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Abstract This paper presents a comparison framework for algorithms that can diminish the
effects of illumination in images. Its main objective is to reveal the positive and negative
characteristics of such algorithms, allowing researchers to select the most appropriate one
for their target application. The proposed framework utilizes artificial illumination degra-
dations on real images, which are then processed by the tested algorithms. The results are
evaluated by an ensemble of performance metrics, highlighting the various characteristics
of the algorithms across a range of different image attributes. The proposed framework rep-
resents a useful tool for the selection of illumination compensation algorithms due to a) its
quantitative nature, b) its multifaceted analysis and c) its easy reproducibility. The validity
of the proposed framework is tested by applying it to the enhancement results of four illumi-
nation compensation algorithms, which are used as preprocessing in two classic computer
vision applications. The improvements brought about by the algorithms are in accordance
with the predictions of the proposed framework.
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1 Introduction

Illumination is among the most important factors affecting the performance of the majority
of computer vision and image processing algorithms. Non-diffusive or directional illumina-
tion may shade or highlight scene objects, resulting in High Dynamic Range (HDR) imaging
conditions, which affect negatively the quality of captured images. Under such conditions,
the dynamic range of the scene exceeds the dynamic range of the camera and, as a result,
no particular exposure can sufficiently capture the radiances of the scene. Longer exposure
times will effectively capture details in the shadows, but will lead to overexposure of the
brighter image regions. On the other hand, short exposure times will adequately capture
the bright image regions, but will result in underexposed shadowed image regions. Both
underexposed and overexposed regions pose a significant challenge to computer vision algo-
rithms, since any image characteristic, such as edges, colors or local features, become a lot
harder to detect. This is clearly evident in Fig. 1a, which depicts two different exposures
of an artificial HDR scene, along with their detected Canny edges. The correct extraction
of edges, in both the left and the right part of the scene, becomes impossible for any of the
exposures.

To overcome the above illumination problems, four different approaches are available.
The straight-forward approach is to use HDR capturing equipment, instead of common, Low
Dynamic Range (LDR), cameras. In such cases, the camera sensor has adequate dynamic
range to capture the radiance of the scene, providing additional visual details in shadowed
and very bright image regions. The cost, however, of HDR capturing and display equipment
is still prohibiting, as compared to LDR systems. A second approach to tackle this problem
is to combine multiple images of the same scene, captured by an LDR camera, using dif-
ferent exposures [1]. Specialized algorithms are designed to combine the sequence of LDR
images into one HDR image containing the radiance of the scene [3, 11]. This technique,
however, requires complicated image registration approaches to overcome the ghosting arti-
facts of moving objects. The simplest approach to the problem, both in terms of cost and
computational needs, is the use of controlled illumination. Many computer vision systems
are designed to perform in environments with diffusive illumination, in order to minimize
HDR imagining conditions. However, this approach can be employed mainly in indoor envi-
ronments, where the illumination can be controlled. Besides, imaging systems that have
to operate outdoors will, inevitably, come across under/overexposed regions, diminishing
the quality of the captured images. If HDR equipment is not employed in a vision system
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Fig. 1 a Effects of uneven illumination on the extraction of Canny edges (bottom row). b Improvements
introduced by various illumination compensation algorithms
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operating outdoors, the only method left to deal with the problem of non-uniform illumina-
tion, is the use of a preprocessing illumination compensation technique, which can minimize
the effects of shadows or bright regions on the captured images.

Several algorithms used for illumination compensation have been presented in the lit-
erature, coming from many different research fields. Many of them utilize properties of
the Human Visual System (HVS) and attempt to compute the appearance of the scene, as
perceived by human observers. The Retinex family of algorithms [4, 10, 16–18, 25, 26,
38, 46] represents a significant part in this category, along with other HVS-inspired ones,
such as ACE [42], RACE [39] and Vonikakis et al. [49]. Although the primary objective
of the aforementioned algorithms is to compute the appearance of the scene, their illu-
mination compensation characteristics have established them as a preprocessing step in
many other classical imaging applications, such as image retrieval [7], stereo [54], general
image enhancement [40], shadow removal [9], real-time video enhancement [15, 43] and
the correspondence problem [53].

Many existing image enhancement algorithms exhibit illumination compensation char-
acteristics, but have no relevant connection with the HVS. Some algorithms in this category
include the Fused Logarithmic Transform (FLOG) [27], the Schlick algorithm [44], wavelet-
based algorithms [6], image enhancement in the DCT domain [22], histogram-based
transformations [19, 24, 57], illumination invariant color spaces [8], genetic algorithms
[41] and, intrinsic images [32, 45]. Furthermore, apart from static images, illumination
compensation techniques have also been applied in video sequences [12, 23, 29, 30].

