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Abstract The present study introduces an efficient algorithm for automatic segmentation and
detection of mass present in the mammograms. The problem of over and under-segmentation of
low-contrast mammographic images has been solved by applying preprocessing on original
mammograms. Subtraction operation performed between enhanced and enhanced inverted mam-
mogram significantly highlights the suspicious mass region in mammograms. The segmentation
accuracy of suspicious region has been improved by combining wavelet transform and fast fuzzy
c-means clustering algorithm. The accuracy of mass segmentation has been quantified by means
of Jaccard coefficients. Better sensitivity, specificity, accuracy, and area under the curve (AUC)
are observed with support vector machine using radial basis kernel function. The proposed
algorithm is validated on Mini-Mammographic Image Analysis Society (MIAS) and Digital
Database for Screening Mammography (DDSM) datasets. Highest 91.76% sensitivity, 96.26%
specificity, 95.46% accuracy, and 96.29% AUC on DDSM dataset and 94.63% sensitivity,
92.74% specificity, 92.02% accuracy, and 95.33% AUC on MIAS dataset are observed. Also,
shape analysis of mass is performed by using moment invariant and Radon transform based
features. The best results are obtained with Radon based features and achieved accuracies for
round, oval, lobulated, and irregular shape of mass are 100%, 70%, 64%, and 96%, respectively.
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1 Introduction

Cancer is a problem of extreme significance with social and financial implications to the public
health. Different kinds of cancers have been already reported in literature and can be classified
by the type of cells that are initially affected. Breast cancer is the major health issue among
women. Early detection of breast cancer can be achieved by mammography techniques which
allow the visualization of tissue structure of the breast. Various types of lesions present in
mammograms can be classified as micro-calcification, mass, architectural distortion, and
bilateral asymmetry. Detection of micro-calcification has achieved a high degree of accuracy
[27, 35]. Automatic mass segmentation is the crucial task due to (a) the presence of back-
ground information in the mammograms; (b) variability in the mass size, mass shape, and
margin; and (c) breast tissue density. Hence, the accuracy obtained through automatic mass
detection needs further improvement. Interestingly enough, local segmentation of mass has
been done by manually cropping the mass regions [8, 13, 46].

Several techniques have already been applied for automatic mass detection by several
authors [2, 5, 22]. The range of sensitivity in these works varies between 80% to 95% with
0.31 to 4.8 false positive per image (FP/I). Various approaches for mass segmentation is
categorized as unsupervised and supervised [33]. Unsupervised segmentation includes region
based, contour based, and clustering based techniques. Region based methods employ region
growing, spilt, and merges techniques. Edge information is utilized in contour based approach
to identify the suspicious region [19, 23]. Mass segmentation using density weighted
contrast enhancement and Laplacian-of-Gaussian edge detector is carried out by Petrick
et al. [36, 37]. Pattern matching approach is used in model-based mass segmentation. Ng
and Bischof, Che et al., and Constantinidis et al. applied cross-correlation method for
mass detection [6, 9, 28]. Information clustering based algorithm for mass detection is
proposed by Cao et al. [4]. Segmentation of mass region with growing neural gas
network algorithm has been proposed by Oliveira et al. [32]. A sensitivity of 89.3%
has been achieved by applying the support vector machine (SVM) with Riply’s k-
function on 997 mammograms of Digital Database for Screening Mammography
(DDSM) dataset. Nunes et al. applied k-means clustering and template matching tech-
niques for mass segmentation [30]. The classification accuracy of 83.94% along with
83.24% sensitivity and 84.14% specificity is observed with geometry and texture based
Simpson’s diversity index features. Sampaio et al. applied the cellular neural network
based mass segmentation with shape and geostatic based texture features [39]. Sensitivity
of 80% with 0.84 FP/I is obtained by using SVM classifier to classify as mass and non-
mass. Combination of wavelet and genetic algorithm based mass detection is employed
by Pereira et al. [35]. Sensitivity of 95% is reported on testing with 640 images of
DDSM dataset. Kurt et al. applied Otsu as well as Havrda & Charvat thresholding
techniques for mass detection [24]. The proposed technique obtained 93% sensitivity
with 96 mammograms of Mini-Mammographic Image Analysis Society (MIAS) dataset.
Jen et al. proposed automatic mass detection by using morphological image processing
techniques. Sensitivity values of 88% and 86% are reported for sample images of DDSM
and MIAS dataset respectively, by using intensity based features and principle compo-
nent analysis (PCA) [20]. Classification between malignant and non-malignant mass
using Zernike based features and SVM classifier is carried out by Sharma and Khanna
[41]. Fractal dimension is applied by Nguyen and Rangayyan for shape analysis of
masses to determine its malignancy [29]. Surendiran and Vadivel employed region based
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features for shape analysis of mass to differentiate it as benign and malignant [43].
Moment invariant and Radon based features for shape analysis of micro-calcification are
employed by Bocchi and Nori [3].

