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Abstract Under the new video application scene of resource-constrained coding side such as
wireless sensor networks, compressed sensing technique provides the possibility to solve the
high-complexity problem of encoder because of its highly efficient compression encoding
performance. Distributed compressed video sensing system provides a solution to satisfy the
requirements of low encoder complexity and high coding efficiency in the new scene. This
paper proposes a new distributed compressed video sensing scheme, which effectively im-
proves the reconstruction quality of non-key frames. An auxiliary iterative termination deci-
sion algorithm is proposed to improve the performance of key frames initial reconstruction. An
adaptive weights prediction algorithm is put forward to reduce the overall complexity. Besides,
this paper proposes a position-based cross reconstruction algorithm to improve the decoded
quality of the middle non-key frames in the group of pictures. The simulation results show that
the proposed scheme effectively improves the overall performance of the distributed com-
pressed video sensing system especially for high motion sequences.

Keywords Distributed compressed video sensing . Iterative termination decision .Weights
prediction . Position-based cross reconstruction

1 Introduction

With the development of wireless sensor networks and low-power video surveillance net-
works, a new video application scene is gradually evolved. In such a scene, the encoder is
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resource-constrained due to the restricted energy, storage space and computing power. In
traditional video codec systems, the motion estimation (ME), motion compensation (MC) and
other complex calculations are carried out at encoder [10], which leads to the highly compu-
tational complexity of encoder. Therefore, the traditional video codec systems can’t give full
play to their performance in the new scene. The emergence of distributed video codec (DVC)
system successfully reduces the complexity of encoder by moving the ME and MC to the
decoder [11]. Compressed sensing (CS) technique is able to sample (or measure) signal at a
sampling rate that is much less than the Nyquist sampling rate [1, 2, 7], which greatly
simplifies the coding complexity and improves the coding efficiency.

To further reduce the computational complexity, Lu Gan proposes the block-based com-
pressed sensing (BCS) in 2007 [17], which divides the whole frame into non-overlapping
small blocks and then samples the frame block by block. BCS greatly reduces the storage
pressure and the computational complexity in encoder side. In 2009, Kang LW and Lu CS
propose the distributed compressed video sensing (DCVS) codec system [11]. The DCVS
system effectively combines the excellent properties of DVC and CS. Later, Mun S and Fowler
JE propose a BCS-based smooth projection Landweber reconstruction algorithm (BCS-SPL)
[20, 21]. And then, the BCS-SPL based on multihypothesis (MH) reconstruction technique
(MH-BCS-SPL) is proposed by Fowler JE et al. [4, 9, 25]. MH-BCS-SPL greatly improves the
reconstruction quality of decoder and is widely cited in subsequent studies. Kuo et al.
propose a key frame secondary reconstruction algorithm based on MH-BCS-SPL [12],
which obviously improves the decoded quality of key frames. In 2015, Chen J et al.
propose an Elastic net-based multihypothesis (MH) or single hypothesis (SH) prediction
scheme (MS-wEnet) [5]. MS-wEnet effectively improves the accuracy of the side infor-
mation (SI) and the reconstruction quality of decoder. On this basis, Kuo Yet al. propose a
hybrid hypothesis prediction (HHP) system based on hypothesis set optimization tech-
nique and adaptive weighted Elastic net (AWEN) technology [13], which further improves
the decoding quality. The scheme proposed in [13] is also called Up-Se-AWEN-HHP.
However, the effects of different positions in group of pictures (GOP) on the reconstruc-
tion quality are not taken into account in the above schemes. Especially for some high
motion sequences, the decoding quality of the non-key frames in the middle of GOP is
much inferior to the non-key frames in the side of GOP. Moreover, for the reconstruction
of non-key frames, the effects of different sampling rates on the MH weights calculation
have not been considered in the above systems, which leads to the sharp increase of
decoding complexity at high sampling rate in some schemes.

For the above problems, this paper proposes an improved DCVS system based on the key
frames secondary reconstruction. The innovation in this paper includes three parts: (1) an
auxiliary iterative termination decision algorithm is proposed to improve the reconstructed
performance of key frames; (2) for the MH prediction of non-key frames, an adaptive MH
weights prediction algorithm based on the number of measurements is proposed to equalize the
decoded complexity of the DCVS scheme at different sampling rates; (3) a position-based
cross reconstruction algorithm is proposed to improve the decoded quality of the non-key
frames in the middle of GOP.