All the aforementioned methods have different characteristics or even objectives.
However, they can all diminish the effects of uneven illumination, by enhancing the under-
exposed and, some of them, the overexposed image regions. This makes them ideal for
general image enhancement and preprocessing for computer vision applications. Figure 1b
depicts the enhancement results of various illumination compensation algorithms, applied
to the Short Exposure image of Fig. 1a, along with their extracted Canny edges. All the
enhancement results exhibit superior edge information, as compared to the extracted edges
of the original Short Exposure image. The diversity of illumination compensation algo-
rithms, along with their potential to improve imaging applications, give rise to a significant
problem; how to chose the most appropriate one for a particular imaging or computer vision
application.

The comparison methods, which have been used so far for the evaluation of illumination
compensation algorithms, can be grouped into four major categories: visual evaluation, psy-
chophysical experiments, image quality metrics (IQM) and improvement of specific vision
tasks. Visual evaluation represents the simplest of all these forms of comparison, since the
original and the enhanced images are placed side by side and the human observer evaluates
the quality of the results. This approach is, by its nature, subjective and difficult to draw
accurate conclusions about the individual characteristics of the algorithms. Psychophysi-
cal experiments are studies in which human observers are asked to quantitatively evaluate
specific characteristics of the enhanced images, such as contrast, brightness, naturalness,
colorfulness etc., or to rank the results of a number of enhancement algorithms [5, 21,
28, 56]. Unlike the visual evaluation, this approach delivers quantitative results, based on
the evaluation statistics of many observers, although it still remains subjective to a certain
degree. This is so because the evaluation results are not immune to factors such as the edu-
cational background, the age or the gender of the observers. Furthermore, this comparison
technique is very hard to reproduce, since it requires the coordination of many observers,
calibration of viewing conditions and statistical analysis of the results. IQM are measures
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used for the evaluation of perceived characteristics of imaging systems or of image pro-
cessing techniques [2]. Several IQM have been introduced in recent years for various image
characteristics, such as contrast [48], colorfulness [14], naturalness [55] etc. Many of them
are based on psychophysical studies [14, 48, 55], while others on purely mathematical
analysis [2] and natural image statistics [36]. Generally, IQMs either calculate particular
image characteristics or predict the distortion introduced into the image by processing algo-
rithms. This, however, is not adequate for evaluating illumination compensation algorithms,
with the specific purpose of preprocessing in computer vision applications. On the other
hand, this is the objective of the fourth category of evaluation, which attempts to assess the
improvements that the algorithms bring about to specific vision tasks, such as face recogni-
tion [47] or stereo matching [37]. This approach usually relies on benchmark datasets and
performance metrics, and thus, quantitatively estimates how much the preprocessing algo-
rithms improve the task been solved. Undoubtedly, this approach delivers by far the most
objective results among all the existing comparison approaches. However, it also exhibits
some limitations. First, the fact that the tested algorithms are used in very specific high-level
computer vision tasks makes it difficult to draw general conclusions regarding their prepro-
cessing performance to other high-level tasks. For example, an illumination compensation
algorithm, exhibiting good results for face recognition, does not necessarily mean that it
will exhibit equally good results for stereo matching, simply because the two tasks may rely
on different low level attributes. Second, this approach essentially ranks the illumination
compensation algorithms according to a single characteristic (i.e. the improvements brought
about to the specific computer vision task), without actually providing detailed information
regarding their behavior. More specifically, no information is provided as to how an algo-
rithm’s performance changes with different degrees of shadows or highlights, or to what
extend an algorithm affects the correctly exposed image regions, in the attempt to ren-
der the under/overexposed ones. This kind of information may provide important clues to
researchers who want to choose an illumination compensation algorithm. According to the
authors’ knowledge, no existing evaluation scheme has been designed in order to highlight
the overall behavior of such algorithms.

This paper attempts to resolve this issue. It introduces a new comparison framework for
illumination compensation algorithms. The proposed approach is an extension of the work
presented in [51]. It utilizes similar artificial illumination degradations, and extends their
quantitative interpretation by introducing an additional step of statistical meta-analysis. This
meta-analysis includes an ensemble of evaluation statistics, quantifying important charac-
teristics of illumination compensation algorithms, such as enhancement of various degrees
of under/overexposure, preservation of correctly-exposed regions and consistency of per-
formance. In order to test the validity of the estimations of the proposed framework, four
illumination compensation algorithms are used as preprocessing in two classic computer
vision tasks. The improvements that the illumination compensation algorithms introduce to
the final results of these computer vision methods are found to be in agreement with the con-
clusions derived by the proposed framework. Consequently, the proposed framework can
be used as a tool, assisting researchers on the selection the most appropriate illumination
compensation algorithm for their task.

The paper is organized as follows: Section 2 presents a detailed description of the pro-
posed comparison framework. Section 3 gives an extensive example for the evaluation of
four illumination compensation algorithms, using the proposed framework. Section 4 pro-
vides the necessary tests, for evaluating the validity of the proposed framework, using
real scenes under uniform and non-uniform illumination. Finally, concluding remarks and
discussion are presented in Section 5.
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2 Comparison framework

The objectives of the proposed framework are summarized as follows:

1. To provide quantitative measures for the evaluation of illumination compensation
algorithms, without the need of human observers.