The purpose of this study is to develop an efficient algorithm with reduced compu-
tational time, by applying key image processing techniques in a way which improves the
overall segmentation and classification accuracy. Segmentation of suspicious mass region
is performed by fast fuzzy c-means (FCM) clustering in which histogram of pixel
intensity values of images are used instead of actual pixel intensity values for clustering.
Texture based features, namely first and second order statistical features using gray level
co-occurrences matrix (GLCM), gray level run length matrix (GLRLM), and local binary
patterns (LBP) have been used for classification of suspicious region as mass or non-
mass. After detection of mass regions, shape analysis of mass has been carried out to
classify it as benign or malignant.

The present study is structured into the following sections. The proposed methodology is
introduced in Section 2. Classification of mass shape is described in Section 3. Validation of
algorithm and experimental results are discussed Section 4. Conclusion and future work are
presented in Section 5.

2 Proposed methodology

Block diagram of the proposed methodology is presented in the Fig. 1. It consists of
various steps, i.e., preprocessing, mass segmentation, feature extraction of segmented
mass, feature selection and classification. Each step is briefly described in the
following subsections.

Training

Testing

Mass

Preprocessing 

Enhancement
(Unsharp masking)

Breast Region
identification

Inversion Enhancement
(Unsharp masking)

Subtraction

Noise removal
(Median filtering)

Feature extraction 
and Selection

SVM classification

Mammogram 
Dataset

Mass Segmentation
(Fuzzy c-means)

Query 
Mammogram

Features

Non-Mass

Fig. 1 Block diagram of the proposed algorithm
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2.1 Preprocessing

Mammograms consist of patient’s information, labels and artifacts. Preprocessing operation is
executed for breast region identification and to remove undesirable information from the
original mammogram. At first, binarization is achieved by using global thresholding method
to identify the breast area. Background information and labels are removed by employing the
morphological opening operation [15]. A BSquare^ structuring element of 12 pixel width is
applied for morphological opening operation in the present work. Further, object labeling is
performed by applying connected component labeling technique. Breast area is the largest
connected object and it is superimposed on the original mammogram to obtain the artifacts free
mammogram. Artifacts free mammogram is inverted. Further, unsharp masking is applied to
enhance low contrast mammograms [15]. The enhanced inverted and artifacts free mammo-
gram is subtracted from enhanced artifacts free mammogram to obtain the subtracted mam-
mogram. Overall noise present in the subtracted image is removed by applying median
filtering of 3 × 3 neighborhood.

2.2 Mass segmentation

This step consists of wavelet decomposition and segmentation of suspicious mass region.
Frequency and temporal information can be obtained by wavelet transformation. The filtered
image IF is decomposed by using wavelet transform which produces four coefficients, i.e.,
approximation, vertical detailed, horizontal detailed, and diagonal detailed coefficients. Mother
wavelet functions are used as a basis function which produces set of other functions by
applying dilation and translation operations. The scaled and translated basis functions φj , l ,

p(a, b) and ϕi
j;l;p a; bð Þ are expressed as [15]:

φ j;l;p a; bð Þ ¼ 2
j

.
2
φ 2 ja−l; 2 jb−p
� � ð1Þ

ϕi
j;l;p a; bð Þ ¼ 2

j

.
2
ϕi 2 ja−l; 2 jb−p
� �

; i ¼ h; v; df g ð2Þ
here, h , v , d represents the detailed coefficients in horizontal, vertical, and diagonal directions,
respectively. Integer variables j , l , p scale and dilate the mother wavelet. Index j is scaling
parameter while l and p are translation parameters. 2-D wavelet transform of an image IF(a, b)
of size L × P can be represented as:

Approximated coefficients : Wφ j0; l; pð Þ ¼ 1ffiffiffiffiffiffi
LP

p ∑
L−1

a¼0
∑
P−1

b¼0
I F a; bð Þφ j0;l;p

a; bð Þ ð3Þ

Detailed coefficients : Wi
ϕ j; l; pð Þ ¼ 1ffiffiffiffiffiffi

LP
p ∑

L−1

a¼0
∑
P−1

b¼0
I F a; bð Þϕi

j;l;p a; bð Þ; i ¼ h; v; df g ð4Þ

here, j0 is an arbitrary starting scale. Daubechies-4 wavelet decomposition is used in
the present work. Approximation coefficients of level-1 are used for segmentation of
suspicious mass.
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A mammogram is divided into homogeneous and non-homogeneous regions to locate
the suspicious region-of-interest (ROI). Mass detection accuracy depends on the proper
segmentation of ROI. FCM gives optimal number of partitioning [34]. It returns the
value between 0 and 1 which represents the degree of membership between each data
and cluster center. Image pixels are represented as one-dimensional feature vector for
clustering.

The purpose of FCM is to minimize the group sum of squared error objective function JFCM

JFCM ¼ ∑
n

j¼1
∑
c

r¼1
ukrjd

2 x j; vr
� � ð5Þ

where I = x1 , x2 , x3 . … … xn ⊆ Rm represents the set of pixel values in vector space of m
dimension, n denotes the number of pixel values, and c represents the number of clusters and
its values lies between 2 ≤ c < n. Degree of fuzzy membership of pixel xj in the rth cluster is
represented by urj, k denotes the weighting exponent to control the fuzziness of member
function, vr denotes the prototype of cluster center r, and the distance between jth pixel xj and
rth cluster center vr is given by d2(xj, vr). The similarity between pixel value and cluster center
is measure by Euclidean distance [34]. Objective function is minimized by updating the cluster
center vr and membership value urj

urj ¼ ∑
c

s¼1

d2 x j; vr
� �

d2 x j; vs
� �

 ! 2
k−1

0
@

1
A

−1

; 1≤ j≤n; 1≤r≤c ð6Þ

v j ¼
∑
n

j¼1
ukrj:x j

∑
n

j¼1
ukrj

; 1≤r≤c ð7Þ

Here suspicious region is segmented from the approximated image by employing fast fuzzy
c-means (FFCM) clustering algorithm. In FFCM algorithm, histogram of the pixel value is
created and subsequent iterations of FCM clustering are updated by using the histogram
instead of actual pixel values. The histogram is defined as small number of bins which are
fixed. The runtime of iteration can be reduced by using histogram bins in clustering step. We
can easily identify the cluster assigned to pixel value, because a unique correspondence exists
between pixel value and mapped histogram bin. The value of cluster center and weighting
exponent are taken as 3 and 2 respectively in the present work. Cluster 3 map is further used
for ROI extraction.

2.3 Feature extraction of segmented mass and feature selection

Feature extraction step is used to characterize the segmented suspicious mass region.
Textural features play a significant role to extract the meaningful information from
mammograms [12, 14, 44]. Texture features contain spatial relationship among pixels
and gray value variations in the suspicious region. Following textural features are
extracted from suspicious regions.
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2.3.1 First order statistical features

Six first order statistical features, i.e., mean, average contrast, skewness, kurtosis, energy, and
entropy are extracted from the segmented suspicious regions [26].

2.3.2 Gray level co-occurrences matrix features (GLCM)

Second-order features are generated by GLCM [16]. GLCM represents intensity distribution
and the relative positions of neighboring pixels. Fourteen GLCM features, i.e., energy, entropy,
contrast, correlation, auto-correlation, maximum probability, homogeneity, variance, sum
variance, sum entropy, sum average, difference variance, information measure of correlation1,
and information measure of correlation2 are extracted for four orientations (00,450,900,1350)
from the segmented regions.

2.3.3 Gray level run length matrix features (GLRLM)

GLRLM calculates the number of gray level runs of various length [45]. Seven GLRLM
features, i.e., short run emphasis, long run emphasis, gray level distribution, run percentage,
short run low gray level emphasis, long run high level emphasis are also extracted for four
directions (00,450,900,1350).