The rest of this paper is organized as follows: Section 2 describes the conventional DCVS
systems based on key frames secondary reconstruction and some key techniques in DCVS.
The proposed DCVS scheme is illustrated in Section 3. In Section 4, the experiment results are
given to verify the performance of the proposed system. Finally, a conclusion for this paper is
made in Section 5.
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2 Background

2.1 The conventional DCVS systems

In this subsection, we give an overview of the conventional DCVS systems. Figure 1 shows
the typical block diagram of the conventional DCVS systems based on key frames secondary
reconstruction.

At the encoder side, the video frames are firstly divided into GOP with fixed size. Then the
video frames are divided into two different types, the first frame in each GOP is the key (K)
frames, others are the non-key (CS) frames. After that, the K frames and CS frames are
sampled by BCS at different sampling rates. The sampling process can be described by the
following Eq. (1),

y ¼ Φu ¼ Aθ ð1Þ
where u =Ψθ is the block to be sampled, Ψ is the sparse basis. y are the measurements
obtained in BCS, Φ is a measurement matrix, A denotes ΦΨ. After encoding, the measure-
ments obtained in BCS are transmitted to the decoder.

At the decoder side, the K frames are firstly decoded, in the initial reconstruction of K
frames, some fast reconstruction algorithms are applied, such as BCS-SPL [12],
Bregman-SPL etc. Then the decoded K frames, as the reference frames, are utilized to
provide hypotheses for the reconstruction of the adjacent CS frames. In the second
reconstruction of K frames, the adjacent decoded CS frames are applied to provide the
hypotheses, some accurate reconstruction algorithms such as MH-BCS-SPL [12] and
MS-BCS-SPL [5] are used in this process. After the processes of hypothesis set acqui-
sition and MH weights prediction, the BCS-SPL residual reconstruction of CS frames is
performed. To improve the decoded performance of the CS frames, some improvements
are proposed, such as the new MH weights prediction algorithm [5] and the hypothesis
set optimization algorithm [13] etc.

2.2 The key techniques in CS reconstruction

The common method to reconstruct the sparse signal u from the measurements y is based on
the l1 minimization problem [29]. There are many algorithms about CS recovery have been
proposed in the existing research, such as BP [24], OMP [26, 27, 30], StOMP [8] et al. However,
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Fig. 1 The conventional DCVS system based on key frames secondary reconstruction
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BCS-SPL based on residual reconstruction has been popular in DCVS schemes since it is proposed.
Especially the algorithm, MH-BCS-SPL, effectively improves the decoding performance of
DCVS. There are many improvements are proposed on the basis of MH-BCS-SPL [5, 12, 13].
In this subsection, the key techniques in MH-BCS-SPL are described in detail, such as the
BCS-SPL based on residual reconstruction and the MH weights prediction. Assume that u is
the original image or frame to be reconstructed, ~u denotes the prediction of u, r is the residual
between u and ~u. Then u can be expressed as (2).

u ¼ ~uþ r ð2Þ
The measurements of r under the projection of measurement matrix Φ can be expressed as

below,

q ¼ Φr ¼ b−Φ~u ð3Þ
where b denotes the real measurements of u received at decoder. Converting formula (3) to
formula (4),

u ¼ ~uþ Reconstruct q;Φð Þ ð4Þ
where Reconstruct(⋅) expresses the process of residual reconstruction. The residual is better
than the original image in sparsity. Moreover, the MH prediction technique makes the
prediction more accurate. Correspondingly, the residual is sparser and the reconstruction
performance is better.

The key technique in MH prediction is the calculation of the weight for each hypothesis, i.e.
how to acquire more accurate SI. The calculation of the weights can be described by formula (5),

wmh
i;m ¼ argmin

w
yi;m−Qi;mw

�� ��2
2

ð5Þ

wmh
i;m denotes the weight of each hypothesis, yi ,m are the measurements of the original image

received at decoder. If Qi ,m =ΦBHi ,m is the projection of hypothesis set Hi ,m under the

measurement matrix ΦB. The final prediction ~xmhi;m ¼ Hi;mwmh
i;m. There are some researches about

the solving of problem (5) [28]. Literature [19, 25] proposed and validated the excellent
performance of the MH prediction based on Tikhonov regularization, the algorithm can be
described by the following formula (6),

wTik
i;m ¼ argmin

w
yi;m−Qi;mw

�� ��2
2
þ λΓwk k22 ð6Þ

where λ is a non-negative real value parameter. Γ is a Tikhonov regularization matrix, it’s form
can be described as follows,

