1
to 2 in the encryption algorithm. Secondly, the XOR operation is performed between the
encrypted image data and the sequence Z. Finally, the scrambling operation is performed by
using of index inverse transform function and reconstructs the original image.

Figure 2 shows the index transform function and its inverse function for some data.
From Fig. 2, the index of the sorted elements has a corresponding relationship with the

original elements. Assume φ represents the function between the indexes, we can obtain that

φ 1ð Þ ¼ 1; φ 2ð Þ ¼ 7; φ 3ð Þ ¼ 12; φ 4ð Þ ¼ 3; φ 5ð Þ ¼ 2; φ 6ð Þ ¼ 8;
φ 7ð Þ ¼ 11;φ 8ð Þ ¼ 4;φ 9ð Þ ¼ 5;φ 10ð Þ ¼ 6;φ 11ð Þ ¼ 9;φ 12ð Þ ¼ 10:

And

φ−1 1ð Þ ¼ 1; φ−1 2ð Þ ¼ 5; φ−1 3ð Þ ¼ 4; φ−1 4ð Þ ¼ 8; φ−1 5ð Þ ¼ 9; φ−1 6ð Þ ¼ 10;
φ−1 7ð Þ ¼ 2;φ−1 8ð Þ ¼ 6;φ−1 9ð Þ ¼ 11;φ−1 10ð Þ ¼ 12;φ−1 11ð Þ ¼ 7;φ−1 12ð Þ ¼ 3:

This algorithm can make full use of the advantages of the DMC to improve the security of
the encrypted image, and it can reduce calculation error. These conclusions can be verified by
the following experiments.

Table 1 The results of Chi-square
test for gray image (α = 0.05) Image Chi-square value df Progressive significance

Lean 256.953 255 0.454
Filtration 251.080 255 0.558

Table 2 The results of Chi-square test for color image (α = 0.05)

Image R G B

C-s value Sig.(two-sides) C-s value Sig.(two-sides) C-s value Sig.(two-sides)

Lena 219.219 0.949 241.313 0.722 251.078 0.558
Vegetables 203.036 0.993 256.203 0.462 234.500 0.817
Elephant 262.582 0.459 253.195 0.538 248.079 0.592
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5 Experimental results

Five images are taken for testing effectiveness of the proposed algorithm and they are two gray
images (256 × 256,512 × 512) and three color images (256 × 256,512 × 512,600 × 400). R
represents red, G represents green, and B represents blue in color images. The histograms of
the original image and encrypted image are shown in Figs. 3, 4, 6, 7, and 8. The histograms of
decrypted image are shown in Fig. 5. Choose parameters a = 3.8355 , p = 10 , b = 2.345 and
initial valuez(0) = 0.58.

From Figs. 3, 4, 6, 7, and 8, histograms of the original image and the encrypted image
are very different. The histogram of encrypted image is uniform distribution. Indeed, it can
be verified by Chi-square test for each image. Here, we take the gray image as an example
to verify this conclusion.

H0: Encrypted pixel values of the gray image obey uniform distribution.
H1: Encrypted pixel values of the gray image not obey uniform distribution.

Assume that n1 represents the number of samples, Xi(i = 1, 2, ⋯ , n1) represent random variable
of encrypted gray values, and all samples are divided intom1 groups, fj(j = 1, 2, ⋯ ,m1) represents

Table 3 Computational time of five different images

Image Lena(gray) Lena(color) Filtration Vegetables Elephant

Size 256 × 256 256 × 256 512 × 512 512 × 512 600 × 400
Encryption time(s) 0.3579 0.3753 0.9587 1.1312 1.0279
Decryption time(s) 0.3839 0.3935 1.1410 1.1871 1.1091
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Fig. 9 Encryption and decryption time of different images
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frequency of group j. Let X represents the mean value, θ and ω are parameters of this distribution.
Then, the estimated value of θ and ω can be obtained by the point estimate method.