2.3.4 Local binary pattern (LBP)

LBP performs rotation invariant textural analysis [25, 31] to describe the local texture property
of ROI. In basic LBP, image pixels are labeled by taking the thresholding on 3 × 3 neighbor-
hood of each pixel with the center pixel value and get the binary number. LBP operator can
also be used for circular neighborhood [31, 45]. Considering M sampling points and Q radius
of neighborhood, the sampling points around pixel (a, b) lie at coordinates

am; bmð Þ ¼ aþ Qcos
2πm
M

� �
; b−Qsin

2πm
M

� �� �
ð8Þ

Pixel value is bilinearly interpolated when sampling point does not belong to integer
coordinates. LBP code for the center pixel of an image I(a, b) is computed by summation of
the binary string which is weighted by power of two as:

LBPM ;Q a; bð Þ ¼ ∑
M−1

m¼0
r I a; bð Þ−I am; bmð Þ2m
� ��

ð9Þ

r(y) represents the thresholding function with value 1 if y ≥ 0, otherwise 0.
The labeling of pixel values depends on the size of neighborhood M. Different 2m

combinations of binary strings can be generated in each neighborhood. Total 36 rotation
invariants pattern can be obtained from combination of 28 binary strings by consideringM= 8.
The whole procedure of LBP generation for circular neighborhood of radius q = 1 and
neighboring pixels M = 8 is presented in Fig. 2. Rotation invariant LBP is achieved by
specifying the minimum value of the binary string which gives unique bit sequences. Basic
LBP pattern is extended into uniform pattern in case of circular bit pattern which consists of at
most 2 bitwise transitions from 1 to 0 or 0 to 1. Histogram labeling is computed after labeling
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of each pixel with LBP codes and used as a texture descriptor. Basic LBP produces 256 texture
descriptor based on 3 × 3 neighborhood. Uniform, rotation invariant, and rotation invariant
uniform LBP generate 59, 36, and 10 descriptors, respectively. Rotation invariant uniform
LBP is extracted from segmented ROI in the present work.

A feature vector of 102 dimensions is created, which includes 7 first order statistical
features, 56 GLCM, 28 GLRLM, and 10 LBP features. Features are rescaled with zero mean
(μ) and unit variance (σ) with the Z-score normalization as:

Z‐score ¼ x‐μ
σ

ð10Þ

Further, dimensionality reduction of feature vector is performed by applying PCA to get
accurate result in less computation time [21]. PCA mathematically transforms the correlated
features into small number of uncorrelated features which are called principle components
(PC). First principle component shows the high variability and succeeding components show
remaining variability.

2.4 Classification

Segmented ROIs are classified as mass or non-mass regions by employing SVM, which is a
supervised machine learning classifier [10]. Reduced feature vector from feature selection step
is given as input data to the SVM classifier. It creates support vectors to identify the boundaries
between mass and non-mass. Support vector determines the position of the hyperplane. SVM

(a)                                                  (b)

40

92

72

85

10

96

90

85

10

0

1

0

0

0

1

1

176

0

Fig. 2 (a) Pixel values in circular neighborhood of radius Q=1, M = 8 (b) Produced binary string is 00001101
(the order of pattern creation is indicated by arrow). The LBP label is computed as LBP8,1=0 × 2

0 + 0 × 21 + 0 ×
22 + 0 × 23 + 1 × 24 + 1 × 25 + 0 × 26 + 1 × 27 = 176

Table 1 Parameter details for SVM kernel function

Kernel Function Parameters values used for experiment

RBF Sigma(σ)=1.1, Box Constrains (C) = 0.9
Polynomial Poly-order =3
MLP Default-Scale [−1, +1]
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classifier is tested with various kernel functions, i.e., RBF, linear, polynomial, and MLP. The
parameters used for different SVM kernel function are shown in Table 1.

3 Shape analysis

Breast imaging reporting and data system (BI-RADS) introduced by Radiology department of
American college reported various categories of masses according to shape, size, and density
[1]. According to this classification, shape of the masses is round, oval, lobulated,
microlobulated, ill-defined, and architectural distortion. Benign masses are characterized with
round or oval shape with circumscribed margin. Malignant masses are characterized with
irregular shape and ill-defined margin as shown in Table 2.

Segmented masses are further processed for analysis of various shapes of mass. Analysis of
mass shape is a significant step to evaluate the malignancy of the lesion. Classification of
masses in four categories namely round, oval, lobulated, and irregular masses is evaluated by
using two different sets of features. First set uses rotation and translation invariant features
computed from second and third order moment of inertia. Second set of features uses radon
descriptor, which is rotation and scale invariant of the image. Multi-class SVM is used to
assign each mass into one of the four classes. Same classifier is used for both set of features
and the performance of both feature sets has been compared.

