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Abstract With the rapid growth of various media data, how to effectively manage and
retrieve multimedia data has become an urgent problem to be solved. Due to semantic gap,
overcoming the semantic gap has become a difficult problem for image semantic annota-
tion. In this paper, a hybrid approach is proposed to learn automatically semantic concepts
of images, which is called CNN-ECC. It’s divided into two processes generative feature
learning and discriminative semantic learning. In feature learning phase, the redesigned
convolutional neural network (CNN) is utilized for feature learning, instead of traditional
methods of feature learning. Besides the reconstructed CNN model has the ability to learn
multi-instance feature, which can enhance the image features’ representation when extract-
ing features from images containing multiple instances. In semantic learning phase, the
ensembles of classifier chains (ECC) are trained based on obtained visual feature for seman-
tic learning. In addition, the ensembles of classifier chains can learn semantic association
between different labels, which can effectively avoid generating redundant labels when
resolving multi-label classification task. Furthermore, the experimental results confirm that
proposed approach performs more effectively and accurately than state-of-the-art for image
semantic annotation.
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1 Introduction

With the rapid growth of various media data, how to effectively manage and retrieve multi-
media data becomes an urgent problem to be solved. The previous image retrieval methods
can be divided into two categories in general: text-based image retrieval methods and
content-based image retrieval methods. Text-based image retrieval technology initially label
images artificially, based on which subsequently using traditional text search engine query
images. This method is intuitive, however, due to the high cost of manual annotation, this
retrieval method is not adapt to massive image databases. Content-based image retrieval
applies feature extraction and high-dimensional indexing techniques to image retrieval. It
extracts several low level visual features of each image which is processed into the form of
high dimensional visual vector after, and saves processed vectors in the database, eventu-
ally obtaining the search results by measuring the similarity between feature vectors. This
method is well applied in some special fields, but images of similar visual characteristics
are likely to be semantically irrelevant because of the notorious semantic gap [18, 28]. To
obtain semantic-related retrieval results and avoid a large number of manual annotations,
automatic image annotation has become a research hotspot.

The main goal of automatic image annotation is to determine the probability for certain
semantic concept given by metadata. Automatic image annotation establishes the founda-
tion for semantic retrieval of images and is closely related to these works such as automatic
concept detection and language index, etc. At present, several approaches have been pro-
posed to solve the problems of automatic image annotation and retrieval, which can be
roughly categorized into two different models. The first one is based on generative model. In
the beginning, the automatic annotation is defined as a traditional supervised classification
problem [2, 16], which mainly depends on similarity between visual features and prede-
fined tags to model the classifier, then an unknown image is annotated relevant tags based
on computed similarity of visual level. The other is based on discriminative model, which
regard image and text as equivalent data. The method try to mine the correlation between
visual features and labels on an unsupervised basis by estimating the joint distributions of
multi-instance features and words of each image [18, 28]. These approaches greatly reduces
the ability of feature presentation by extracting various low-level visual features, therefore
it makes the semantic gap become more narrow between images and semantic.

The performances of image annotation are highly dependent on the representation of
visual feature and semantic mapping. In view of the fact that deep convolutional neural
networks (CNNs) has been demonstrated an outstanding performance in computer vision
in recent years. For example, many works [9, 14, 19, 20] have demonstrated that CNN
has a better effect than existing methods of hand-crafted features in many computer vision
applications. Inspired by these articles, this paper proposes a hybrid architecture based on
CNN for image semantic annotation to improve the performances of image classification
and annotation.