2. To be easily reproducible.
3. To include the most important types of illumination degradations.
4. To highlight the positive and negative characteristics of the algorithms, which provide

strong indications about its preprocessing potential for computer vision applications.

In order to satisfy the first objective, the framework excludes psychophysics from the
evaluation of the enhanced images. The second objective is satisfied by using computer
generated test images, which can be easily used as benchmarks by other researchers.
The framework is intended to be used for algorithms, which compensate for illumina-
tion degradations. In order to meet the third objective, a set of computer-generated test
images is compiled, comprising the most common illumination degradations that can be
encountered in non-controlled environments, i.e. uniform/non-uniform illumination and
under/overexposure. Finally, a statistical analysis for 7 algorithm characteristics is per-
formed, concerning their enhancement performance on the set of test images, in order to
satisfy the fourth objective.

2.1 Constructing the test images

All the comparison tests, performed by the framework, are carried out using a set of test
images, generated by applying artificial degradations on well-exposed real images. The
real images, which are also used as Ground Truth (GT), can depict any type of scene, as
long as the illumination is uniform and the image is correctly-exposed. For demonstration
purposes, we use the Lena image as GT, as it features an overall good exposure without
any under/overexposed regions. In practice, however, for a thorough comparison between
illumination compensation algorithms, more than one GT image should be used. Figure 2
depicts the flow chart of the proposed comparison framework.

The artificial degradations applied to the GT image, are generated by approximating
two kinds of illumination (uniform and non-uniform), along with two kinds of degradations
(underexposed and overexposed regions). In the case of uniform illumination, the degra-
dations are applied to the whole GT image, whereas, for non-uniform illumination, the
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Fig. 2 Flowchart of the proposed comparison framework
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degradations are applied only to a specific part of it, leaving the other part intact. Under-
exposure degradations are simulated using the following equation, which is based on the
multiplicative relation between reflectance and illumination.

UEij = (1 − ILij ) × GTij (1)

where UE is the underexposed-degraded test image, IL is a function that determines the
type of illumination at each spatial position, and (i, j) are the pixel coordinates.

Similarly to the underexposed regions, overexposure degradations are simulated using
the following equation.

OEij = B − [(1 − ILij ) × (B − GTij )] (2)

where OE is the overexposed-degraded test image, B is the maximum possible value of the
GT image (usually 255), IL is a function that determines the type of illumination and (i, j)

are the pixel coordinates.
For both underexposed and overexposed-degraded test images, we have identified three

types of illumination, as indicated by the following equations.

ILconst
ij = ILmax (3)

IL
step
ij = u

(
j − imx

2

)
· ILmax (4)

IL
grad
ij = j

imx
· ILmax (5)

where ILconst corresponds to a uniform (constant) illumination, ILstep corresponds to a
sharp illumination transition (step) and ILgrad is an illumination gradient. ILmax is the
strength of illumination, with ILmax ∈ [0, 1], u(·) the unitary step function and imx the
width of the GT image. When ILmax = 0, underexposed or overexposed image regions
disappear and the degraded test image is equal to the GT image. When ILmax = 1, the
degradation strength is maximum, resulting to the complete loss of any visual information.
For all the intermediate values of ILmax , the strength of the degradation varies linearly
between these two extremes.

In our implementation we focused on the uniform illumination of (3) and the non-
uniform (step) illumination of (3). We preferred the step illumination to the gradient of
(4) since the former poses a grater challenge for illumination compensation algorithms, by
triggering the appearance of possible halo artifacts or gradient reversals in the region of
the sharp illumination transition. Consequently, the use of (3) may expose important lim-
itations in the performance of illumination compensation algorithms. In order to analyze
various degrees of illumination, test images with 10 different under/overexposure strengths
are generated, for both uniform and non-uniform illumination. This essentially means that
ILmax ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. Consequently, 40 different test
images (T1−T40) are generated from each GT image, a subset of which is depicted in Fig. 3.

• T1 − T10: Uniform underexposure (ILconst ).
• T11 − T20: Uniform overexposure (ILconst ).
• T21 − T30: Non-uniform underexposure (ILstep).
• T31 − T40: Non-uniform overexposure (ILstep).
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Fig. 3 Selected examples from the 40 test images, generated from the Lena image

2.2 Performance metric

The enhanced 40 test images are tested one by one against their corresponding GT image, in
the way the flow chart of Fig. 2 depicts. A ‘theoretically perfect’ illumination compensation
algorithm, would output an image identical to the GT image. The departure of the algorithm
output from the GT image is measured using normalized Root Mean Square Error, which
is the performance metric upon which, all the evaluations of the proposed framework are
based. The formula of this metric is given in the following equation:

ms
k = 1 − 1

B

√√√√√
∑
i∈S

∑
j∈S

(
GTij − E (Tk)ij

)2

NS

(6)

∀(i, j) ∈ S = {SD, SND, SW }. mS
k is the performance metric applied to the S region of test

image Tk , taking values in the interval [0, 1]. NS is the number of pixels belonging to region
S, B is the maximum possible value of the GT image (usually 255), E(Tk) is the test image
Tk , enhanced by the evaluated algorithm and (i, j) the pixel coordinates. Set S comprises
three different image regions, on which the performance metric can be applied: SD , which
is the degraded region of the image, SND , which is the non-degraded region of the image
and SW , which is the whole size of the image. According to (6), the ‘theoretically perfect’
enhancement algorithm would exhibit a value of mS

k = 1. Any departure from this, will lead
to a lower value.