Γ ¼

yi;m−q1
�� ��

2
0

⋱
yi;m−qs

�� ��
2

⋱
0 yi;m−qΣ

�� ��
2

0
BBBB@

1
CCCCA ð7Þ

where ‖yi , m − qs‖2 represents the Euclidean distance between the sth column qs of
matrix Qi , m and the target measurements yi , m, the values of the weights decrease
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with the increasing of the Euclidean distance. Converting formula (7) to its closed form
as below.

wTik
i;m ¼ QT

i;mQi;m þ λ2ΓTΓ
� �‐1

QT
i;myi;m ð8Þ

3 Proposed scheme

The block diagram of our proposed DCVS system is presented in Fig. 2. The modules with
blue shadow are modified or proposed in this paper.

At the encoder side, our scheme is the same as the system shown in Fig. 1. At the decoder
side, for key frames, the total variation (TV) [6, 23] algorithm is used to recover the key frames
firstly, then the initial-decoded key frames are used as the reference frames to perform the
second reconstruction of key frames by MH-BCS-SPL based on Tikhonov regularization. For
CS frames, the decoder acquires hypothesis set from the secondary-recovered key frames
firstly, then the MH prediction algorithm based on Elastic net or Tikhonov regularization is
selected and performed in the adaptive weights prediction algorithm according to the number
of measurements. Then the proposed position-based cross reconstruction algorithm is applied
to reconstruct the final CS frames. The hypothesis set optimization technique [13], MH or SH
hybrid hypothesis prediction (MS-HHP) [5] and BCS-SPL residual reconstruction are utilized
in the reconstructed process.

3.1 A new iterative termination decision algorithm

TV has been popular ever since its introduction by Rudin L et al. [23]. TV minimization model
is widely used in image denoising, deconvolution and reconstruction [15, 18]. Then some scholars
introduce TV regularization into video decoding algorithm [22]. The TV minimization model
can be described by formula (9),

min
u

∑
i

Diuk k; s:t: Au ¼ b ð9Þ
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Fig. 2 Block diagram of the proposed DCVS codec scheme
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where u is the image to be recovered, Diu denotes the discrete gradient of u at pixel i, D = [DV,
Dh], DV and Dh denote the vertical and horizontal finite difference operators [33], respectively.
The detailed mathematical expansion of ‖Diu‖ is given in [3], furthermore, more knowledge
about discrete gradient can be found in [16]. A is the measurement matrix, b are the
measurements received at decoder. Usually, the common TV reconstruction model [14] can be
described as below,

min
u

∑n2
i¼1 Diuk k2 þ

μ
2

Au−bk k22 ð10Þ

‖Diu‖2 is the Euclidean norm of Diu in pixel domain. The most remarkable property of TV is
that it can effectively preserve the edges of image due to the linear penalty on differences
between adjacent pixels [31]. However, TV reconstruction may lead to the serious distortion
for the images with complex texture. Later, a multiple regularization constraints TV model is
proposed in [6] by combining nonlocal regularization [32, 33] and TV regularization as the
following formula (11),

min
u

c1 Duk k2 þ c2 Ψuk k1 þ c3 u−Wuk k22 s:t: Au ¼ b ð11Þ

Ψ denotes wavelet transform basis, c1, c2, c3 denote the corresponding weights of different
regularization, W is the weight matrix of the nonlocal mean. This model solved by the
alternating iteration method [31] is used in this paper to reconstruct the key frames for the
first time.