3.1 Moment invariant features

Moment invariants provide the shape characteristics of an object. Rotation invariant Hu
moments are used for translation, scale, and rotation invariant pattern identification [17]. Seven
moment invariant features extracted from segmented masses are given below, where μ repre-
sents central moment of the objectI(a, b), and (p + q)denote order of moments(p, q = 0, 1, 2…).

φ1 ¼ μ20 þ μ02;φ2 ¼ μ20−μ02ð Þ2 þ 4μ11

φ3 ¼ μ30−3μ12ð Þ2 þ 3μ21−μ03ð Þ2
φ4 ¼ μ30þμ12

� �2 þ μ21 þ μ03ð Þ2
φ5 ¼ μ30−3μ12ð Þ μ30 þ μ12ð Þ μ30 þ μ12ð Þ2− μ21 þ μ03ð Þ2

h i
þ 3 μ21−μ03ð Þ μ21 þ μ03ð Þ

� 3 μ30 þ μ12ð Þ2− μ21 þ μ03ð Þ2
h i

φ6 ¼ μ20−μ02ð Þ μ30 þ μ12ð Þ2− μ21 þ μ03ð Þ2
h i

þ 4μ11 μ30þμ12

� �
μ21 þ μ03ð Þ

φ7 ¼ 3μ21−μ03ð Þ μ30 þ μ12ð Þ μ30 þ μ12ð Þ2−3 μ21 þ μ03ð Þ2
h i

− μ30−3μ12ð ÞÞ μ21 þ μ03ð Þ

� 3 μ30 þ μ12ð Þð 2− μ21 þ μ03ð Þ2
h i

Where

μpq ¼ ∫−∞þ∞∫
−∞
þ∞ að Þp bð ÞqI a; bð Þdadb

3.2 Radon transform

Rotation and scale invariant properties of image can be obtain by Radon descriptor which is
useful for shape analysis of mass [11]. Radon transform is used in various applications such as
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image reconstruction, face recognition, and object identification. Radon transform of an image
I(a, b)can be expressed as:

Pφ ρð Þ ¼ ∫
þ∞

−∞
I a; bð Þδ acosφ−bsinφ−ρð Þ ð11Þ

It gives the projection of an image I(a, b)along different value of φ and projection line.
Radon transform maps the Cartesian co-ordinate (a, b)into a polar coordinate(ρ,φ). Complete
representation of the image can be obtained by computing the radon transform for each value
of φ and ρ.Radon transform of the segmented mass is computed for 180 values of φ, i.e.,φ= 0,
1, 2….179. Energy of each projection is computed as:

EN1 ¼ ∫
þ∞

−∞
P2
θn

� �
dρ ð12Þ

Rotation and scale invariant feature vector of energy is obtained by normalizing it with
respect to the largest component of the energy. Elements of the features are rotated until the
largest element becomes the first element. Due to rotation, the first element of feature is 1 and
other elements are in the range between 0 and 1.

4 Experiments and results

Privacy issue is the major constraint in acquiring medical images for experimentation. Publicly
available MIAS and DDSM data sets are used to validate the proposed methodology [38, 42].
Total 322 mediolateral oblique (MLO) views of mammograms are available in MIAS dataset.
All mammograms are digitized with 1024 × 1024 pixels resolution and 256 Gy levels. The
information about the location of abnormalities like the center of a circle surrounding the
tumor, its radius, breast position (left or right), type of breast tissues (fatty, fatty-glandular, or
dense), and tumor type if exists (benign or malign) are present in the dataset. 2620 cases with
contrast resolution of 12-bits and 16-bits are available in the DDSM dataset. It also contains
patient age, screening exam date, and date on which mammograms have been digitized. Pixel
level ground truth of abnormalities is also given. Experiments have been performed using 60
mass containing mammogram sample from MIAS dataset and randomly chosen 700 mam-
mogram samples from the DDSM dataset. Complete description of selected sample mammo-
grams from DDSM and MIAS dataset has been given in Table 3. Scaling of all sample images

Table 2 Mass with different shape and margins

Shape Type of malignancy

Round Benign

Oval Benign

Lobulated/microlobulated Malignant

Irregular/illdefined/architectural distortion Malignant
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of DDSM dataset to 1024 × 1024 pixels is done by applying nearest neighbor interpolation
method. Proposed algorithm has been implemented on MATLAB® 2012a, 3.2GHz processor
with 4GB RAM.

