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Abstract This paper proposes a new local descriptor for action recognition in depth images
using second-order directional Local Derivative Patterns (LDPs). LDP relies on local deriva-
tive direction variations to capture local patterns contained in an image region. Our proposed
local descriptor combines different directional LDPs computed from three depth maps
obtained by representing depth sequences in three orthogonal views and is able to jointly
encode the shape and motion cues. Moreover, we suggest the use of Sparse Coding-based
Fisher Vector (SCFVC) for encoding local descriptors into a global representation of depth
sequences. SCFVC has been proven effective for object recognition but has not gained
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much attention for action recognition. We perform action recognition using Extreme Learn-
ing Machine (ELM). Experimental results on three public benchmark datasets show the
effectiveness of the proposed approach.

Keywords Action recognition · Local derivative pattern · Sparse coding · Fisher vector ·
Extreme learning machine

1 Introduction

Human action recognition is an important topic of computer vision with many applications,
such as assisted living, smart surveillance, sports video analysis and health monitoring.
Traditional approaches mainly focused on recognizing action in RGB images. However,
these approaches have limitations due to the sensitivity to lighting change and the lack
of structure information of RGB images. Since the introduction of affordable 3D depth
sensing cameras, many approaches for human action recognition in depth images have
been proposed and achieved impressive results. Unlike RGB images, depth images pro-
vide 3D information of the scene which greatly reduces depth ambiguity. Depth sensors
are also insensitive to lighting change, which enables human action recognition under vary-
ing lighting conditions. Existing approaches for action recognition in depth images can be
broadly grouped into three main categories: skeleton-based, depth map-based and hybrid
approaches. Yang and Tian [40] learned EigenJoints from differences of joint positions and
used Naı̈ve-Bayes-Nearest-Neighbor [2] for action classification. Vemulapalli et al. [35]
used rotations and translations to represent 3D geometric relationships of body parts in
a Lie group [25], and then employed Dynamic Time Warping [24] and Fourier Tempo-
ral Pyramid [38] to model the temporal dynamics. Evangelidis et al. [8] proposed skeletal
quad which describes the positions of nearby joints in the human skeleton and used Fisher
Vector (FV) [31] for feature encoding. Wang et al. [36] represented actions by histograms
of spatial-part-sets and temporal-part-sets, where spatial-part-sets are sets of frequently co-
occurring spatial configurations of body parts in a single frame, and temporal-part-sets are
co-occurring sequences of evolving body parts. This approach has been shown to be robust
to ambiguous poses. Luo et al. [21] proposed a dictionary learning approach where group
sparsity and geometry constraint were incorporated to increase the discriminative power. A
temporal pyramid matching scheme was used to keep the temporal information in action
descriptors. Du et al. [7] divided the human skeleton into five parts, and fed them to five
subnets of a recurrent neural network [32]. The representations extracted by the subnets at
a layer were hierarchically fused to be the inputs of higher layers. Once the final repre-
sentations of skeleton sequences have been obtained, actions were classified using a fully
connected layer and a softmax layer. This approach requires low computational cost and
can be used for online applications. While most of skeleton-based approaches produce low-
dimensional action descriptors, their limitation is that they rely on skeleton tracking which
is unreliable when depth images are noisy or occlusions are present. Moreover, in sce-
narios where there are interactions between human and objects, features extracted from
3D joint positions cannot capture all the discriminative information for effective action
recognition.

Depth map-based approaches usually rely on low-level features from the space-time vol-
ume of depth sequences to compute action descriptors. Compared to skeleton-based ones,
they do not require a skeleton tracker and thus can be used for more general scenarios.