Depending on the image region on which the performance metric is applied, different
insights can eventually be drawn about the characteristics of an illumination compensation
algorithm. These insights can be summarized in the following 6 points:

• Improvement of uniformly underexposed regions (T1-T10, SW ).
• Improvement of uniformly overexposed regions (T11-T20, SW ).
• Improvement of non-uniformly underexposed regions (T21-T30, SD).
• Improvement of non-uniformly overexposed regions (T31-T40, SD).
• Preservation of intact regions for underexposure (T21-T30, SND).
• Preservation of intact regions for overexposure (T31-T40, SND).

The last two cases are very important since a particular algorithm may perform very well
in enhancing, for example, the underexposed regions of an image, yet, it may also affect



9218 Multimed Tools Appl (2018) 77:9211–9231

negatively the correctly exposed ones. The latter is an unwanted side-effect, as it lowers
the quality of output images and passes undetected when the metric is applied globally, to
the whole image size (SW ). Algorithms which can enhance under/overexposed areas, with-
out affecting the correctly exposed ones, will exhibit better performance as preprocessing
for other applications. To our knowledge, no other comparison approach has taken into
consideration this attribute.

2.3 Meta-analysis

A statistical meta-analysis is applied on the performance results of the previous section. The
main objective of this analysis is to bring out the positive and negative characteristics of the
evaluated algorithms. Seven different algorithm characteristics are analyzed at this stage.
These algorithm characteristics are presented in Table 1, along with their abbreviations and
their mathematical formulae.

“Improvement of Uniform Underexposure” (IUU) conveys the capacity of an algorithm
to enhance various degrees of globally underexposed images. It is essentially the average of
an algorithm’s performance in all the test images with different degrees of uniform under-
exposure (T1-T10). IUU assumes values in the interval [0, 1], with the ‘theoretically perfect’
algorithm having a value of 1.

“Improvement of Uniform Overexposure” (IUO) conveys the capacity of an algorithm
to enhance various degrees of globally overexposed images. It is essentially the average
performance of an algorithm across all test images with uniform overexposure (T11-T20).
IUO assumes values in the interval [0, 1], with the ‘theoretically perfect’ algorithm having
a value of 1.

“Constancy of performance in Uniform Illumination” (CUI) conveys how consistent
the performance of an algorithm is, when enhancing various degrees of uniform illumi-
nation degradations. It is based on the standard deviations of the mS

k metrics for test
images T1-T20, with a range of possible values in the interval [0, 1]. An algorithm that
exhibits exactly the same enhancement performance for all the degradation levels of uni-
form under/overexposure, will have a CUI of 1. High CUI values indicate that an algorithm
gives very predictable results under different degrees of uniform illumination, exhibiting
an enhancement performance very close to the values of IUU and IUO. On the other hand,

Table 1 Metrics employed by the proposed comparison framework

Algorithm characteristic Abbreviation & formula

1 Improvement of uniform underexposure IUU = mean[mSW

k ]10
k=1

2 Improvement of uniform overexposure IUO = mean[mSW

k ]20
k=11

3 Constancy of performance in
uniform illumination

CUI = 1 − std[mSW

k ]10
k=1 − std[mSW

k ]20
k=11

4 Improvement of non-uniform
underexposure

INUU = mean[mSD

k ]30
k=21

5 Improvement of non-uniform
overexposure

INUO = mean[mSD

k ]40
k=31

6 Preservation of well-exposedness
in non-uniform illumination

PNU = mean[mSND

k ]40
k=21

7 Constancy of performance in
non-uniform illumination

CNUI = 1 − std[mSD

k ]30
k=21 − std[mSD

k ]40
k=31
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low CUI values indicate large variability on the enhancement results of an algorithm, under
different degrees of uniform illumination.

“Improvement of Non-Uniform Underexposure” (INUU) conveys the capacity of an
algorithm to enhance various degrees of underexposed regions. It is essentially the aver-
age of the algorithm performance, when considering the enhancement on the degraded
region (SD) of test images T21-T30. INUU also assumes values in the interval [0, 1], with 1
indicating the ‘theoretically perfect’ algorithm performance.

“Improvement only of Non-Uniform Overexposure” (INUO) conveys the capacity of an
algorithm to enhance various degrees of overexposed regions. It is essentially the average of
the algorithm performance when considering the enhancement on the degraded region (SD)
of test images T31-T40. The INUO acquires values in the interval [0, 1], with 1 indicating
the ‘theoretically perfect’ algorithm performance.