θ̂ ¼ x −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

n1
∑
i¼1

n1

xi−x

 �2

s
¼ 0 ;

ω̂ ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

n1
∑
i¼1

n1

xi−x

 �2

s
¼ 256:

The probability pj{X = j} , j = 1 , 2 , ⋯ ,m1 can be calculated as uniform distribution which
parameters have been known. Finally, we can make a decision through comparing the value of

χ2 ¼ ∑
j¼1

m1 f j−n1pj


 �2

n1pj
;

with χ2(97). Results are listed in Table 1 which derives from SPSS statistics 19.
Table 1 demonstrates the progressive significance p∗ > 0.05. So, we can’t reject H0.That

is to say, encrypted pixel values of the gray image obey uniform distribution. As is known
to all, the color image is composed of three pixel matrixes, which are R matrix, G matrix
and B matrix. Each pixel matrix can be encrypted and decrypted according to the same
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Fig. 10 The fitting curve of encryption and decryption time for different images

Table 4 Average correlation coefficients of different images

Image Original-image Encrypted-image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena(gray) 0.968579 0.902024 0.936888 0.001398 0.007793 0.006573
Lena(color) 0.970634 0.944835 0.925606 0.002443 0.002921 0.002067
Filtration 0.984714 0.991562 0.990413 0.002438 0.000097 0.002054
Vegetables 0.975181 0.984653 0.985581 0.002061 0.003577 0.003893
Elephant 0.929295 0.964738 0.975612 0.002859 0.001403 0.001208

Multimed Tools Appl (2018) 77:8911–8938 8923



processing method of gray image. Then, encrypted image can be got by merging them. So,
the proposed scheme is feasible to color image. Moreover, it can also be verified that
encrypted pixel values of the color image obey uniform distribution through Chi-square
test. Results are listed in Table 2.

Table 2 shows that each progressive significance value P∗ is far greater than 0.05.
Moreover, all values of progressive significance are greater than 0.454. That is to say, the
proposed encryption algorithm works better for color image.

The computational time of these images is listed in Table 3. In addition, other seventeen
color images which have different size are selected from the USC-SIPI image database.
Encryption and decryption time of all images are shown in Fig. 9. And all the algorithms
are calculated by MATLAB R2013a on the same computer with Inter Xeon E5-2630v2/
16G, DDR3.

Let Te represents encryption time, Td represents decryption time, and Ps represents
the size of images. Thus, Te and Td of different images which size belongs to (10,000,
160,000) are shown in Fig. 9a. Te and Td of different images which size belongs to
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(10,000, 640,000) are shown in Fig. 9b. Figure 9 indicate that Te and Td of different
images increase with the size of images. Specially, for different size of images, the
shortest Te = 0.2196s and Td = 0.1335s, and the longest Te = 2.4534s and Td = 2.5047s.
Moreover, the relationship between Te and Ps can be approximately represented by
Te = 3.6714 × 10−6Ps + 0.1705, which derives from fitting (Fig. 10a). Similarly, the
relationship between Td and Ps can be approximately represented by Td = 3.6271 ×
10−6Ps + 0.1586 (Fig. 10b). Thus, the encryption and decryption time of all images in
the USC-SIPI image database can be estimated through the above two linear function.
For example, a color peppers (512 × 512) image is selected to verify it, and its file
name is 4.2.07 in the USC-SIPI image database. When Ps = 262144, we can obtain
that Te = 1.1329s and Td = 1.1094s.They are very close to the experimental results in
Table 3. Therefore, the proposed algorithm is applicable to any image of this database.
And because of it, we use the above five images as the representative to analysis the
performance of the proposed algorithm in the next section.
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6 Performance analysis

In this section, the performances of the encryption algorithm are measured by calculating the
correlation coefficient, the information entropy, the values of NPCR and UACI. Moreover, the
key space, the key sensitivity and the algorithm intensity are discussed.

6.1 Correlation coefficient

Correlation coefficient measures the dependence of two adjacent variables at a certain direc-
tion. The closer this value is zero the less correlation exists between two adjacent. Conversely,
the value is to 1. The two variables are not relevant and unpredictable when correlation
coefficient is close to 0. The calculation formula of correlation coefficient is as follows [9].

r ¼
n ∑

n

i¼1
xiyi

� �
− ∑

n

i¼1
xi

� �
∑
n

i¼1
yi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ∑

n

i¼1
x2i

� �
− ∑

n

i¼1
xi

� �2
" #

n ∑
n

i¼1
y2i

� �
− ∑

n

i¼1
yi

� �2
" #vuut

ð12Þ

where n ∑
n

i¼1
xiyi

� �
− ∑

n

i¼1
xi

� �
∑
n

i¼1
yi

� �
represents the sample variation, n ∑

n

i¼1
x2i

� �
− ∑

n

i¼1
xi

� �2
" #
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and ½n ∑
n

i¼1
y2i

� �
− ∑

n

i¼1
yi

� �2

� are the sample standard variation of Xj and Yj(j = 1, 2, ⋯ ,m),

respectively.
All correlation coefficients of adjacent pixel of the original and encrypted image are