Multimed Tools Appl (2018) 77:8531–8549 8533

Li et al. [18] proposed a bag of 3D points to capture the shape of the human body and used
an action graph [17] to model the dynamics of actions. In order to reduce the computational
cost, only points on the contours of the projections of depth sequences on three orthogonal
Cartesian planes were used. This approach has been shown to be robust to occlusion. Yang
et al. [41] extracted HOG descriptors [23] from Depth Motion Maps (DMMs) obtained by
projecting depth sequences onto three orthogonal Cartesian planes. Chen et al. [5] proposed
a real-time approach that used Local Binary Pattern (LBP) [27] computed for overlapped
blocks in the DMMs of depth sequences to create action descriptors. Action decision-level
fusion. These approaches have limitation as the temporal order of shape and motion cues
is ignored by projecting the whole sequence into one image for each plane. In order to
address this issue, Liang et al. [19] proposed layered depth motion (LDM) feature which
improved DMMs by computing the energy of the motion history at multilayered tempo-
ral intervals. In this way, the temporal order of shape and motion cues is also taken into
account in LDM, although this temporal order is not fully captured. Kurakin et al. [15] pro-
posed cell occupancy-based and silhouette-based features which were then used with action
graphs for gesture recognition. This approach can give real-time performance. However, the
motion cue is ignored in action descriptors and it is only applicable to hand gesture recog-
nition. Wang et al. [37] introduced random occupancy patterns which were computed from
subvolumes of the space-time volume of depth sequences with different sizes and at differ-
ent locations. This approach has the same limitation as that of [15] since the motion cue
is not encoded into action descriptors. In order to overcome the limitations of the above
approaches, Oreifej and Liu [28] and Yang and Tian [39] relied on surface normals in 4D
space of depth, time, and spatial coordinates to jointly capture the shape and motion cues
in local descriptors. These approaches and ours share a similar idea in that derivatives of
depth values along the spatial and temporal dimensions are used to jointly encode the shape
and motion cues. However, our approach exploits different directional derivatives to obtain
a richer descriptor than these approaches. Moreover, we rely on binary patterns to encode
the relationship of directional derivatives at the neighbourhood of each pixel. Thus, our
proposed action descriptor is more informative while remaining relatively compact for effi-
cient action recognition. Song et al. [33] constructed action descriptors from local surface
patches extracted around trajectories of interest points in depth sequences. This approach
requires RGB images to track interest points and thus is not applicable when only depth
images are available. Rahmani and Mian [30] proposed a view-invariant approach by learn-
ing a deep convolutional neural network that represents different human body shapes and
poses observed from numerous viewpoints in a view-invariant high-level space.

Hybrid approaches combine skeletal data and depth maps (or features which can be
easily extracted from depth maps). Chaaraoui and Padilla-Lopez [4] combined normal-
ized 3D joint positions and a radial silhouette-based feature to create action descriptors.
This approach simply concatenates the joint-based and silhouette-based features to form
the final action descriptor, which is an ad hoc solution. Zhu et al. [44] fused spatio-
temporal features based on 3D interest point detectors and joint-based features using
pair-wise joint distances in one frame and joints difference between two consecutive
frames. This approach uses Random Forest [3] for feature fusion instead of using an
ad hoc solution as the approach of [4]. However, it heavily depends on joint-based fea-
tures as its performance drops when only spatio-temporal features are used. Wang et al.
[38] introduced local occupancy patterns computed in spatio-temporal cells around 3D
joint positions appearance of these joints. Since local features are extracted around 3D
joint positions, this approach critically depends on skeleton tracking to construct action
descriptors.
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Our approach is closely related to the approaches of [26, 43]. These approaches rely on
the concept of spatio-temporal slices to build descriptors for motion analysis [26] and facial
expressions [43], which have a similar spirit as our approach. However, differently from
these approaches, we do not build descriptors separately for horizontal and vertical slices.
Instead, patterns calculated from the image plane and those calculated from horizontal and
vertical slices are combined to form a local descriptor at each pixel in the space-time volume
of a sequence. These local descriptors are then aggregated to obtain a global representation
of the sequence. Thus, our approach can jointly capture the shape and motion cues for
effective action recognition.

The paper is organized as follows. Section 2 gives an overview of our method. Section 3
explains our proposed local descriptor. Section 4 describes SCFVC for feature encoding.
Section 5 presents ELM for action classification. In Section 6, we report the results of our
experimental evaluation. Finally, Section 7 offers some conclusions and ideas for future
work.