However, there is huge difference in texture, edge and geometric features for different
video sequences, which makes it difficult for the decoding algorithm to judge the optimal
iteration termination point. As a result, the alternating iteration method may lead to the
over iteration for some images with complex texture. In such a situation, the final
reconstructed image is not optimal. In the original scheme, the iteration termination is
decided by the following formula (12),

ΔU ¼ norm Ui−Ui−1ð Þ
norm Ui−1ð Þ ð12Þ

where the Ui and Ui − 1 denote the ith and (i − 1)th iteration results, respectively. norm(⋅)
denotes the Frobenius norm. When ΔU < T (T is the threshold), iteration over. In practice,
for some texture-complex images, the iteration result has achieved the optimum solution
even ΔU may do not reach the threshold, then the iteration algorithm will go on, which
leads to the final iteration result is no longer optimal. To solve this problem, the best
solution is comparing the similarity between the iteration result and the real original
image. However, the original image is unknown at decoder except its measurements. To
obtain the similarity information, we propose an auxiliary iterative termination decision
method based on measurement domain as shown in formula (13),

ΔF ¼ norm AUi−bð Þ−norm AUi−1−bð Þ ð13Þ
where A is the measurement matrix, norm(AUi − b) denotes the similarity (or the
distance) between the ith iteration result Ui and the original frame in measurement
domain. In the later stage of the iteration algorithm, if ΔF < 0, the similarity is reduced, the
iteration stops. Conversely, the iteration goes on. The detailed decision flow diagram is shown
in Fig. 3.

8716 Multimed Tools Appl (2018) 77:8711–8728



As shown in Fig. 3, to further improve the quality of the TV reconstruction, the
thresholding process applied in BCS-SPL reconstruction is introduced in each iteration. The
sparsity of the signal to be reconstructed is enhanced in each iteration, which improves the
decoding performance. Moreover, in traditional DCVS schemes based on K frames secondary
reconstruction, the second reconstruction of K frames has to be performed after the decoding
of the adjacent CS frames [12, 13]. It increases the whole decoding delay of DCVS systems. In
our proposal, the decoding of K frames is only related to the K frames without the participation
of CS frames. Furthermore, the quality of reference frames is better than the traditional DCVS
systems in the second reconstruction of key frames.

3.2 Adaptive MH weights prediction

In 2015, a hybrid hypothesis prediction scheme that combines MH and SH prediction
algorithms is proposed in [5]. In this scheme, an Elastic net-based weights prediction algorithm
(wEnet), which combines the ℓ1 penalty term and ℓ2 penalty term, is proposed to estimate the
MH weights as shown in formula (14),

wEnet
i;m ¼ 1þ λ2

n

� �
argmin

w
yi;m−Qi;mw

�� ��2
2
þ λ1 wk k1 þ λ2 wk k22 ð14Þ

where λ1 and λ2 are non-negative real parameters. Benefiting from the perfect performance of
the wEnet-based MH prediction algorithm, the prediction accuracy of SI is greatly improved

Fig. 3 Block diagram of the
proposed TV iteration termination
decision scheme
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especially at low sampling rate. On this basis, a hypothesis set update algorithm is proposed in
[13], which effectively improves the quality of the hypothesis set. However, with the increase
of sampling rate, the complexity of the Elastic net-based hybrid hypothesis prediction algo-
rithm increases greatly, and a slowdown in quality growth occurs compare with the scheme
based on Tikhonov-based MH prediction algorithm. To compare the performance of the
Tikhonov-based MS prediction algorithm (MS-Tik) and Elastic net-based MS prediction
algorithm (MS-wEnet) under the same conditions, the decoding performance of Coastguard
and Mother-daughter, measured in [13], is given as example in this paper. The comparison
data, the peak signal-to-noise ratio (PSNR) and the average run-time tested in [13], is shown in
Tables 1 and 2.

It is observed that the performance of MS-wEnet is greatly related to sampling rate. At low
sampling rate, it is better than MS-Tik in PSNR and run-time. However, when sampling rate is
greater than 0.3, the complexity of MS-wEnet increases dramatically with the increase of
sampling rate, the decoding quality is also inferior to MS-Tik. The reason is that the accuracy
of SI increases with the increase of sampling rate, while the wEnet becomes unstable when SI
is close enough to the real image [5]. Therefore, the performance of MS-wEnet is inferior to
MS-Tik at high sampling rate. To improve the universal applicability of DCVS systems for
different sampling rates, an adaptive MH weights prediction method based on the number of
measurements in each block is proposed in this paper as shown in Fig. 4.

Where Y_cs are the measurements received at decoder, Num_y denotes the number of
the measurements of each block and Tm is the threshold which decided by the following
formula (15),

Tm ¼ α� block size ⋀ 2ð Þ ð15Þ
where α is a positive parameter related to the sampling rate. If Num_y > Tm, the Tikhonov-
based MH prediction algorithm is adopted to estimate the weight of each hypothesis; otherwise
the wEnet-based weights prediction algorithm is adopted.