“Preservation of well-exposedness, in Non-Uniform illumination” (PNU) conveys the
capacity of an algorithm to leave intact the well-exposed image regions, while enhancing
various degradations in non-uniform illumination. It is essentially the average of the algo-
rithm performance when applied to the non-degraded region (SND) of test images T21-T40.
PNU takes values in the interval [0, 1]. An algorithm that has no effect on the well-exposed
image regions, will exhibit a PNU value of 1.

“Constancy of performance in Non-Uniform Illumination” (CNUI) conveys how consis-
tent the performance of an algorithm is, under various degrees of non-uniform illumination
degradations. Similarly to CUI, it is based on the standard deviations of the mS

k metrics, for
test images T21-T40. It also assumes values in the interval [0, 1]. An algorithm that exhibits
exactly the same performance in all non-uniform degradations, will have a CNUI value of
1. High CNUI values indicate an algorithm with very predictable results, very close to the
values of INUU and INUO. On the other hand, low CNUI values indicate large performance
variability, under non-uniform illumination.

All the above parameters can provide useful insights about the overall behavior of an
illumination compensation algorithm. For example, if an algorithm exhibits low constancy
measures (CUI, CNUI), there is strong indication that any improvements introduced will
span a great range and will be rather unpredictable. Similarly, if an algorithm exhibits a
low preservation characteristic (PNU), there is a strong indication that it will negatively
affect the correctly-exposed image regions. This in effect could negate any improvement
introduced by the illumination compensation algorithm.

3 Applying the framework

In order to demonstrate the proposed comparison framework, four different illumination
compensation algorithms are evaluated. The algorithms used in this comparative study,
along with other characteristics, are depicted in Table 2. Vassilios Vonikakis’ (VV) algo-
rithm [49] is a center-surround image enhancement algorithm, based on the Human Visual
System. Multi-Scale Retinex with Color Restoration (MSRCR) [16] and Saponara Retinex
(SR) [43] are two different versions of the Retinex algorithm. MSRCR employs a multi-
scale approach for the calculation of the surround, while SR utilizes a diffusion-based
filter. Finally, the Fused Logarithmic Transform (FLOG) is an improvement of the classic
logarithmic mapping, employing also a multi-scale pyramid [27].

Figure 4 depicts the intermediate results of the proposed framework. The six graphs of
Fig. 4 show how the performance of algorithms vary across different degrees of degra-
dations. Although some conclusions can be drawn solely by observing these graphs, it is
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Table 2 Algorithms used in the comparison

Algorithm Ref. Implementation Parameters

1 Vonikakis et al. (VV) [49] Orasis software (ver.1.0)a Default

2 Saponara Retinex (SR) [43] Manual implementation b=4, g=0.5, a=0.97,
K=0.5, d=0.00001

3 Multi-Scale Retinex with Color
Restoration (MSRCR)

[16] PhotoFlair softwareb Default

4 Fused logarithmic transform
(FLOG)

[27] Manual implementation p=1, q=1, g1=1, g2=2.5

ahttps://sites.google.com/site/vonikakis/software-code
bhttp://www.trueview.com

difficult to extract accurate conclusions regarding the overall behavior of an algorithm. The
results of the statistical meta-analysis (Fig. 5) offer such quantitative overview.

For uniform illumination, VV is ranked first in improving uniform underexposure,
closely followed by MSRCR. These two algorithms exhibit also approximately the same
performance for improving uniform overexposure. An important feature, however, is the
fact that VV exhibits the lowest CUI measure, indicating a more fluctuating performance,
for various degrees of degradations. The remaining two algorithms perform almost identi-
cally in these categories. Regarding the constancy in performance, SR exhibits very good
predictability in its results, followed closely by FLOG.

For non-uniform illumination, the best underexposure improvement is exhibited by
FLOG, followed closely by MSRCR. Regarding the improvement of non-uniform over-
exposed regions, VV exhibits the best performance, with MSRCR following next, while
SR and FLOG exhibit the lowest performance in this category. FLOG and VV are seen to
exhibit the best constancy in performance, while the other two algorithms (SR and MSRCR)
are ranked low, exhibiting greater fluctuations for different degrees of degradations. Finally,
regarding the preservation of correctly-exposed image regions, VV outperforms by far all
the other algorithms. MSRCR and SR show a similar performance, while FLOG is the
algorithm likely to have the most detrimental effect on correctly exposed regions.
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Fig. 4 Intermediate results of the proposed framework
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Fig. 5 Final results of the proposed comparison framework for uniform and non-uniform illumination

3.1 Detailed performance insights

Using the evaluation results of Fig. 5, important conclusions can be derived about the
performance of the four algorithms.

The most prominent characteristic of VV is that it targets enhancement specifically to
the degraded image regions, affecting minimally the correctly exposed ones. This might
be important for both aesthetic reasons, as well as in many computer vision applications,
because it ensures the preservation of visual information in the non-degraded regions.
However, such a good characteristic comes at a cost; the enhancement of non-uniform
underexposed regions, compared to other algorithms, is only modest. Apart from that, VV is
good in enhancing uniformly underexposed or overexposed images with moderate degrada-
tion strength, while exhibiting fairly predictable results. As a conclusion, the VV algorithm
exhibits moderate illumination compensation characteristics, with its strongest point being
the overall appearance of the image, since it does not affect the correctly-exposed regions.
When it comes to computer vision applications, VV should be given preference only when
the strength of the illumination degradations is moderate.