2 Overview of the proposed method

The main steps of our method are illustrated in Fig. 1. First, a set of 6 binary codes is calcu-
lated for each pixel in the space-time volume of a sequence using second-order directional
Local Derivative Patterns [42]. This step relies on the representation of a sequence on the
front, side and top views. The local descriptor for each pixel is formed by concatenating
the 6 binary codes of that pixel and those of its neighbors, resulting in a 162-dimensional
descriptor for each pixel. A sequence is now represented as a set of 162-dimensional vec-
tors. Next, a sparse coding model is learned from the set of 162-dimensional vectors of the
training sequences. The learned sparse coding model and the set of 162-dimensional vectors
of each sequence are then used in a feature encoding scheme called Sparse Coding-based
Fisher Vector [20] to obtain a global representation of that sequence. The global represen-
tations of all sequences are finally fed to a classifier based on Extreme Learning Machine
[14] to obtain action labels. A detailed discussion of different components of the proposed
method is given in the next sections.

top
Learn a sparse

local descriptors
coding model from

Classify actions
using ELM

Encode local descriptors
of each sequence using
SCFVC

Concatenate 6 binary
codes of neighbors of 
each pixel to form
local descriptors

Create 6 binary

pixel using LDP
codes for each

front

side

Fig. 1 The different steps of our method
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3 Local feature descriptor

3.1 Local derivative pattern

Zhang et al. [42] proposed LDP which relies on local derivative direction variations to cap-
ture local patterns contained in an image region. Denote by I an intensity image, Z a general
pixel, I (Z) the intensity value of Z in I , I ′

α(Z) where α = 00, 450, 900 and 1350 the first-
order derivatives along 00, 450, 900 and 1350 directions respectively. Let Z0 be a pixel in I ,
and Zi , i = 1, . . . , 8 be the neighboring pixel around Z0 (see Fig. 2a). The four first-order
derivatives at Z = Z0 can be written as:

I ′
00(Z0) = I (Z0) − I (Z4) (1)

I ′
450(Z0) = I (Z0) − I (Z3) (2)

I ′
900(Z0) = I (Z0) − I (Z2) (3)

I ′
1350(Z0) = I (Z0) − I (Z1) (4)

The second-order directional LDP, LDP 2
α (Z0), in α direction at Z = Z0 is defined as:

LDP 2
α (Z0) = {f (I ′

α(Z0), I
′
α(Z1)), . . . , f (I ′

α(Z0), I
′
α(Z8))} (5)

where f (., .) is a binary coding function which encodes the co-occurrence of two derivative
directions at different neighboring pixels, defined as:

f (I ′
α(Z0), I

′
α(Zi)) =

{
0, if I ′

α(Zi).I
′
α(Z0) > 0

1, otherwise

for i = 1, . . . , 8.
An example to calculate LDP 2

α (Z0) with α = 0 is given in Fig. 2, where the 5 × 5 array
shown in Fig. 2b represents an image patch and the number in each cell represents the depth
value of the corresponding pixel. The referenced pixel Z0 is marked in red. The neighboring
pixels of Z0 are inside the 3 × 3 patch with blue edges. The first-order derivatives in direc-
tion α = 0 at Z0 and its neighboring pixels are calculated by subtracting the depth value of
each pixel by that of its right neighbor, shown in Fig. 2c. By multiplying the value of the
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Fig. 2 (Best viewed in color) Example to calculate LDP 2
α (Z0) with α = 0. The referenced pixel Z0 is

marked in red
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central pixel in Fig. 2c and that of one of its neighbors and then encoding the obtained result
with one bit (0 if the result is positive, 1 otherwise), we obtain 8 bits shown in Fig. 2d. We
now take the bits corresponding to the positions of Z1, Z2, . . . , Z8 to form a 8-bit binary
number, which gives LDP 2

α (Z0).
Note that the nth-order directional LDPs for n ≥ 3 can also be defined [42] by gener-

alizing the above idea. In the following, we present the method for constructing our local
descriptor using the second-order directional LDPs, but the same method can be applied for
constructing local descriptors using the nth-order directional LDPs for n ≥ 3.