3.3 The position-based cross reconstruction algorithm of CS frames

In conventional DCVS schemes, to reduce the complexity of encoder, the video sequences are
usually divided into GOP with fixed size. However, for high motion sequences, the decoding
quality of CS frames in the middle of GOP is much inferior to the CS frames in the side of
GOP because of the following reasons: 1) the CS frames in the middle of GOP are far away
from the decoded K frames, some high-quality hypotheses in K frames are in the outside of the
searching window due to its complex motion; 2) the similarity between CS frames in the
middle of GOP and the reference frames is reduced, the quality of hypothesis set becomes

Table 1 The comparison results of average PSNR (dB)

Sequences Method Sampling rate

0.1 0.2 0.3 0.4 0.5

Coastguard MS-wEnet 30.95 33.05 34.81 36.47 38.15
MS-Tik 30.40 32.74 34.66 36.54 38.49

Mother-daughter MS-wEnet 42.31 43.74 44.94 46.01 47.04
MS-Tik 41.44 43.33 44.75 46.03 47.21
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worse. To display the difference of decoding quality caused by the different positions in GOP,
the decoded average PSNR of Soccer sequence in the scheme [13] is tested as an example. In
Table 3, the 1st means the first CS frame in GOP, the size of GOP is 8.

As shown in Table 3, the average decoding quality of CS frames at different positions in
GOP presents the symmetrical distribution. The quality of CS frames in the middle of GOP is
inferior to the CS frames at both sides of the GOP, especially for the 3rd, 4th and 5th CS
frames, their PSNR is decreased by 2.5 dB (on average) relative to the 1st and 7th CS frames.
The aforementioned analyses indicate that the position of CS frame has great impact on the
decoding quality. To solve this problem, a position-based cross reconstruction (PBCR)
algorithm is proposed in this paper. The block diagram of the proposed algorithm is shown
in Fig. 5.

As shown in Fig. 5, the PBCR mainly consists of two parts: the hypothesis set acquisition
algorithm based on multiple reference frames (HSA-MRF) and the searching window expan-
sion algorithm (SWEA) based on fixed hypothesis set size. As mentioned above, it’s the
reduced similarity and complex motion that leads to the poor decoding quality of the middle
CS frames in GOP. To improve the similarity between the middle CS frames and the SI
predicted byMH, the HSA-MRF is proposed to make full use of the decoded K frames and CS
frames to obtain better hypotheses. Here, as an example, the size of GOP is set to 8 and Fig. 6
describes the HSA-MRF in detail.

As shown in Fig. 6, K1 and K2 are the decoded adjacent K frames, CSi denotes the ith CS
frame in each GOP. Reci denotes the decoding order of the CS frames. In HSA-MRF, K1 and
K2 are the necessary reference frames for each CS frame. However, with the increase of the
distance between the CS frame and the decoded K frames, their similarity is reduced and the
quality of hypotheses obtained from the decoded K frames becomes worse. In this case,
comparing with the K frames, the former decoded CS frames are more similar to the next CS
frame to be reconstructed. Therefore, the decoded CS frames are also adopted as the reference
frames for the next CS frames to obtain more and better hypotheses. As described in Fig. 6, in
order to effectively use the decoded CS frames, the decoding order of CS frames is designed to
be crossed, that is, starting from the both sides of GOP and then gradually shifting to the inside
of GOP (CS1, CS7, CS2, CS6…CS4). For the CS frames in the middle of GOP (CS2-CS6),
the former decoded two CS frames are applied to provide more hypotheses. Then, the

Num_y > Tm

MS-Tik

MS-wEnet

Residual
reconstruction

Y_cs

NO

YES

Fig. 4 The block diagram of the adaptive MH weights prediction method

Table 2 The comparison results of average reconstruction time (s)

Sequences Method Sampling rate

0.1 0.2 0.3 0.4 0.5

Coastguard MS-wEnet 98.9 168.4 326.7 591.4 1038.2
MS-Tik 238.3 245.8 254.5 258.9 260.6

Mother-daughter MS-wEnet 98.0 168.6 324.2 607.9 1053.8
MS-Tik 240.7 246.5 259.9 262.4 262.5
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hypothesis set optimization technique [13] is utilized to eliminate the poor hypothesis accord-
ing to the Euclidean distance in measurement domain. After optimization, the size of hypoth-
esis set is the same as the original hypothesis set without HSA-MRF, but the hypotheses have
been updated with better hypotheses obtained from the decoded CS frames. The quality of
hypothesis set is improved effectively, the reconstructed quality has higher stability due to the
existence of the hypothesis set optimization technique.