4.1 Results of mass detection

Intermediate results of various operation performed in breast region extraction step are shown
in Fig. 3. The original mammogram, binarized image, opened image after performing mor-
phological opening, and extracted breast region are shown in Fig. 3(a-d), respectively. Fig 3
clearly shows that breast region extraction and removal of background information has been
done successfully. Fig 4(a-d) show the enhanced extracted breast region mammogram after
applying unsharp masking operation, inverted mammogram, enhanced inverted mammogram,
and subtracted mammogram, respectively. The suspicious region is visually improved in the
subtracted images as compared to the original image. Subtraction operation is a significant step
to highlight the suspicious region and suppress breast tissues. It helps to segment the
suspicious region accurately.

Filtered image, segmented mammograms using FFCM with cluster 1, cluster 2 and cluster
3, and class membership and class assignment of pixel intensity values in FFCM are presented
in Fig. 5(a-e), respectively. Segmentation results show that better segmentation of suspicious
region is found in cluster 3.

Description of some randomly chosen sample mammograms of MIAS and DDSM dataset
are given in Table 4. Mass segmentation results for both benign and malignant sample
mammogram images of MIAS and DDSM dataset are given in Fig. 6 and Fig. 7, respectively.
Mass regions are encircled and shown in the original mammograms. It can be seen from the
Fig. 6 and Fig. 7 that proposed algorithm can segment various types of benign and malignant
masses from mammograms with different breast tissue density.

Segmentation accuracy is quantified in terms of Jaccard similarity co-efficient [7] which is
expressed as:

Jaccard P;Qð Þ ¼ P∩Qð Þ
P∪Qð Þ ð13Þ

Here, P is ground truth of mass region and Q is segmented mass region obtained by the
proposed algorithm. Jaccard value 0 indicates no common area between segmented region and
ground truth region and value 1 indicates maximum overlap. Jaccard values of randomly
chosen sample images of MIAS and DDSM datasets are presented in Fig. 8(a) and 8(b),
respectively. Average value of Jaccard coefficients on selected set of sample images of DDSM
and MIAS is obtained as 0.90 and 0.88, which is considerably good. Also, CPU time taken by
FFCM and conventional FCM for randomly chosen sample mammograms of MIAS and
DDSM is presented in Table 5. It can be seen that the FFCM is computationally efficient as
compared to FCM algorithm.

Table 3 Sample mammograms used for experiment

Data set Circumscribed Spiculated Ill-defined Micro-lobulated Obscured Mixed

DDSM 200 160 100 100 70 70
Mini-MIAS 25 20 15
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Performance of the classifier is measured in terms of sensitivity, specificity, accuracy, and
area under curve (AUC). Sensitivity measures the proportion of actual mass which are
correctly identified as mass. Specificity measures the proportion of actual non-mass which is
correctly identified as non-mass. These are expressed as follows:

Sensitivity ¼ TP

TP þ FN
ð14Þ

Specificity ¼ TN

TN þ FP
ð15Þ

Accuraccy ¼ TP þ TN

TP þ TN þ FP þ FN
ð16Þ

here, TP, TN, FP and FN represent the true positive, true negative, false positive and false
negative, respectively. TP represents the number of mass samples that are correctly
classified as mass. TN denotes the number of non-mass samples that are correctly
classified as non-mass. FP represents the number of non-mass samples that are incor-
rectly classified as mass. FN denotes the number of mass samples that are classified as
non-mass. ROC curve is a plot in 2-dimensional space between true-positive rate (TPR)
and false-positive rate (FPR). AUC is measured for the better understanding of ROC.
Performance of SVM classifier with MLP, linear, polynomial and RBF kernel function
on MIAS and DDSM dataset for 10-fold cross-validation is presented in Table 6. Highest

(a) (b) (c) (d)
Fig. 3 Intermediate results for breast region extraction on a sample mammogram from MIAS (a) Original, (b)
Binarized, (c) Opened, and (d) Unlabeled mammogram

(a) (b) (c) (d) 
Fig. 4 Intermediate results for mammogram enhancement on the output from Fig. 3 (a) Enhanced, (b) Inverted,
(c) Enhanced inverted, and (d) subtracted mammogram
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(a) (b) (c) (d)