In this work, we propose a novel hybrid architecture for image semantic annotation,
and name it CNN-ECC. Firstly, a redesigned CNN model is used to learn high-level visual
features. Secondly, the ensembles of classifier chains (ECC) are exploited to train model
based on visual features and predefined tags. Finally, a hybrid framework is put forward to
learn semantic concepts of images combining CNNs. The experimental results show that
our approach performs more effectively and accurately than previous approaches for image
classification and annotation tasks.
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2 Related work

Over the past decades, various approaches based on discriminative model have been pro-
posed for semantic image annotation and retrieval. For example, the content-based soft
annotation (CBSA) system [1] is based on binary classifiers used to train each word and it
indexes a new image according to the output of each classifier. To improve the accuracy of
class prediction, Goh K S et al. [8] annotate images by classification based on multi-class
SVMs. Particle swarm model selection (PSMS) [6] uses a one-vs-all (OVA) strategy which
divides a multi-class problem into a series of binary classification problems and each prob-
lem is applied to deal with whether a region belongs to a particular class or not. In addition,
a nearest spanning chain method is proposed to construct the image-based graph. Recently,
Zhang et al. [32] annotate images by incorporating word correlations into multi-class SVM,
which employs optimal principle of minimum probability of word correlations and com-
bines annotation as a multi-class classification problem, where each of the word or concept
correlations are computed by a co-occurrence matrix, etc.

Most approaches based on generative model implement image to semantic mapping by
learning the correlations between visual features and textual words. For example, Monay
et al. [21] propose PLSA-WORDS to model multi-modal co-occurrences. This approach
considers both semantic terms (words) and visual information (visual features) including
color, texture information, and three discrete feature types that are blobs (region-based),
Hue-Saturation-Value (HSV) and Scale-Invariant Feature Transform (SIFT) respectively.
Jacobs et al. [11] propose a general multi-view feature extraction approach (GMA) for
image annotation. GMA can obtain a single linear or nonlinear subspace over different fea-
ture spaces, which is useful for cross-view classification and retrieval. Mahendran et al. [19]
propose a classical Haar and HoG features versus bag of words method for image annotation
and retrieval, etc.

To sum up, these approaches all employed hand-craft features, even though these meth-
ods accomplish the annotation task based on different thoughts. For computer vision and
multimedia analysis task, extracting useful features from target is essential in the process-
ing of model, and the method of image feature extraction directly affects the performance of
image annotation and retrieval. However, the traditional feature extraction methods reduce
the representation ability of visual features, and these methods are not able to fully learn the
semantic correlation between text labels. Therefore, we propose a multi-instance learning
method based on deep learning to replace the traditional feature extraction methods.

Deep learning techniques aim to learn hierarchical feature representations from original
images, where the higher level features are defined from lower level ones. Since con-
volutional neural network (CNN) [14] is proposed, deep learning has made outstanding
achievements in the field of computer vision. In recent work, Mahendran et al. [19] have
demonstrated CNNs is better performance than existing methods based on hand-crafted
feature for many computer vision applications, such as object classification [9, 14], face
recognition [22] and image retrieval [23]. Furthermore, Razavian et al. [25] have demon-
strated the pre-trained CNN can be used as a generic image representation model to extract
visual features for diverse visual recognition tasks.

By studying plenty of papers about image auto-annotation, we notice that most authors
don’t consider how to represent an object’s feature better, and they just extract the low-level
features of objects. Althought it’s full of difficulties for automatically extracting the high-
level features, it’s a worthwhile work for the image model problem. Considering all above
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discussion and our previous work cPLSA [17], we have a nature choice to employ the CNNs
model instead of cPLSA model. In generative learning step, CNN directly improves rep-
resentation ability of visual features by automatic learning, which extract high-level visual
features of each image on test data set by pre-trained CNN model on target data sets. In
addition, this paper employ ensemble of classification chains to model extracted visual vec-
tors and tags. Therefore, using multi-label classification to learn semantic concepts is able to
overcome semantic gaps between image and text [33]. In Section 4, abundant experiments
are conducted on two internationally data sets to compare the effect of CNN visual feature
and traditional visual features for cross-modal image semantic annotation. The experi-
mental results show good performance can be achieved by CNN visual features based on
several classic cross-modal retrieval methods, such as PLSA-WORDS and GHM. Hybrid
framework achieve inconceivably superior performance in image annotation and retrieval.