calculated from the horizontal, vertical and diagonal directions. For example, let Xj = {xj1,
xj2⋯, xjn} represents one pixel vector of the gray image, the adjacent pixel vector of Xj is
Yk = {yk1, yk2⋯, ykn}, which satisfies k = j + 1 , j = 1 , 2 , ⋯ ,m − 1. According to (12), the
correlation coefficient of Xj and Yk can be calculated. Finally, the correlation coefficient of the
gray image in a fixed direction is obtained by averaging. For color images, the correlation
coefficients of R, G and B matrices are calculated respectively. And then their average value
which represents the correlation coefficients of the color image is calculated. Thus, the number
of correlation coefficient varies with the size of the image. Some computational results are
listed in Table 4, which only includes average values. Each value of correlation coefficients is
shown in Figs. 11, 12, 13, 14, and 15.

Table 4 shows that correlation coefficients of the different original images in horizontal,
vertical and diagonal directions are close to 1. However, they are close to 0 after encryption.
More specifically, the correlation coefficient of the original Filtration image is 0.991562 in
vertical direction, but it drops to 0.000097 by encrypting. Similar results can be obtained in
horizontal and diagonal direction.

The adjacent pixels of the original image have a significant correlation from Figs. 11, 12,
13, 14, and 15a. However, the correlation disappeared after encryption. Moreover, all corre-
lation coefficients of the encrypted image evenly are distributed in the small range of zero from
Figs. 11, 12, 13, 14, and 15b. In order to more accurately determine the distribution type of the
correlation coefficients in the encrypted image, we describe the frequency charts in different
directions in Fig. 16.

Table 5 Single sample K-S test for correlation coefficient of the encrypted images

Image Horizontal Vertical Diagonal

Mean STDEV Sig.(two-
sides)

Mean STDEV Sig.(two-
sides)

Mean STDEV Sig.(two-
sides)

Lena(gray) 0.0014 0.0644 0.8191 −0.0078 0.0646 0.6543 0.0025 0.0838 0.9645
Lena(color) 0.0015 0.0432 0.6850 0.0021 0.0658 0.7870 0.0043 0.0913 0.7543
Filtration −0.0024 0.4437 0.6251 −0.0001 0.0471 0.7134 −0.0021 0.0625 0.8337
Vegetables 0.0029 0.0412 0.8567 0.0014 0.0500 0.9078 0.0019 0.0741 0.9608
Elephant 0.0020 0.3005 0.6697 0.0036 0.0440 0.8567 0.0039 0.06187 0.6977
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Fig. 17 The distribution of two adjacent pixel vectors for the original image (Lena)
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Figure 16 shows that the correlation coefficients of the encrypted image obey normal
distribution, and this conclusion can be verified by single sample K-S test. The process of this
test is given as follows.

H0: Correlation coefficients of the encrypted image obey normal distribution.
H1: Correlation coefficients of the encrypted image don’t obey normal distribution.
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Fig. 18 The distribution of two adjacent pixel vectors for the encrypted image (Lena)
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(i) Decrypted Vegetables image 
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(e) Decrypted Elephant image 
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Fig. 19 Key sensitivity test for different images
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Let xi represents sample, F0(x) represents theory distribution function, and Fn2 xð Þ repre-
sents sample cumulative frequency function. And let

D ¼ max Fn2 xð Þ−F0 xð Þj j:

In order to obtain F0(x), we must estimate μ and σ, which are parameters of normal
distribution in H0. They can be obtained by the following formulas,

μ̂ ¼ 1

n2
∑
i¼1

n2

xi ¼ x; σ̂
2
¼ 1

n2
∑
i¼1

n2

xi−x

 �2

:

And, Fn2 xð Þ ¼ F=n2, where F represents cumulative frequency, and n2 represents
sample size. When D >D(n2, α) (α is significance level, here α = 0.05), reject H0.
Otherwise, accept H0.

SPSS is used to test correlation coefficient’s distribution. The results of K-S test are listed in
Table 5.

From Table 5, the maximum value of progressive significant is 0.9645 and the minimum
value is 0.6251. Each value of progressive significant is greater than 0.05. Moreover, the mean
value and standard deviation are close to zero. The results indicate that the correlation
coefficients of the encrypted image obey normal distribution.