MSRCR is not ranked first in any evaluation category; although, it consistently exhibits
high performance. It is generally very good in enhancing any kind of underexposure, both
uniform and non-uniform. Regarding overexposure and overall predictability of results,
MSRCR should only be given preference when the lighting conditions are uniform, since
it exhibits moderate only performance in non-uniform illumination. An important feature is
that the preservation of the correctly exposed image regions is satisfactory. As a conclusion,
MSRCR is an algorithm which can reliably be used for illumination compensation. It could
be successfully used both for aesthetic correction of images, as well as preprocessing for
other computer vision algorithms.

Similarly to MSRCR, SR is not ranked first in any evaluation category exhibiting, in
general, a rather moderate performance. In the case of uniform illumination, SR could
be a good choice of enhancement algorithm, due to the high predictability of its results.
However, when illumination is non-uniform, the consistency in its performance decreases
significantly. In such illumination conditions, it exhibits good enhancement in underexposed
regions, very low enhancement of overexposed ones, while preserving well the correctly-
exposed image regions. Similarly to MSRCR, SR exhibits a potential for both aesthetic and
preprocessing use.

FLOG is an algorithm which exhibits a superior performance in enhancing underex-
posure in non-uniform illumination conditions. However, this attribute comes at a cost
since, at the same time, it compromises the preservation of the correctly-exposed regions.
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In this sense, FLOG exhibits an opposite performance compared to VV, which preserves
almost perfectly the correctly-exposed regions, although at the expense of the underexposed
ones. Additionally, FLOG is not to be recommended for enhancing overexposure under
non-uniform illumination conditions. On the contrary, it exhibits moderate enhancement
performance for uniform illumination, with highly predictable results. For these reasons,
FLOG should be given preference mostly in preprocessing, rather than in the aesthetic
enhancement of images.

A general conclusion that can be drawn from the previous analysis is that, there is a clear
trade-off between enhancement improvements and preservation of correctly-exposed image
regions. Large enhancement improvements seems to come at the expense of deteriorating
image regions that do not require any enhancement. This, perhaps, highlights the need for
more selective enhancement algorithms which can introduce stronger enhancements only in
image regions that require it.

4 Evaluating the framework

In order to evaluate the usefulness of the proposed framework, a study is conducted utilizing
non-synthetic images, captured under real-life conditions. The objective is to use illumina-
tion compensation algorithms as preprocessing on two classic low-level computer vision
techniques. The improvements introduced by the evaluated algorithms are then compared
to the theoretical predictions of the framework, in order to test whether there is alignment
between the two.

4.1 SIFT

The first of the two selected low-level computer vision techniques is the Scale Invariant
Feature Transform (SIFT) [31]. SIFT implements a detector and a descriptor, which are
part of many existing higher-level computer vision applications. Although SIFT is scale and
rotation invariant, illumination invariance is not its strongest point, compared to other sim-
ilar methods [33–35]. In particular, under/overexposure may lower the magnitude of local
image gradient, forcing many valid scale-space extrema to reside below the global detection
threshold of the SIFT detector [50]. As a result, the number of extracted keypoints is indi-
rectly affected by illumination. For this reason, detection and matching of SIFT keypoints
is a reasonable application for testing the ability of illumination compensation algorithms
to improve illumination invariance.

Twenty scenes containing various objects with different kinds of surfaces were used in
this experiment. Two different images were captured per scene. The first image was captured
under Strong Uniform Illumination (SUI), resulting in a well-exposed image free of any
under/overexposed regions. SUI images serve as a GT, since they represent a case of almost
‘ideal’ illumination conditions. The second image of each scene was purposely captured
under non-ideal illumination conditions, suffering from various degrees of underexposure.
Two types of underexposure were used; one resulting from Low Uniform Illumination (LUI)
and one resulting from Non-Uniform (directional) Illumination (NUI). LUI images are glob-
ally underexposed, whereas NUI images have local patches of underexposed regions and
correctly-exposed ones. Figure 6 depicts two of these scenes, along with their enhanced
versions and their extracted keypoints SIFT.

The main objective was to test how the use of an illumination compensation algorithm
affects the performance of SIFT. This requires analyzing SIFT performance before the use
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Fig. 6 Two of the real scenes used in the evaluation procedure, along with their enhanced versions and the
number of detected keypoints by the SIFT detector

of the illumination compensation algorithm (baseline) and after it. Preferably, the use of
such algorithms should increase the number of correct matches between a well-exposed
image of a scene (SUI) and a version of it that is affected by illumination (LUI/NUI).