3 Hybrid framework for image semantic annotation

In this section, we present the two components of our framework. Combining deep model
with ensembles of classifier chains, we propose a hybrid learning framework to address
cross-modal semantic annotation problem between images and text labels. As shown in
Fig. 1, the hybrid framework is divided into two steps, including generative feature learning
process and discriminative semantic learning process.
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Fig. 1 Illustration of the CNN visual features and the proposed CNN-ECC image semantic annotation sys-
tem. The high-level CNN visual features fc7, can be directly extracted from the pretrained CNN model. The
fine-tuned CNN visual features, i.e., FT-fc6 and FT-fc7, are extracted from the CNN model, which is first
pretrained on ImageNet and then fine-tuned on the target data set. For CNN-ECC, as shown in the lower part,
the fc7 outputs after ReLU are employed for cross-modal annotation
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3.1 CNN visual features extraction

The shared CNN contains five convolutional layers and three fully-connected layers with
numerous parameters. Consequently, without enough training images, it is very difficult
to obtain an effective deep model for multi-label classification. However, it is generally
unaffordable to collect and annotate a large-scale multi-label data set. Fortunately, a large-
scale single-label image dataset, i.e., ImageNet, can be used to pre-train the shared CNN for
parameters initialization.

3.1.1 Extracting visual features from pre-trained CNN model

These works [15, 25] have demonstrated the outstanding performance of the off-the-shelf
CNN visual features in various recognition tasks, so the pre-trained CNNmodel is utilized to
extract visual features in this paper. CNN is a special form of neural network that consists of
three different types of layers, such as convolutional layers, spatial pooling layers, and fully
connected layers. Different network structures will show different ability of visual features
representation. As shown in the top of the Fig. 1, reconstructed CNN model has the similar
network structure to the AlexNet [14] in this paper, which contains five convolutional layers
(short as conv) and three fully-connected layers (short as fc). Particularly, the reconstructed
model is pre-trained in 1.2 million images of 1000 categories from ImageNet [3] in this
paper, each image is resized to 227*227 and fed into the CNN model, then data dirve neural
networks to learning parameters. However, the BP neural network has slow convergence
speed and is easy to fall into local minimum problems in practical application. So using
the activation function correctly can accelerate the convergence of the network. Rectified
Linear Units (ReLUs) is a kind of activation function applied in CNN. Krizhev et al. [14]
have proved that the Rectified Linear Units (ReLUs)not only saves the computing time, but
also implements the features’ sparse representation, and ReLU also increases the sample
characteristic diversity. So to improve the generalization ability of the feature representation,
the f c7 features are extracted from the secondly convolution layer after ReLU. The f c7
denote the 4096 dimensional features of the last two fully-connected layers after the rectified
linear units (ReLU).

3.1.2 Exacting fusion visual features from redesigned CNN model

Taking into account the different categories between the target dataset and ImageNet, if we
directly utilize the pre-trained model to exact image visual features on the ImageNet, it may
not be the optimum strategy. To make the model fit the parameters better, the last hidden
layer is redesigned for visual feature learning task, later CNN model is redesigned by fine-
tuning parameters of each of images in the target dataset. As shown in the mid of Fig.1, the
overall architecture of our CNN model still contains five conv layers including a pooling
layer and three fully-connected layers. The last hidden layer is redesigned for feature learn-
ing task. Given the number of the target dataset’s categories m, after the output of the last
fully-connected layer is then fed into anm-way softmax and produces a probability distribu-
tion for m categories, the number of neural units of the last fully-connected layer is reduced
from 1000 to m.