(e)
Fig. 5 Segmentation results with FFCM algorithm on the sample mammogram from MIAS dataset in Fig. 3 (a)
Filtered mammogram, (b) Cluster1 map, (c) Cluster 2 map, (d) Cluster 3 map, and (e) Class membership and
class assignment

Table 4 Randomly chosen sample mammograms of MIAS and DDSM dataset

Sample images Type of Mass Type of Malignancy Type of Density

MIAS dataset
Mdb028 Circumscribed malignant Fatty
Mdb010 Circumscribed benign Fatty
Mdb021 Circumscribed benign Glandular
Mdb081 Asymmetry benign Glandular
Mdb111 Asymmetry malignant Dense
Mdb134 Ill-defined malignant Fatty
Mdb184 Spiculated malignant Fatty
Mdb202 Spiculated malignant Dense
Mdb206 Spiculated malignant Fatty
Mdb271 Ill-defined malignant Fatty

DDSM dataset
C_0011 Circumscribed malignant Fatty
C_0082 Circumscribed malignant Fatty
C_0088 Microlobulated malignant Glandular
B_3084 Spiculated malignant Glandular
B_3484 Circumscribed benign Glandular
C_0147 Lobulated Malignant Fatty
C_0360 Microlobulated malignant Glandular
C_0156 Spiculated malignant Fatty
C_0131 Circumscribed malignant Fatty
A_1950 Spiculated benign Glandular
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Mdb081

Mdb010

Mdb021

(a) (b) (c) (d)

Mdb134

Mdb184

Mdb271

Mdb111

Mdb202

Mdb206

Fig. 6 Segmentation results obtained with FFCM algorithm on sample mammograms from MIAS dataset. a
Preprocessed mammogram, b Cluster1 map, b Cluster 2 map, and c Cluster 3 map
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C_0011

C_0082

C_0088

B_3084

B_3484

C_0147

C_0360

(a) (b) (c)  (d)

C_0156

C_0131

Fig. 7 Segmentation results obtained with FFCM algorithm on sample mammograms from DDSM dataset. a
Preprocessed mammogram, b Cluster1 map, b Cluster 2 map, and c Cluster 3 map
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sensitivity, specificity, accuracy, and AUC are observed with RBF kernel function. Also,
ROC curves obtained with different kernel functions are shown in Fig. 9.

4.2 Comparison with the existing techniques

Performance comparison of the proposed method with other existing methods is summarized
in Table 7.

The algorithm proposed by Cao et al. achieved 90.7% sensitivity with 2.57 FPI. The
method applied a combination of robust information clustering and adaptive thresholding for
extraction of both breast region and mass region on 60 sample mammograms of MIAS.
Dominguez et al. obtained 80% sensitivity with 2.3 FPI by applying statistically based
enhancement of mammograms and multilevel thresholding based mass segmentation on 57
sample images of MIAS dataset. Sampaio et al. reported 80% sensitivity using SVM classifier
and 10-fold cross validation. The method utilized cellular neural network and geostatic
function for mass detection on 623 mammograms of DDSM dataset. Pereira et al. reported
95% sensitivity on 640 mammogram images of DDSM dataset. They applied multi-
thresholding, wavelet, and genetic based mass segmentation algorithm on both CC and
MLO view of mammograms. Jen and Yu reported sensitivity of 88% and 86% on 200 sample
images of DDSM and 322 sample images of MIAS, respectively. Sampaio et al. reported
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Fig. 8 Jaccard coefficients for sample images from (a) MIAS and (b) DDSM dataset

Table 5 Computation time of FCM and FFCM algorithm

MIAS CPU Time (Sec) DDSM CPU Time (Sec)

FCM FFCM FCM FFCM

Mdb010 18.48 0.51 C_0011 16.2 2.4
Mdb021 17.94 0.5 C_0082 19.31 2.34
Mdb028 19.02 0.63 C_0088 18.03 2.09
Mdb081 19.67 0.71 B_3084 16.01 1.3
Mdb111 18.03 0.4 B_3484 19.89 2.11
Mdb134 16.68 0.52 C_0147 19.01 2.02
Mdb184 16.84 0.41 C_0360 18.15 1.78
Mdb202 17.12 0.42 C_0156 15.27 1.34
Mdb206 18.32 0.4 C_0131 16.61 1.41
Mdb271 18.71 0.53 A_1950 17.91 2.63
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92.99% sensitivity in non-dense and 83.70% sensitivity in dense breast of 1727 mammogram
of DDSM dataset. They utilized genetic algorithm for mass detection system along with
density estimation. Phylogenetic trees and LBP is used as input feature vector for training
and testing of SVM classifier. Sensitivity, specificity, and accuracy of 94.63%, 92.74%,
92.02% have been observed on MIAS dataset, whereas 91.76% sensitivity, 96.26% specificity,
and 95.46% accuracy have been achieved on DDSM data set by proposed algorithm. Prom-
ising results has been achieved by the proposed algorithm as compared to the existing mass
detection techniques.