However, at low sampling rate, the quality of the decoded CS frames is bad relative to the K
frames. Correspondingly, the hypotheses, obtained from the former reconstructed CS frames,
are not good enough to effectively improve the overall quality of the final hypothesis set,
which limits the performance of the HSA-MRF algorithm. Furthermore, as mentioned above,
for high motion video sequences, some high-quality hypotheses in K frames are likely to be in
the outside of the searching window when the distance between the CS frame and the decoded
K frame is relatively far. Therefore, how to make full use of the decoded K frames becomes a
problem to be solved. To solve the aforementioned problems, when sampling rate is less than
0.3, the SWEA is applied in PBCR for the middle CS frames in GOP i.e. the CS frames with
green shadow shown in Fig. 6.

Figure 7 shows the process of the searching window expansion.W is the size of the original
searching window. The block size is B.ΔW is the increased size. If the CS frame is in the center
of GOP and the sampling rate is less than 0.3, the size of searching window in the reference K
frames is expanded to W +ΔW. After the process of SWEA, the hypothesis set optimization
technique is applied to select the high-quality hypotheses from the hypothesis set obtained in
SWEA. The size of the finial hypothesis set is the same as the original set without SWEA.

4 Experimental results

To validate the performance of the position-based cross reconstruction DCVS (PBCR-DCVS)
scheme, a series of experimental results are given in this section. In our experiments, the first
88 frames of the standard test video with CIF format are tested. MS-wEnet [5] and Up-Se-
AWEN-HHP [13] are introduced as comparison. To be fair, the experimental parameters are
consistent with [13]. At the encoder, we set the block size as B = 16 and the size of GOP is set
to 8. The initial searching window size W = 15 pixels, in SWEA, ΔW = 8, and the SWEA is

Table 3 The average reconstruction PSNR (dB) of different positions in GOP (only CS frames)

Position 1st 2nd 3rd 4th 5th 6th 7th

Sampling rate 0.1 29.5732 27.5424 26.7354 26.9651 26.8824 27.5320 29.5722
0.2 32.2422 30.3522 29.4390 29.7749 29.5613 30.2642 32.2271
0.3 34.4475 32.7058 31.8690 32.2226 31.9298 32.5561 34.5445
0.4 36.7228 35.2213 34.2766 34.7522 34.4183 34.9138 36.8810
0.5 39.1746 37.8369 37.0633 37.3729 37.0679 37.6844 39.2635

Position decision
Hypothesis set acquisition

algorithm based on
multiple reference frames

MS-prediction
and BCS-SPL
reconstruction

Searching window
expansion algorithmCS

frames
decoded
CS frames

Fig. 5 The position-based cross reconstruction algorithm for CS frames
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only performed at the sampling rate less than 0.3. The sampling rate of key frames is 0.7, while
the sampling rates of non-key frames vary from 0.1 to 0.5. The iterative termination threshold
T = 0.001 in the original TV reconstruction scheme. α = 0.3 in Eq. (15). The orthonormal
matrix is selected as Φ. The reconstructed quality of the video is measured by PSNR, the
computational complexity is examined by the reconstructed speed, which is measured by the
CPU run-time. The configuration of the simulation is 64-bit Windows 7 SP1, Inter (R) Core
(TM) i7–4790 CPU, 3.60GHz, 16G RAM. The version of Matlab is R2015a.

4.1 The performance of the new iterative termination decision scheme

In this subsection, we compare our new iterative termination decision scheme with the original
iterative termination decision method. The average PSNR of the K frames TV initial recon-
struction is tested. Furthermore, to directly reflect the performance of the new iterative
termination decision scheme, the average relative distance (D = norm(AUi − b)/ norm(b)) be-
tween the iteration result and the original image in measurement domain is also adopted to
measure the quality of the TV initial reconstruction. The smaller relative distance indicates that
the iteration result is closer to the original image, and the reconstruction quality is better.