Given one training sample x, the network extracts layer-wise representations from the
first conv layer to the output of the last fully connected layer f c8, which can be viewed
as high level features of the input image f c8 ∈ R

m. Followed by a softmax layer, f c8 is
transformed into a probability distribution p for objects of m categories, p ∈ R

m. CNN
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model measures the prediction loss of the network by cross entropy, and the computational
formula is shown as follows.

pi = exp(
∧
vi)

∑
i exp(

∧
vi)

, and L = −
∑

i

ti log(pi), i = 1, ..., m (1)

where L is the loss function based on cross entropy, and pi is probability of that object
belongs to the ith class, ti denotes the true label of the sample xi , and vi denotes the feature
vector set of the ith column. After CNN model completes forward propagation and outputs
probability distribution, it is necessary to calculate the loss value according to the loss func-
tion. To reduce the loss value, back propagation are utilized to compute gradient parameters.
Gradient is computed as follows in the processing of back propagation.

∂L

∂
∧
vi

= pi − ti (2)

To learn multiple instances as a fusion features, we combine deep representation with
multiple instance learning. Denote {xj |j = 1, 2, ..., n} as a bag of n instances and t =
{ti |ti ∈ 0, 1, i = 1, ..., m} as the label of the bag. Neural network extracts visual features of
the bag v = {vij } ∈ Rm×n. So an image can be viewed as multi-instance bag, in which each
column is the representation of an instance. The merged representation of the bag for visual
vectors are defined as:

∧
v
i

= f (vi1, vi2, ..., vin) (3)

where function f represents the mapping function of feature set. Here we choice max
pooling layer to merge the multi-instance bag.

In the training phase, stochastic gradient descent algorithm is used to optimize the loss
function L. Suppose that we have a set of training images I = {Mi |i = 1, 2, ...n}. In the
process of training network, training samples are regarded as bags Ii , and there are a num-
ber of ti instances in each bag. The network extracts layer-wise representations from the
first conv layer to the output of the last fully connected layer visual vectors vi , which can
be viewed as high level features of the input image. Fine-tuning by training with classes
of particular objects, is known to improve classification accuracy. By fine-tuning the trans-
ferred parameters in CNNmodel, the better parameters can be obtained, and predicted value
is closer to real value. In order to improve the effect of visual feature learning, we first
employ existing model to fine-tune the parameters in the target dataset, then we apply the
fine-tuned CNN model to learn image visual features. Similarly, the FT − f c7 denotes the
4096 dimensional features of the last two fully-connected layers after ReLU.

3.2 Ensembles of classifier chains for semantic learning

The Classifier Chains [26] are used to accomplish the task of multi-label classification.
Taking into account the semantic correlations between tags, Classifiers Chain can’t clas-
sify images into multiple semantic classes, with a high degree of confidence and acceptable
computational complexity. Based on this research, we propose the the Ensembles of Classi-
fier Chains (ECC) to improve the accuracy of the annotation system. In the discriminative
learning phase, the ensembles of classifier chain model consists of m binary classifiers, and
each of the binary classifier is implemented by SVM [13]. Furthermore, classifier chain can
effectively overcome the problems of label independence in image binary classification by
learning the semantic relevance between labels.
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The ensembles of classifier chains model consist ofm binary classifiers, wherem denotes
real classes of label sets and target label sets is denoted as T . Classifiers are linked along
a chain where each classifier deals with the binary relevance problem associated with label
lj ∈ {Tj |j = 1, 2, ...n}. The feature space of each linked in the chain is extended with the
0−1 label associations of all previous links. The training procedure is outlined in Algorithm
1 in the left of Table 1. Lastly, the notation is noted for a training example (x, S), where
S ⊆ T and x is an instance feature vector.

Stated thus a chain C1, C2, ..., Ci of binary classifier is formed. Each classifier Cj

in the chain is responsible for learning and predicting the binary association of label lj ,
which is given in the feature space and is augmented by all prior binary relevance pre-
dictions in the chain l1, l2, ..., lj−1. The classification procedure begins at and propagates
along the chain C1 to determine Pr(l1|x) and every following classifier C2, ..., Cj predicts
Pr(lj |xi, l1, l2, ..., lj−1). This classification procedure is described in Algorithm 2 in the
right of Table 1.