Figure 7 depicts this experimental procedure. SIFT is applied on the original image cou-
ples SUI-LUI and SUI-NUI, detecting features and counting the total number of matching
points between them. This serves as the baseline for every scene, providing an indication
about the performance of SIFT without the contribution of any illumination compensation
algorithm. Next, the evaluated algorithm is applied on the images of the scene. SIFT is
again applied to the enhanced images, in order to find the total number of matching points
between the enhanced pairs (SUI-LUI and SUI-NUI). Finally, the ratio between the total
matching points of the enhanced pairs over the total matching points of the baseline, gives
an indication about how the enhancement illumination algorithm affects the efficiency of
SIFT for the particular scene. If the use of the enhancement algorithm results in an increased
number of correct matching points, the algorithm has a positive impact. In such cases, the
comparison ratio is greater than unity. Conversely, if the enhancement algorithm results in a
lower number of correct matching points, then the comparison ratio is lower than unity and
the enhancement algorithm has a negative impact.

Figure 8a shows the average number of detected keypoints for each algorithm under
uniform illumination, both for SUI and LUI images. As expected, the number of detected
keypoints in SUI images is always higher than those in LUI images. This is due to the
inadequate exposure of LUI images. The results of Fig. 8a clearly indicate that MSRCR out-
performs all other algorithms in the number of detected keypoints in LUI images. Figure 8b
shows the average descriptor efficiency; total matching keypoints between the enhanced
SUI-LUI images, over the total matching keypoints between the original SUI-LUI images,
under uniform illumination conditions.

In order to correctly evaluate these results, it is essential to make an assessment about the
strength of the underexposure (uniform or non-uniform) that were induced by the illumina-
tion conditions. This is important, since the efficiency of every illumination compensation
algorithm changes under different illumination levels (see Fig. 4). The assessment of the
relative strength of underexposure, induced to the LUI and NUI images, is performed as
follows.

ESDj = 1 − L̄j

L̄SUI
j

(7)
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where ESDj is the Estimated Shadow Degree for scene j , L̄SUI
j is the mean luminance

value of the SUI image and L̄j is the mean luminance value of the illumination-affected
image (either LUI or NUI) for scene j . Both L̄SUI

j and L̄j are average pixel values on the
luminance channel of the image depicting scene j . Since LUI images are uniformly illumi-
nated, L̄j represents the mean luminance value of the entire image, whereas for NUI images,
it represents the mean luminance value of the underexposed regions. The range of the ESD
measure is in the interval [0, 1], with values near 1 indicating very strong underexposure
(either global or local).

The average ESD value of the LUI images is found to be 0.87. This means that
the expected behavior of the enhancement algorithms, for this particular underexposure
strength, should be predicted by the proposed framework in Fig. 4a, for an underexpo-
sure strength of 0.9. In this case, the ranking predicted by the proposed framework is:
MSRCR>SR>FLOG>VV. Figure 8b indicates that the improvement introduced by the
algorithms on SIFT, is similar to the ranking predicted by the framework. MSRCR exhibits
the best ratio among the four algorithms (≈3.25). SR exhibits the second best improvement
ratio, at approximately 3. Finally, FLOG and VV follow, with the latter exhibiting the lowest
ratio of all, improving only by a factor of 2 the number of matching keypoints.

Similarly, Fig. 8c and d demonstrate the results of the experiment for non-uniform (direc-
tional) illumination conditions. Figure 8c shows the average number of detected keypoints
for every algorithm. According to these results, the number of detected keypoints in SUI
images is always lower than the respective one in NUI images. This seams counter-intuitive,
since the SIFT detector usually extracts fewer keypoints in dark regions. However, the
increased number of keypoints in these cases is a result of the additional edges that the local
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Fig. 8 a Average number of extracted keypoints in uniform illumination (LUI images). b Average descriptor
efficiency in uniform illumination (LUI images). c Average number of extracted keypoints in non-uniform
illumination (NUI images). d Average descriptor efficiency in non-uniform illumination (NUI images)

shadows introduce to the NUI images. This is clearly shown also in Fig. 6a, in which, the
detected keypoints (marked by red) are concentrated around shadow edges.

As before, it is important to make an assessment for the underexposure degree of the
NUI images. The average ESD value was found to be 0.92. Consequently, the predictions
of the framework for an underexposure degree of 0.9 are used (Fig. 4a). The predicted
ranking of the framework is: FLOG>MSRCR>VV>SR. Figure 8d indicates a similar,
but not identical, ranking. That is due to a discrepancy regarding the prediction of FLOG
algorithm. More specifically, the results of the real-scene experiment indicate a ranking of
MSRCR>FLOG>VV>SR. Nevertheless, it is clear that the difference in the efficiencies
of FLOG and MSRCR is rather small, not constituting a significant deviation from the pre-
dictions of the framework. Furthermore, the ranking of the other two algorithms (VV and
SR), is in accordance with the pattern predicted by the proposed framework.