As shown in Table 4, comparing with the original iterative termination decision scheme, for
Coastguard, the PSNR is increased by 0.44 dB and the relative distance is reduced by 0.12% in
our proposed scheme, mainly because the over iteration phenomenon is avoided by the
proposed auxiliary iterative termination decision algorithm in measurement domain. For
Foreman, Mother-daughter and Soccer sequences, the PSNR and relative distance are only
marginally improved. This can be explained by the following reasons: 1) comparing with the
complex water ripple information in Coastguard, the above three sequences are relatively
simple in texture details, the original TV iterative termination decision scheme can accurately
determine the optimal results, especially for Foreman and Mother-daughter, there is no over

K1
CS1
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CS2
Rec3

CS3
Rec5

CS4
Rec7

CS5
Rec6

CS6
Rec4

CS7
Rec2

K2

Fig. 6 The acquisition process of multiple reference frames in HSA-MRF

Fig. 7 The process of searching
window expansion
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iteration problem, and there are only three key frames subject to the problem of over iteration
for Soccer; 2) in our new iterative termination decision scheme, the thresholding process is
introduced in each iteration, the sparsity is enhanced in each iteration, which improves the
decoding quality.

4.2 The performance of the PBCR algorithm

In this subsection, we compare our scheme with the system without PBCR under the same K
frames reconstruction scheme proposed in this paper. The average PSNR of the decoded CS
frames in each position of GOP is measured. To reflect the performance of the PBCR
algorithm at different sampling rates, we give the comparison results of the CS frames
reconstruction quality at sampling rates equal to 0.2 and 0.4, respectively.

As shown in Figs. 8 and 9, comparing with the scheme without PBCR, the reconstruction
quality of the CS frames in the middle of GOP is effectively improved for all tested video

Table 4 The comparison results of the TV initial reconstruction for K frames (on average)

Sequences Method Relative distance (%) PSNR (dB)

Coastguard original TV 2.4472 38.2957
proposed 2.3257 38.7326

Foreman original TV 1.0592 43.1022
proposed 1.0579 43.1090

Mother-daughter original TV 0.9222 47.1246
proposed 0.9190 47.1513

Soccer original TV 1.4480 42.9033
proposed 1.4431 42.9341
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Fig. 8 The average PSNR of CS frames in each position of GOP (sampling rate equals to 0.2)
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sequences in our proposed system. Especially for high motion sequences such as Foreman and
Soccer, at sampling rate equals to 0.2, the average PSNR of the middle CS frames (CS2-CS6) is
increased by 1.29 dB and 2.80 dB, respectively. For low motion sequences such as Mother-
daughter, the average PSNR of the middle CS frames is increased by 0.23 dB. These can be
explained by the following reasons: 1) the HSA-MRF algorithm in PBCR makes full use of the
similarity among non-key frames, more high-quality hypotheses are obtained from the former
reconstructed CS frames, the quality of the hypothesis set is improved effectively; 2) the SWEA
in PBCR further deepens the using of key frames by expanding the size of searching window,
which further improves the reconstruction quality of the medial CS frames (CS3-CS5) at low
sampling rate; 3) for low motion sequences, the similarity between key frame and non-key
frame is high, the PSNR of non-key frames at different positions in GOP is balanced relative to
the high motion sequences. Therefore, the improvement bring by PBCR is not as obvious as the
high motion sequences at low sampling rate. Moreover, since the decoded quality of CS frames
increases with the increase of the sampling rate, the hypotheses obtained from the former
reconstructed CS frames are also improved. Therefore, it is observed that the decoding quality
of the CS frames in different positions is more balanced with the increase of the sampling rate.

4.3 The overall reconstruction performance of the proposed DCVS

The overall performance comparison of the proposed PBCR-DCVS scheme with other DVCS
schemes is made in this subsection. MS-wEnet [5] and Up-Se-AWEN-HHP [13] as the state-
of-the-art DCVS schemes are exploited as comparison systems. The comparison results of the
average reconstruction PSNR in different DCVS schemes are given in Fig. 10. Moreover, to
compare the complexity of our proposed system with other schemes, the average CPU run-
time of different systems is measured in experiment as shown in Table 5.
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Fig. 9 The average PSNR of CS frames in each position of GOP (sampling rate equals to 0.4)
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As shown in Fig. 10, compare with MS-wEnet [5] and Up-Se-AWEN-HHP [13] schemes,
the reconstruction performance is significantly improved in our PBCR-DCVS scheme.
Benefitting from the improvement of the hypothesis set’s quality bring by PBCR, the
reconstruction quality of the middle non-key frames in GOP is improved greatly, which
improves the overall performance of the proposed scheme. For Coastguard and Foreman,
the average PSNR is increased by 1.5 dB and 0.75 dB, respectively. Moreover, in our scheme,
key frames are first decoded by TValgorithm, then the BCS-SPL is applied to recover the key
frames for the second time, the decoded quality of key frames is improved. Correspondingly,
there is a general promotion for the reconstruction quality of non-key frames in each position
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Fig. 10 The reconstruction performance of different DCVS schemes