This training method takes into account label semantic correlations in classifier chains,
which overcomes the label independence problem of binary relevance method. Although
|T |/2 features are added to each instance on an average, this item is negligible in compu-
tational complexity because |T | is invariably limited in practices, therefore classifier chain
still remains advantages of binary relevance method including low memory and runtime
complexity. Different order of the chain clearly has a different effect on accuracy. This
problem can be solved by using an ensemble framework with a different random train order-
ing for each iteration. Ensembles of classifier chains train m classifier chains including
C1, C2, ..., Cm. Each Ck model is trained with a random chain which can order the L out-
puts and get a random subset of D. Hence each Ck model is likely to be unique and able to
give different multi-label predictions. These predictions are summed by label so that each
label receives a number of votes. A threshold is used to select the most popular labels which
form the final predicted multi-label set.

Table 1 Training procedures of ensembles of classifier chains for multi-label learning

Algorithm 1 Algorithm 2

Processing Training steps of classifier chain Classifying procedure ECC

Input Training set Test example x

I = (x1, S1), (x2, S2), ..., (xn, Sn)

Output Classifier chains C1, C2, ..., Cm Y = l1, l2, ..., lm

procedures

1 For i ∈ 1, 2, ...m Y

2 Semantic learning For i ∈ 1, 2, ..., m

3 I ′ ← {} Do Y ← ∪
(li ← Ci : (xi , l1, l2, ...lj−1))

4 For (x, S) ∈ I Return (x, Y )

5 Do I ′ ← I ′ ∪ ((x, l1, l2, ..., li−1), li )

6 Train Ci

to predict binary relevance of li

7 Ci : I → li ∈ 0, 1
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Given the kth individual model predicts vector yk = (l1, l2, ..., l|T |) ∈ {0, 1}|T |. The
sums are stored in a vector W = (λ1, λ2, ..., λ|L|) ∈ R

m, where λj is defined as λj =∑m
k=1 lj ∈ yk . Hence each λj ∈ W represents the sum of the votes for label lj ∈ T . Then,

we normalize W to Wnorm, which represents a distribution of scores for each label in [0, 1].
A threshold is used to choose the final multi-label set Y such that lj ∈ Y where λj ≥ t for
threshold t . Hence the relevant labels in Y represent the final multi-label prediction.

3.3 Image semantic annotation

We now explain our method for semantic image annotation. As shown in Fig. 1, the training
process of CNN-ECC is divided into two steps.

Step1: feature learning based on resigned CNN model from outside training data
As many efficient and open source implementations of CNNs are available, we will not go
into the full details of implementing convolutional, max polling or fully connected layers.
For that, we relied on the sources provided by the Caffe library [12], itself based on the
Nvidia CuDNN library. We utilize the ImageNet [3] to pre-train the shared CNN model.
In experiments, we handle the training images with a pre-processing technology. Given
a training sample, we first resize it into 256 × 256 pixels, after that we extract random
227 × 227 patches from the given image and train our network based on these extracted
patches. Each extracted patch is pre-processed by subtracting the image mean. We train the
network by using stochastic gradient descent with a momentum of 0.9 and weight decay of
0.0005. To overcome over-fitting, each of the first two fully-connected layers is followed by
a drop-out operation with a drop-out [30] ratio of 0.5. The learning rate is initialized as 0.01
for all layers and reduced to one tenth of the current rate after every 20 epochs (70 epochs
in all). At last, the trained CNN model is utilized to extracted visual features. Suppose that
we have a test image I , CNN model extracts visual vectors by pre-trained CNN model and
we denote the space of visual vectors as v = {v1, v2, ..., vi}, where vi denotes the visual
vector of image I . Noting the notation for a training example (vi, S), where S ∈ T , T

denotes the label sets and v is a feature vector extracted from CNN model. Then, by making
use of the aspect distribution and original labels of each training image, we build a series
of classifiers in which every word in the vocabulary is treated as an independent class. The
classifier chain model implements the feature classification task and it can effectively learn
the semantic correlation between labels in discriminative step. Finally, given a test image,
the CNN-ECC system will return a correlative label subset l ∈ T . Specifically, we combine
the outputs of image and text understanding systems in the final fully connected layer, as
illustrated in Fig. 1.