3.2 Our proposed local descriptor

Our proposed local descriptor relies on the second-order directional LDPs calculated at
each pixel of the depth sequence. In order to capture both the shape and motion cues,
these LDPs are calculated using the neighborhood of each pixel from three depth maps
obtained by representing the depth sequence in the front, side and top views respectively.
Figure 3a illustrates the construction of the three depth maps for a pixel. The referenced
pixel is marked in red. The depth map of the front view corresponds to that of the cur-
rent frame. The one of the side view corresponds to the image plane parallel to the y-t
plane that passes through Z0, which identifies one frame of the side view. The one of
the top view corresponds to the image plane parallel to the x-t plane that passes through
Z0, which identifies one frame of the top view. Thus, for each sequence, the numbers
of frames of the side and top views are equal to the width and height of a depth image.
Figure 3b shows an example of neighborhood used for calculating the directional LDPs
in our local descriptor, where the three 3 × 3 patches are at the same coordinates in the
image plane but are at three consecutive frames, and the numbers in each patch repre-
sent the depth values of the pixels. The referenced pixel Z0 is at frame t and marked
in red. The neighborhood of Z0 in the front view are the 8 pixels around Z0 at frame
t . Those in the side view are obtained by taking the second columns from the three
patches, and those in the top view are obtained by taking the second rows from the three
patches.

In our proposed local descriptor, the shape cue is captured using the second-order direc-
tional LDPs calculated from the depth map of the front view, while the motion cue is
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Fig. 3 (Best viewed in color) Example of a the front, side and top views of a sequence and b 8-neighborhood
around a pixel for computing our proposed local descriptor
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introduced using those calculated from the depth maps of the side and top views. Formally,
our local descriptor l(Z0) can be written as follows:

l(Z0) = [LDP 2
f,00(Z0), LDP 2

f,450(Z0), LDP 2
f,900(Z0),

LDP 2
f,1350(Z0), LDP 2

s,00(Z0), LDP 2
t,00(Z0)]T .

where LDP 2
f,00(Z0), LDP 2

f,450(Z0), LDP 2
f,900(Z0) and LDP 2

f,1350(Z0) are the second-

order directional LDPs obtained from the front view, LDP 2
s,00(Z0) and LDP 2

t,00(Z0) are
those obtained from the side and top views respectively. Note that in our case, depth values
are used in (1), (2), (3), (4) instead of intensity values.

Figure 4 shows the different steps to obtain our local descriptor. For the shape cue, four
different binary patterns are calculated from the front view, which are 92, 248, 246 and
206 respectively. For the motion cue, two binary patterns are calculated from the side and
top views, which are 82 and 150 respectively. The six binary patterns are then combined to
obtain a 6-dimensional vector that captures both the local shape and motion cues at Z0.

In order to keep the correlation between directional LDPs of neighboring pixels, we
concatenate the 6-dimensional vectors from a local spatio-temporal neighborhood of Z0. In
the example of Fig. 3b, a 6-dimensional vector is calculated for each pixel of the three 3×3
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patches at frames t − 1, t , t + 1 and then these vectors are concatenated to form the local
descriptor at Z0. Thus, our proposed local descriptors are 162-dimensional vectors.

4 Feature encoding

Given a depth sequence which can be written as a set of whitened vectors V = {vi , i =
1, . . . , M}, where vi ∈ R

162, M is the number of local descriptors extracted in the sequence,
an encoding method is used to construct the global representation of the depth sequence. In
the following, we explain SCFVC for this purpose.

FV relies on the assumption that p(.; θ) is a Gaussian mixture with a fixed number of
components K . As the dimensionality of the feature space increases, K must also increase
to model the feature space accurately. This results in the explosion of the FV representation
dimensionality. In order to deal with this problem, Liu et al. [20] proposed SCFVC which
assumes that local descriptors are drawn from a Gaussian distribution N (Bu, σ I ), where
B = [b1, . . . ,bK ] is a matrix of bases (visual words) and u is a latent coding vector ran-
domly generated from a zero mean Laplacian distribution. This corresponds to modeling
p(.; θ) using a Gaussian mixture with an infinite number of components. The generative
model can be written as:

p(v,u|B) = p(v|u,B)p(u)

Thus:

p(v) =
∫
u
p(v, u|B)du =

∫
u
p(v|u,B)p(u)du

Denote u∗ = arg maxu p(v|u,B)p(u), then p(v) can be approximated by:

p(v) ≈ p(v|u∗,B)p(u∗)

Taking the logarithm of p(v), one obtains:

log(p(v|B)) = min
u

1

σ 2
||v − Bu||22 + λ||u||1. (6)

Equation (6) reveals the relationship between the generative model and a sparse coding
model. Liu et al. [20] showed that the FV representation of V is given by:

x = [x1; . . . ; xK ],

xk =
M∑
i=1

u∗
i (k)(vi − Bu∗

i ),

where u∗
i is the solution of the sparse coding problem, u∗

i (k) is the kth dimension of u∗
i .