In addition, we randomly select two adjacent pixel vectors in the original image and the
encrypted image. And the distribution of these pixel values is shown in Figs. 17 and 18.

Before encryption, the distribution of two adjacent pixel vectors is close to a
straight line. However, the distribution is not regular after encryption. Therefore, it
is difficult for the attacker to analyze the distribution law of the image under such an
irregular distribution.
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Fig. 20 Simulation of NPCR and UACI with different p

Table 6 Values of NPCR and UACI with different p

p 1 2 3 4 5 6 7 8 9 10
NPCR(%) 99.4202 99.6002 99.6063 99.6063 99.6078 99.6017 99.6674 99.5941 99.5911 99.6033
UACI(%) 25.6828 31.6668 32.0038 32.8772 32.2740 32.7265 32.6198 32.7495 32.6196 32.6173

p 11 12 13 14 15 16 17 18 19 20
NPCR(%) 99.6475 99.6124 99.6368 99.6216 99.5911 99.6216 99.6246 99.5987 99.3790 99.3805
UACI(%) 32.6496 32.7576 32.6500 32.5905 32.7043 32.5732 32.5856 32.5895 26.0909 25.6699
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6.2 Resistance statistical analysis

We have done statistical analysis for the proposed algorithm in section 5. The results show that
the histogram of encrypted image is uniform distribution. That is to say, the frequency of each
pixel value is very close after encryption. The result is quite different from the distribution of
the original image. It makes the attacker cannot obtain the statistical law of the encrypted
image, which is a precondition for breaking the code. Moreover, Correlation coefficient
analysis demonstrates that all correlation coefficients of different encrypted images are close
to zero in section 6.1. It makes the attacker cannot predict the original image by analyzing the
statistical characteristics of the encrypted image. So, the proposed algorithm can resist
statistical attack.

6.3 Key sensitivity

A good encryption algorithm should be very sensitive to the key. A slight variation of the key
should result in totally different image in the reconstructing process. Figure 19a–e show some
decrypted images with the correct key. Figure 19f–j show some decrypted images with
different keys which have a slightly change.

In this algorithm, all the original images can be recovered when using of the correct keys
((Fig. 19a–e). However, when the parameter or the initial value of Logistic map is changed
slightly, it can’t obtain the original image (Fig. 19f–g). If parameter p is changed to 9 from 10,
it can’t obtain the original image (Fig. 19h), and if parameter b is changed to 2.3450001 from
2.345, it can’t obtain the original image yet (Fig. 19i). If all keys are changed slightly, the
original image is more difficult to obtain (Fig. 19j). Moreover, each histogram of decrypted
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Fig. 21 Simulation of NPCR with different b and p
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Fig. 22 Simulation of UACI with different b and p
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image obeys uniform distribution when used wrong key. So, the proposed algorithm is
sensitive to the key.

6.4 NPCR and UACI

NPCR is the comparison of relational positions between original and encrypted images in
order to ensure that the pixels of every level matrix can be altered. UACI is, on the other hand,
the percentage of the average level matrix change between the relational positions of two
images [9]. The following equations define NPCR and UACI:

NPCR ¼ ∑M−1
i¼0 ∑

N−1
j¼0D i; jð Þ

M � N
�100 % ;

UACI ¼ 1

M � N
∑M−1

i¼0 ∑
N−1
j¼0

A i; jð Þ−ACS



i; j

���� ���
255

� 100%;

and

D i; jð Þ ¼
0; A i; jð Þ ¼ ACS i; jð Þ

1; A i; jð Þ≠ACS i; jð Þ

8<
:

;

;

where A is the original image ofM ×N dimension, and Acs is the encrypted image.M and N are
width and height of the image. Taking the gray image as an example, we discuss the influence
of the parameter p on the NPCR and UACI. Figure 20 shows that the values of NPCR and
UACI are different for different parameter p. It has a fixed trend when p→∞. That is to say,
NPCR and UACI are invariable for some p. A few precise values of NPCR and UACI are listed
in Table 6.