Step2: semantic learning based on ensembles of classifier chains In discriminative
semantic learning phase, we utilize visual vectors extracted from pre-trained CNN model
and corresponding text labels to fit the ensembles of classifier chains. This training method
passes label information between classifiers, allowing classifier chain considers label cor-
relations and thus overcoming the label independence problem of binary relevance method.
Then, we classify the aspect distribution of each test image with the trained multi-class
classifier. Following by [21], multi-class classifier model outputs 5 words with highest con-
fidence as semantic labels of the test image. After each image in the database is annotated,
the retrieval algorithm can rank the images labeled with the query word by decreasing
confidence.
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Based on the trained CNN and multi-class classifier model, the multi-label classification
of a given image can be summarized as follows.We firstly generate the multi-instance fusion
feature of the given image based on the redesigned CNN method. Then, for each test image,
the top 5 predictive results can be obtained by the trained ensembles of classifier chains. We
integrate deep features and semantic learning to truly find out discriminative and relevant
labels for each image.

4 Experiments and results

In this section, we discuss implementation details of our training, and evaluate different
components of our method. We conduct experiments of our CNN-ECC learning framework
on both image classification and auto-annotation. We choose two image datasets Corel5K
and Pascal VOC 2007, which are widely used in image classification and annotation. In
order to make the experimental result more convinced, we simultaneously compare the
experimental results with the existing traditional model and deep model.

4.1 Datasets and evaluation measures

To test the effectiveness and accuracy of the proposed approach, our experiments are con-
ducted on a baseline annotated image datasets Corel5K [5] and Pascal VOC 2007 [7]
.

– Corel5k: it’s a basic comparative dataset which contains 5000 images from 50 Corel
Stock Photo cds for recent research works on image annotation. The training set of
4500 images and the test set of 500 images are obtained by dividing this dataset into 3
parts: a training set of 4000 images, a validation set of 500 images and a test set of 500
images. Like the Duygulu et al. [5].

– Pascal VOC 2007 [7]: There are 9963 images of 20 categories in this data set. Each
image accompanies 399 tags annotated by methods in [10]. First, the data set is divided
into three subsets including train, val, and test, and the total number of images con-
tained in train and validation is 5011, the number of images contained in test is 4952.
Second, experiments are conducted on train (including validation) and test respectively.
Eventually, the obtained visual features by using methods in [10], which contains a 180
dimensional SIFT BoVW features, are compared with CNN visual features.

Specifically, image annotation performance is evaluated by comparing the automatically
generated results on the test set with the human-produced ground truth. It’s essential to
use several evaluation measures in multi-label evaluation. Similar to Monay et al. [21], we
use mAP as evaluation measures. Naturally, we define the automatic annotation as the top
5 semantic words of largest posterior probability, and compute the recall and precision of
every word in the test set.

4.2 Image annotation on Corel5K

In this section, the performance of our model on the corel5k data set for image multi-
label annotation is demonstrated, and the results are compared with some existing image
annotation methods, such as PLSA-WORDS [21], HGMD [17] and DNN [27]. After evalu-
ating the returned keywords in a class-wise manner, the performance of image annotation is
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Table 2 Comparing the classification results of CNN visual features with that of SIFT BoVW feature, which
demonstrates that CNN visual features are more discriminative than traditional SIFT BoVW feature

Method Visual Result on all words mAP

features Precision Recall

PLSA-WORDs BoVW 22.1 12.1 19.1

fc7 27.5 21.7 26.9

FT-fc7 29.3 22.6 27.3

HGDM BoVW 32.1 29.3 26.3

fc7 36.4 30.5 29.7

FT-fc7 37.6 32.9 30.9

DNN FT-fc7 42.5 40.5 40.7

CNN-ECC(our) FT-fc7 47.7 43.6 44.9

evaluated by comparing the automatically generated results with the original manual anno-
tations. Similar to Monay F et al. [21], the recall and precision of every word in the test set
is computed, and their mean is used to summarize the system performance.