Table 5 Time (s) consumed by single frame for different schemes

Sequences Method Sampling rate

0.1 0.2 0.3 0.4 0.5

Coastguard PBCR-DCVS 45.45 73.57 85.07 52.52 53.88
MS-wEnet 38.19 58.75 92.47 150.01 255.82
Up-Se-AWEN-HHP 36.14 65.26 102.46 166.87 330.00

Foreman PBCR-DCVS 47.29 76.46 88.27 50.41 51.67
MS-wEnet 40.79 60.63 94.76 152.18 256.21
Up-Se-AWEN-HHP 37.11 65.46 120.39 192.43 299.66

Mother-daughter PBCR-DCVS 45.47 73.17 85.46 54.45 55.49
MS-wEnet 39.41 58.83 92.32 148.50 252.28
Up-Se-AWEN-HHP 36.03 64.48 96.85 160.80 295.63

Soccer PBCR-DCVS 47.82 76.04 87.55 48.16 49.22
MS-wEnet 40.48 60.43 94.16 151.14 254.45
Up-Se-AWEN-HHP 35.89 67.84 117.32 200.01 315.18
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of GOP. Especially for Soccer and Mother-daughter, the average PSNR is increased by more
than 1.9 dB relative to Up-Se-AWEN-HHP [13]. Compare with MS-wEnet [5], the average
PSNR is increased by 1.47 dB for Soccer.

Table 5 shows the comparison results of the CPU run-time for different DCVS schemes.
First of all, compare with MS-wEnet [5] and Up-Se-AWEN-HHP [13], the time consumed in
key frames reconstruction is effectively reduced, due to the following reasons: 1) the non-key
frames are not need to provide side information for the key frames secondary reconstruction,
the proposed key frames secondary reconstruction scheme acquires the hypotheses from the
initial-recovery key frames, which do not have to wait for the reconstruction of non-key
frames; 2) the multiple regularization constraints TValgorithm has high convergence rate, the
optimal solution can be obtained after a small amount of threshold decision processes. For the
recovery of non-key frames, the proposed adaptive MH weights prediction algorithm adap-
tively selects the Tikhonov-based weights prediction algorithm rather than the wEnet when
sampling rate is more than 0.3. It avoids the problem that the complexity of the wEnet-based
prediction algorithm increases drastically with the increase of sampling rate. Moreover, the
SWEA is only performed at the sampling rate less than 0.3. Therefore, it is observed that the
time consumed in single frame is the least in our scheme when the sampling rate is more than
0.2. However, when sampling rate is less than 0.3, with the increase of the reference frames
and the size of the searching window, the number of hypotheses increase dramatically.
Correspondingly, the algorithms of HSA-MRF and SWEA in PBCR have to consume more
time to select the better hypotheses from the large number of hypotheses. Therefore, the
computational complexity of our scheme increases slightly compared with MS-wEnet [5] and
Up-Se-AWEN-HHP [13] at low sampling rate.

5 Conclusions

In this paper, we propose a position-based cross reconstruction DCVS scheme. An auxiliary
iterative termination decision algorithm is proposed to improve the performance of key frames
TV initial reconstruction. Then, an adaptive MH weights prediction algorithm is proposed to
reduce the complexity of the wEnet-based DCVS schemes at high sampling rate. To improve
the decoded quality of the middle non-key frames in GOP, we propose a PBCR algorithm,
which mainly consists of two components: the HSA-MRF and the SWEA. The HSA-MRF
makes full use of the similarity among the non-key frames, while the SWEA deepens the
exploiting of the key frames by expanding the searching window. Numerical results verify that
our PBCR-DCVS scheme effectively improves the overall performance of the DCVS system
compare with other schemes with the slightly increase of complexity at low sampling rate.
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