From Table 6, there exists large difference when p ≥ 19, which is caused by the calculation
accuracy. Moreover, experiments show that each pixel value of encrypted image is equal after
p = 24, which also consists of 8-bit integer and 16-bit decimal numbers. In this time, Eq. (10)
will fail. That is, the proposed algorithm only contains scrambling process without replace-
ment. Thus, the value of NPCR is 99.3790% which stay away from the ideal value. The same
reason is for UACI. In addition, the values of NPCR and UACI are unsatisfactory when p = 1.
Moreover, it is found that they are still close to the ideal values when p isn’t an integer by

Table 7 Values of NPCR and UACI for different images

Image(s) Lena(gray) Lena(color) Filtration Vegetables Elephant

NPCR (%) 99.6033 99.6139 99.6089 99.6122 99.6040
UACI (%) 32.6173 32.6602 33.2957 34.1178 33.6992

Table 8 Entropy values of different encrypted images

Image(s) Lena(gray) Lena(color) Filtration Vegetables Elephant

Entropy 7.8571 7.8679 7.8568 7.9130 7.9583
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experiments, such as p = 9.5812. At this time, the information of the encrypted image is
completely different from that of the other p. So, we should choose p ∈ (2, 18) to achieve the
best encryption effect in our computer. If our algorithm can be combined with cloud comput-
ing, the scope of p will dramatically increase.

We also discuss the influence of adjustment coefficient b on NPCR and UACI for different
p. Values of NPCR and UACI are shown in Figs. 21 and 22.

When p = 10, the average value of NPCR and UACI is 99.6145% and 32.5906%, respec-
tively. They have litter change for different b. We can get the same conclusion by simulation
experiments when p ∈ (2, 18) and b ∈ R∗. When p ≥ 19, the average value of NPCR and UACI
remains unchanged with different b. But, the difference between them and the ideal value
becomes lager duo to the role of the parameter p. Therefore, the values of NPCR andUACI are
not affected by the adjustment coefficient b. Other values of NPCR and UACI are listed in
Table 7 for different images whenp = 10 , b = 2.345.

According to the principle of cryptography, a good encryption algorithm should be fully
sensitive to the clear text. This sensitivity is stronger; the ability to resist differential attack will
be stronger. The sensitivity of the encryption algorithm to the clear text can be characterized by
the number of pixels change rate (NPCR) [4]. That is to say, NPCR is an important measure
index of resisting differential attack. From Table 7, the values of NPCR are very close to the
ideal value 99.6094% when p = 10 and b = 2.345. The results show that the information of
original images has a good spread to encryption image and the proposed algorithm can resist
differential attack.

6.5 Information entropy

The information entropy of image actually measures the distribution of gray value in the
image. Greater information entropy represents higher uniformity of the images. Generally, an

destroyed encryption image decryption image destroyed encryption image decryption image destroyed encryption image decryption image

destroyed encryption image decryption image

destroyed encryption image decryption image

(a) Lena(gray)      (f) Lena(gray)     (b) Lena(color)      (g) Lena(color)      (c) Filtration        (h) Filtration 

(d) Vegetables (i) Vegetables (e) Elephant         (j) Elephant 

Fig. 23 Algorithm intensity test for different images

Table 9 Comparison results of correlation coefficient for gray image (Lena)

Methods Ours Huang’s [8] Lin’s [13] Ye’s [27] Zhang’s [30] Zahra’s [17]

Horizontal 0.0014 −0.0974 0.0242 0.0770 0.0012 −0.0018
Vertical 0.0078 −0.0707 0.0194 −0.0724 0.0156 0.0345
Diagonal 0.0066 0.0484 0.0343 −0.0615 0.1326 0.0202
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ideal value of information entropy is approaching to 8 for an image after encryption. The closer
the entropy of an encryption algorithm is to 8 the less predictable, and this scheme is more
secure. It is defined as follows [29]:

H mð Þ ¼ ∑
2n−1

i¼1
p mið Þlog2 1

p mið Þ
� �

;

where mi is i-th gray value of the image, p(mi) represents the probability of occurrence of
mi.The information entropy of different encrypted images are calculated and the results are
listed in Table 8. It shows that the entropy value of the encrypted image is close to the ideal
value, especially for color images.

6.6 Key space

In our algorithm, the parameter value of the Logistic map a = 3.8355 is used as secret key. So,
we need 32 bits to store this value (single float number in MATLAB). Another 32 bits is
needed for storing initial value 0.58. Finally, adjustment parameter b = 2.345 and amplification
parameter p ∈ (2, 18) are also used as secret key. We need 64 bits to store them according to the
analysis of parameter b and p in subsection 6.4. Therefore, the total number of bits used to
store all the key values is 128. Thus, the cryptosystem has at least 2128 different combinations
and this large key space is enough to resist brute force attack.
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Fig. 25 Comparison of computational complexity for different algorithms
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Fig. 24 Testing of key sensitivity for other algorithms

Multimed Tools Appl (2018) 77:8911–8938 8933



6.7 Algorithm intensity analysis

A malicious attacker may destroy the encrypted image, and the legitimate receiver can decrypt
the image successfully. Destroyed encryption images are shown in Fig. 23a–e, and the
corresponding decrypted images are shown in Fig. 23f–j.