Table 2 reports results of several models on the set of all 260 words which occur in
the training set. Data in precision and recall columns denotes mean precision and mean
recall of each word. The off-the-shelf CNN features (i.e. fc7 and FT-fc7) obtain signif-
icant improvements (7.8% based on PLSA-WORDS, 3.4% based on HGDM) compared
with these traditional feature learning methods. After fine-tuning, a further improvement
(8.2% based on PLSA-WORDS, 4.6% based on HGDM) can be achieved with the best per-
formance of the CNN visual features FT-fc7. Annotations of several images obtained by
proposed method annotation system are show in Fig. 2. We can see that annotations gen-
erated by CNN-ECC are more accurate than HGDM in most cases. To intuitively compare
with precision and recall of various methods, the Fig. 3 presents the precision-recall curves
of several annotation models on the Corel5k data set. As is shown in Fig. 3, CNN-ECC per-
forms consistently better than other models, where the precision and recall values are the
mean values calculated based on all words.

Fig. 2 Comparison of annotations made by HGDM and CNN-ECC on Corel5k
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Fig. 3 Precision–recall curves of several models for image annotation on Corel5K

4.3 Cross-modal annotation on pascal VOC 2007

In this experiment, we compare our method with several different methods in image classi-
fication and annotation tasks. The results of the experiment demonstrates redesigned CNN
powerful ability as a universal representation for various recognition tasks. Particularly, the
extracted CNN features have strong capacity of the image features’ representation based on
the good experimental results on Corel 5K. So the results on Pascal 07 only compare with
deep features (i.e. fc7 and FT-fc7). Table 3 reports our experimental results of state-of-the-
arts and CNN-ECC on Pascal VOC2007 data set. Because Pascal VOC 2007 is a multi-label
data set, the cross-modal retrieval based on the criterion that it’s regarded as a relevant
result, if the retrieved result shares as least one class label with the query is implemented.
We compare our approach with HGDM [17], GHM [31], AGS [4], NUS [29] and DNN [27]
for image classification and annotation tasks. It reported the classification results on Pas-
cal 2007, which achieved the state-of-the-art performance. As shown in Table 3, compared
with HGDM, the proposed CNN-ECC has an improvement of 6.1%. Both pre-trained on the
ImageNet dataset with 1,000 classes, CNN-ECC gives a more competitive result compared
with DNN (79.1% vs. 73.0%).

After evaluating the off-the-shelf CNN and our fine-tuned ones in different number of
training epochs, our different strategies for different feature selection are evaluated inde-
pendently in order to decompose the benefit of each ingredient. Finally, a comparison with
the traditional method is performed, and the same training data is trained exactly as the
ones used in our architecture. The results in Fig. 4 show that CNN features with robust fea-
ture representation ability, both acquire a consistent increase in the performance. However,
we notice that oscillation of the error in the validation set from early epochs, which maybe
imply over-fitting. Considering this situation, we draw on the experience of Prechelt [24],
which employs early stopping when training model. It indicates we will stop training model,
if the predict results of the model in a certain number of iterations do not improve. As shown
in Fig. 4, by training on target dataset, the error in the validation set gradually level off.

Table 4 shows our experimental results compared with the state-of-the-arts on Pascal
VOC 2007. The results imply a comprehensive measure of annotation and retrieval accuracy.
Obviously, CNN-ECC similarly obtains significant improvements based on extracted CNN
visual features (e.g., fc7and FT-fc7).
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Table 3 Image classification results on Pascal VOC 2007