In order to capture the spatial geometry and temporal order of a depth sequence, we par-
tition the space-time volume of the sequence into the spatio-temporal grids illustrated in
Fig. 5, where the spatial grids are computed on the largest bounding box of the action, and
the temporal grids are computed using the method of [39]. This method relies on the motion
energy to partition the sequence into a set of temporal segments with different lengths
instead of those with equal length as in the method of [16]. The motion energy characterizes
the relative motion status at each frame with respect to the entire action and is calculated as
follows:

e(t) =
3∑

v=1

t−1∑
i=1

sum(|I v
i+1 − I v

i | > ε),
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tim
e

Fig. 5 The spatio-temporal grids used in our experiments. From left to right: the first, second and third
temporal pyramids

where I 1, I 2, I 3 are the depth maps obtained by projecting the sequence onto three orthog-
onal planes [41]; I v

i is the ith frame of I v; e(t) is the motion energy of frame t ; ε is a
threshold used for generating the binary map |I v

i+1 − I v
i | > ε; sum(|I v

i+1 − I v
i | > ε) returns

the number of non-zero elements in this map.
At the ith pyramid level, the sequence is partitioned into a set of temporal segments

{t0t1, t1t2, . . . , t2i−1−1t2i−1} such that ē(tj ) = j/2i−1, j = 0, . . . , 2i−1, where ē(tj ) is the
normalized motion energy of frame tj . This allows to pool local descriptors within temporal
segments containing the same total amount of motion, which can deal better with the vari-
ations in motion speed and frequency when different people perform the same action than
the method of [16]. We compute one FV for each grid, and concatenate the FVs of the grids
to create the final representation of the sequence.

5 Extreme learning machine

ELM was originally introduced for the single-hidden-layer feedforward neural networks
[14] and then extended to the generalized SLFNs [11, 12]. Given a set of training data
(xi , qi ), i = 1, . . . , N where xi ∈ Rd and qi = [qi,1, . . . , qi,C]T ∈ RC is the class label so
that if the original class label of xi is l, then only the lth element of qi is one, the remaining
elements are zero. Denote by L the number of hidden nodes, h(x) = [h1(x), . . . , hL(x)] the
output vector of the hidden layer with respect to the input x, βββ = [βββ1, . . . ,βββC], βββj ∈ RL

the vector of the output weights linking hidden layer to the j th output node. The output
function of ELM is given as:

f(x) = h(x)βββ. (7)

h(x) can be seen as a feature mapping since it maps the data from a d-dimensional
space to a L-dimensional space. In ELM, the model is learned by solving the following
optimization problem:

min
βββ,ξξξ

1

2
||βββ||2 + ζ

1

2

N∑
i=1

||ξξξ i ||2,

subject to: h(xi )βββ = qT
i − ξξξT

i , i = 1, . . . , N,

where ζ is a user-specified parameter and provides a tradeoff between the distance of the
separating margin and the training error, ξξξ i = [ξi,1, . . . , ξi,C]T is the training error vector
of the C output nodes with respect to the training sample xi .
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Assuming that the number of training samples is not huge, the solution of the above
problem is given as [13]:

βββ = HT
( I

ζ
+ HHT

)−1
Q, (8)

where Q = [qT
1 ; . . . ;qT

N ] and H = [h(x1); . . . ; h(xN)] is the hidden-layer output matrix.
From (7) and (8), the output function of ELM classifier is given by:

f(x) = h(x)βββ = h(x)HT
( I

ζ
+ HHT

)−1
Q.

Denote by fj (x) the output function of the j th output node, i.e. f(x) =
[f1(x), . . . , fC(x)]. Then the predicted class label of sample x is:

label(x) = arg max
j∈{1,...,C}

fj (x).

If the feature mapping h(x) is unknown to users, one can define a kernel matrix for ELM
as follows:




ELM = HHT : 
ELMi,j = h(xi ).h(xj ) = K(xi , xj ).