Figure 23 demonstrates that, even if an encrypted image is destroyed by an attacker, the
legitimate receiver can decrypt the image successfully, only noise exists. Hence, the encryption
algorithm can resist illegal tampering.

6.8 Comparison with some existing encryption algorithms

6.8.1 Comparison of correlation coefficient

In order to reflect the advantages of the proposed algorithm in terms of security, comparison of
the correlation coefficient between original image and encrypted image is preformed in Table 9.
Better results are achieved than most of the schemes mentioned in this paper, such as multi-
chaotic system based schemes [8], bit level permutation based schemes [13], chaotic system
based schemes [27], DNA computing based schemes [30], and secure image encryption based
schemes [17].

From Table 9, the average value of correlation coefficient of the proposed algorithm is
0.0053, which is smaller than Huang’s, Lin’s, Ye’s, Zhang’s and Zahra’s. This means that, the
attacker will be more difficult to discover the distribution law of the encrypted image when
compared with the above algorithms, and the proposed algorithm has better effect in resistance
statistical attack.

6.8.2 Comparison of key sensitivity

Since the key sensitivity is an important index of the security, we also compare it with the same
algorithm without the projective transformation in reference [16], which used Henon map to
encrypt image. Our results are shown in Fig. 19. Their results are shown in Fig. 24.

From Fig. 24, we can’t get the original image when parameter u = 1.77(the correct
parameter u = 1.76 in [16]). However, we can obtain main information of the original image
when the value of u is changed very small, such as u = 1.7601(Fig. 24c, f, h, j, l). It means that
the main information has been leaked when differences reach 10−4 between the correct and the
wrong key. There is no doubt that the security of algorithm is not guaranteed to resist brute
force attack. But, the attacker could not obtain any information about the original image when
differences reach 10−15 in our algorithm. The results show that the proposed algorithm has a
higher security.

6.8.3 Comparison of computational complexity

Apart from the security consideration, some other issues on an image encryption scheme are
also important, including the computational complexity which is composed of time complexity
and space complexity, particularly for real-time Internet applications. The computational
complexity of the proposed encryption algorithm depends on data generating operation,
projective transform operation, image scrambling operation, and pixel replacement operation.
The complexity of the first two steps for an image is O(n), and the latter two steps is O(n2). So
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the total computational complexity is O(n2). Specifically, the execution time of the
above five images is faster than some well-known encryption algorithms [1, 11] in the
same MATLAB R2013a platform. The results of execution time for different algo-
rithms are shown in Fig. 25a. In addition, the occupied space is also being compared,
and the results are shown in Fig. 25b.

Figure 25a shows that Te of the proposed algorithm are faster than some other algorithms,
such as AES and DES. From Fig. 25b, when the size of color image is 256 × 256, the occupied
space of all algorithms is very close to 18.5642 MB. Moreover, the advantage of the proposed
algorithm is further strengthened with the increase of the image size. Generally, the occupied
space of our algorithm is lower than other algorithms when the size of the image is more
than750 × 750.

In order to compare the running speed of the algorithms, we let Spe = Spa/Te. Where Spe
represents the running speed, Spa represents the occupied space. Thus, the running speed of the
proposed algorithm is faster than other algorithms (Fig. 25c). Concretely, the average running
speed of the proposed algorithm is 44.0836 MB/s, and it is much higher than 14.4591 MB/s
which is the maximum of the AES and DES algorithm. Therefore, our algorithm is more
suitable for image encryption.

7 Conclusions

In this paper, we have proposed a secure and effective encryption algorithm for images based
on Logistic map and the DMC. One of the most benefits of the proposed algorithm is that we
increase the diffusivity by using of projective transformation. It makes our algorithm has many
good performances, which can resist statistical attack, brute force attack and differential attack.

In the future, we will continue to discuss the following problems.

(1) Research the relationship between Henon map and dynatomic modular curve.
(2) Applying our scheme to the video encryption algorithm, and evaluating its performance.
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