HGDM GHM AGS* NUS* DNN* CNN-ECC*

aero 61.3 76.7 82.2 82.5 91.2 92.7

bike 57.6 74.7 83.0 79.6 81.4 83.1

bird 51.1 53.8 58.4 64.8 82.1 86.7

blt 39.8 40.4 76.1 73.4 51.6 53.7

boat 63.9 72.1 56.4 54.2 81.1 83.1

bus 58.2 71.7 77.5 75.0 84.4 86.6

car 63.5 83.6 88.8 77.5 83.9 85.1

cat 44.7 66.5 69.1 79.2 54.5 54.5

chair 41.6 52.5 62.2 46.2 61.0 67.6

cow 43.9 57.5 61.8 62.7 61.0 67.6

dog 36.8 51.1 64.2 41.4 72.3 73.2

hrs 59.7 81.4 51.3 74.6 74.9 78.7

mbk 63.7 71.5 85.4 85.0 75.6 79.1

per 71.2 86.5 80.2 76.8 83.7 86.6

plant 62.1 36.4 91.1 91.1 47.4 51.7

shp 46.9 55.3 48.1 53.9 71.7 74.3

sofa 38.2 60.6 61.7 61.0 60.0 63.2

tabel 51.8 62.8 67.7 67.5 53.8 67.2

train 62.1 80.6 86.3 83.6 88.3 91.5

tv 51.2 57.8 70.9 70.6 79.4 80.4

mAP 53.5 64.7 71.1 70.5 73.0 79.1

DNN is the popular OverFeat representation. * indicates methods using additional data (i.e., ImageNet) for
training

Fig. 4 Influence of the number of three methods used for CNN fine-tuning. Performance is evaluated on
Pascal 07 dataset
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Table 4 Image annotation
results on Pascal VOC 2007 Visual features mAP

HGDM [17] – 26.3

GHM [31] – 32.7

AGS* [4] – 49.6

NUS* [29] – 50.4

DNN* [27] – 53.7

CNN-ECC(our)* FT-fc7 61.3

* indicates methods using
additional data (i.e., ImageNet)
for training. (The “-” means to
use their method)

On the one hand, our feature learning strategy directly optimizes visual features when
extracting features from image, and applying the fine-tuned networks to enhance feature
representation. By integrating multi-instance learning in CNN, that is, first regarding each
object as a region vector and then aggregating, performance is significantly enhanced. On
the other hand, the ensembles of classifier chains can learn semantic association between
different labels, which can effectively avoid generating redundant labels when resolving
multi-label classification task. In summary, the advanced performances of our methods not
only are due to the feature representation, also come from feature learning and semantic
discrimination learning. By comparing results with other methods, the CNN-ECC image
semantic annotation system outperforms many state-of-the-art approaches, which proves
that the redesigned CNN and the ensembles of classification classifiers are separately effec-
tive in learning visual features and semantic concepts of images. By comparing with the
other state-of-the-art for cross-media image annotation and retrieval, Tables 2 and 4 sepa-
rately show the comparison in terms of rigid and articulated visual features among Corel5k
and Pascal 2007. It proves that the extracted features from redesigned CNNs outperform
almost all the original hand-crafted features. For image annotation, the ECC shows a strong
learning ability of semantic association. Figures 2 and 4 show CNN-ECC system automat-
ically generate semantic annotation. When it annotates image by multi-label, it is more
reliable than other methods.

5 Conclusion

This paper proposes a hybrid method based on CNN for cross modal semantic instance
annotation. Firstly, we utilize the trained reconstructed convolution neural networks to
extract visual features. Secondly, ensembles of classier chains are trained based on obtained
visual feature and corresponding text labels for semantic learning. At last, based on the
whole model, the semantic annotation task is completed. In comparison to many state-of-
the-art approaches, experimental results show that our method achieves superior results in
the tasks of image classification and annotation on Corel5K and Pascal VOC 2007, there-
fore re-designed CNN model and ensembles of classifier chains can effectively improve
image annotation accuracy.

However, in the process of learning visual features, CNN-ECC only employs single
convolution neural network but not fully understanding multi-instances in the image. Fur-
thermore, owing to the semantic gap between cross-modal data, how to mine the high-level
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semantic relevance between the tags is a wholly worthwhile task. In future research, we aim
to take semi-supervised learning based on a large number of unlabeled data to improve its
effectiveness.
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