4.2 Real images and Harris’ corner detector

To further evaluate the proposed framework, a similar experiment is performed using the
Harris corner detector [13]. The images used in this test are the ones depicted in Fig. 9a,
featuring two identical ColorCheckers on two very differently illuminated image regions.
These images are part of an HDR workshop presented during the last CREATE (Colour
Research for European Advanced Technology Employment) meeting.1 This particular scene

1http://www.create.uwe.ac.uk/.

http://www.create.uwe.ac.uk/
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is selected because ColorCheckers, apart from their obvious use in color measurements, can
also be used as test-targets for corner detection, comprising 96 well-defined corners (24
squares × 4 corners). The four tested algorithms are used for enhancing the six exposure
of Fig 9a. Harris corner detector is then applied on the enhanced images and the correctly
extracted corners are counted. “No Preprocessing” refers to the application of the Harris
corner detector on the six exposures without the use of an illumination compensation algo-
rithm, forming the baseline for this experiment. It should be mentioned that only the corners
within the surface of the ColorChecker are counted. Furthermore, any corners extracted
at the bottom of the ColorChecker, formed by the words: “GretagMacbeth™ColorChecker
Color Rendition Chart”, are also omitted from the counting, due to the ambiguity of their
position.

One obvious conclusion derived from Fig. 9d, is that all four illumination compensa-
tion algorithms improve the total number of correctly extracted corners in all test images.
Figure 9b depicts the number of correctly extracted corners in the bright region of the scene.
In the first exposure (ESD=0.75), the bright region is totally overexposed, resulting in a
complete loss of any visual information. Inevitably, none of the test algorithms assist in

ESD=0.75 ESD=0.85 ESD=0.92 ESD=0.97 ESD=0.98 ESD=0.99
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Fig. 9 Results of the Harris corner extraction experiment. a The 6 images used in the experiment, along with
their ESD. b Number of correctly extracted corners in the bright region of the scene. c Number of correctly
extracted corners in the dark region of the scene. d Total number of correctly extracted corners. e Average
number of correctly extracted corners in the dark region of the scene, and their standard errors
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corner extraction in this case. In the following two exposures (ESD = 0.85 and 0.92), the
bright region is still overexposed. However, there is more visual information, compared to
the first exposure. In these two cases, VV exhibits the best performance, improving the
bright region of the scene and resulting in the highest number of correctly extracted corners.
The rest of the algorithms exhibit similar or slightly better performance over the baseline.
In the other 3 exposures (ESD = 0.97, 0.98 and 0.99) all the tested algorithms have approx-
imately similar performance. These results are in agreement with the predictions of the
proposed framework (Fig. 4d), depicting the predicted performance of algorithms for over-
exposure. More specifically, for degrees 0.7–0.95, the framework indicates that the best
performance is exhibited by VV. This is exactly the case in Fig. 9b, for exposures 0.85
and 0.92, which are within the range 0.7–0.95. For an ESD of 0.95 and greater, the pro-
posed framework correctly indicates that the performance of algorithms tends to be similar,
something which is confirmed in the exposures ESD = 0.97, 0.98 and 0.99 of Fig. 9b.

Figure 9c depicts the number of correctly extracted corners in the dark region of the
scene. According to this graph, MSRCR and SR exhibit initially the best performance. How-
ever, their performance gradually decreases, and for high ESDs, FLOG is ranked first. VV
exhibits always the lowest performance. A similar trend is also indicated by the proposed
framework, in Fig. 4c.

Finally, Fig. 9e depicts the average number of correctly extracted corners in the dark
regions of the six exposures. Again, this graph is in agreement with the predicted INUU
measure of the framework; the highest performance is exhibited by FLOG and MSRCR,
followed by SR and last by VV. This indicates that the proposed framework can highlight the
general performance characteristics of algorithms, predicting their performance tendency
across various degrees of illumination.

5 Conclusions

A new comparison framework for the evaluation of illumination compensation algorithms
is presented in this paper. The framework attempts to highlight the positive and nega-
tive characteristics of algorithms, which would ultimately provide a yardstick, assisting
researchers on choosing the right algorithm for their application. The propose framework
does not involve human observers or any perceptual IQM; instead it utilizes computer gen-
erated synthetic images, with artificial illumination degradations of various degrees. The
improvements introduced by any algorithm are measured by a set of metrics, quantify-
ing performance for a range of characteristics. The proposed approach is used to examine
the performance of four illumination compensation algorithms, providing indications about
their positive and negative characteristics. The usefulness of the framework’s predictions
is evaluated by two experiments involving real scenes. These experiments demonstrate that
the improvements introduced by the algorithms are in accordance with the predictions of
the framework. Consequently, the proposed framework can be used as a benchmarking
tool for evaluating illumination compensation algorithms, highlighting their suitability for
preprocessing in other imaging/vision applications.

In the context of multimedia, the proposed approach can provide a valuable tool for
highlighting the best potential solutions for the improvement of image or video-based
applications. For example, it can assist with the selection of image enhancement algo-
rithms, for the aesthetic improvement of images, in multimedia systems with personal
photo-collections [52]. It can narrow down candidate illumination compensation algorithms
for improving the performance of image retrieval systems [8, 20]. Finally, it may help
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researchers with the selection of image enhancement algorithms for the improvement of the
aesthetic quality of videos [29] or increasing the robustness of video-based computer vision
tasks [23].
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