4.3 Results of shape analysis of mass

Shape analysis of mass is performed using the moment invariant and Radon based features.
Total 270 sample mammograms which contain different shape of mass have been taken from
both MIAS and DDSM datasets for experiment. Sample mammograms include 60 round, 48
ovals, 60 lobulated, and 102 irregular shape masses. Extracted masses of different shapes and
their Radon transforms are shown in Fig. 10(a-h), respectively.

Performance of the proposed feature vectors is evaluated using multi-class SVM with RBF
kernel. Moment invariant and radon based features are used separately for training and testing
of SVM classifier. 180 samples are used for training and 80 samples are used for testing. Total

Table 6 Performance of the proposed method with different kernel functions

Performance Parameters MLP Linear Polynomial RBF

DDSM dataset
Sensitivity (%) 89.09 95.02 95.23 91.76
Specificity (% 83.22 93.90 94.19 96.26
Accuracy (%) 84.27 93.76 93.66 95.46
AUC(%) 90.29 95.87 95.25 96.29

MIAS dataset
Sensitivity (%) 78.23 90.73 91.97 94.63
Specificity (% 90.13 92. 29 90.93 92.74
Accuracy (%) 82.31 91.86 91.63 92.02
AUC (%) 89.63 93.96 94.33 95.33

(b)(a)

MLP Kernel 
Linear
Polynomial
RBF kernel

MLP Kernel 
Linear
Polynomial
RBF kernel

Fig. 9 ROC curve using different kernel function on (a) DDSM dataset (b) MIAS dataset
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80 testing mass images contain 18 round shape, 13 oval, 25 irregular, and 24 lobulated type
masses. Performance comparison of classification is also done by combined set of both the
features. Confusion matrix is shown in Table 8. Shape discrimination power of Radon based
features is more effective than moment based features. Classification accuracy decreases by
using combined features as compared to Radon based features; however, it increases as
compared to moment based features.

5 Conclusions

This work presents an algorithm for fully automatic segmentation and classification of
suspicious regions in the mammograms. Image processing operations have been applied on
mammograms to clearly highlight the suspicious mass region. Multi-resolution based wavelet
decomposition is used to reduce the noise and computational time. Segmentation of suspicious
mass region has been performed by fast FCM clustering algorithm. Less computational time
has been achieved by using the fast FCM as compared to conventional FCM algorithm.
Classification between mass and normal tissues has been done using linear, RBF, polynomial
and MLP kernel function. Highest sensitivity, specificity, and accuracy have been achieved by

Table 7 Performance comparison with the existing approach

Author Features Dataset Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Cao et al. [4] GLCM MIAS 90.7 - -
Dom’ınguez and Nandi [13] Shape and Texture MIAS 80 - -
Sampaio et al. [39] Shape and geostatic

function
DDSM 80 85.68 84.62

Hu et al. [18] - MIAS 91.3 - -
Pereira et al. [35] Wavelet Features DDSM 95 - -
Jen and Yu [20] Intensity based features MIAS 88 84 -
Jen and Yu [20] Intensity based features DDSM 86 84 -
Sampaio et al. [40] Phylogenetic trees, LBP DDSM 92.99 - -
Proposed Texture, Intensity MIAS 94.63 92.74 92.02
Proposed Texture, Intensity DDSM 91.76 96.26 95.46

(a)            (b)             (c) (d)

(e) (f) (g) (h)
Fig. 10 Different shapes of masses (first row) and corresponding Radon transform (second row) (a) Round, (b)
Oval, (c) Lobulated, (d) Irregular
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SVM with RBF kernel function. The classification of various mass shapes has also been
performed using moment invariant and Radon based features. The validation results show that
Radon based features give more accurate results as compared to moment-based features for
discrimination of the shape of mass. In future work, classification accuracy will be enhanced by
extracting new features and classification of different types of benign and malignant masses.
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