In this case, the decision function of ELM classifier can be rewritten as:

f(x) = h(x)HT
( I

ζ
+ HHT

)−1
Q

=
⎡
⎢⎣
K(x, x1)
...

K(x, xN)

⎤
⎥⎦

T ( I
ζ

+ 
ELM

)−1
Q.

6 Experiments

In this section, we evaluate the proposed method on three benchmark datasets: MSRAc-
tion3D [18], MSRActionPairs3D [28] and MSRGesture3D [37]. We also compare it
against several state-of-the-art methods to demonstrate its effectiveness. In our experi-
ments, the sparse coding model was learned using the SPAMS library [22]. In order
to analyze the impact of different components of our method on its performance, and
to demonstrate the effectiveness of the proposed local descriptor, we implemented the
five methods Ours 3rdOrder, Ours 4thOrder, Ours FV, Ours SVM, LBP-TOP [43].
Ours 3rdOrder and Ours 4thOrder were obtained by replacing the second-order direc-
tional LDPs in our method with the third-order and the fourth-order ones, respectively.
Note that we do not show the results obtained using the nth-order directional LDPs with
n > 4 as the performance of our method on the three datasets dropped when n reached to
4. Ours FV was obtained by replacing SCFVC in the feature encoding step of our method
with FV. We used the VLFeat library [34] to compute the FVs. Ours SVM was obtained by
replacing ELM in the classification step of our method with SVM. We used LIBLINEAR
[9] as the linear SVM classifier. For Ours FV, the number of components in the Gaussian
mixture model was set to 50, which was experimentally found to give the best results. For
LBP-TOP, three different histograms corresponding to the front, side and top views were
built for each sequence. The binary codes computed on all frames of one view were used
to build the histogram corresponding to that view. The three histograms were then concate-
nated to obtain the descriptor of a sequence. In order to capture the spatial geometry and
temporal order of a sequence, we used the same spatio-temporal grids as our method (see
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Fig. 6 (Best viewed in color) Accuracy w.r.t the number of visual words K

Fig. 5). The final descriptor of a sequence is the concatenation of the descriptors of the
grids. Note that in the original paper, LBP-TOP descriptors were computed using 2 × 2 × 1
spatio-temporal grids created by 2 × 2 spatial grids and one temporal pyramid level. How-
ever, in our experiments, we observed that LBP-TOP achieved better accuracy with our
spatio-temporal pyramid representation. For action recognition, LBP-TOP used the same
ELM-based classifier as our method.

6.1 Parameter settings

In this section, we investigate the performance of our method with respect to the number
of visual words K and the number of temporal pyramids. Figure 6 shows the recognition
accuracies of our method when K = 60, 80, 100, 120, 140. As can be observed, our method
gives the best results on the three datasets with K = 100. Good results are also obtained with
K = 140. Figure 7 shows the recognition accuracies of our method when one, two and three
temporal pyramids are used. When the number of temporal pyramids changes, our method
gives the best results with 3 temporal pyramids on MSRGesture3D and MSRActionPairs3D,
and with 2 or 3 temporal pyramids on MSRAction3D. Since our method achieves the best
results on the three datasets with K = 100 and 3 temporal pyramids, in the following we
report the results obtained using this setting.

6.2 MSRAction3D dataset

The MSRAction3D is an action dataset captured using a depth sensor similar to Kinect. It
contains 20 actions performed by 10 different subjects. Each subject performs every action
two or three times.

Fig. 7 (Best viewed in color) Accuracy w.r.t the number of temporal pyramids
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Our experimental setting was based on the discussion of Padilla-López et al. [29]. Specif-
ically, we used the same experimental setting proposed in [18] as it was widely adopted by
previous approaches, where the 20 actions were divided into three subsets AS1, AS2 and
AS3, each having 8 actions. The AS1 and AS2 were intended to group actions with similar
movements, while AS3 was intended to group complex actions together. Action recogni-
tion was performed on each subset separately. We used the most challenging cross-subject
test, where subjects 1,3,5,7,9 were used for training and subjects 2,4,6,8,10 were used for
testing. In Table 1, we compare our method against other state-of-the-art methods. As can
be observed, our method achieves the highest accuracy for AS1. The average accuracy over
the three subsets is 96.72%, which is the second best result among the competing ones. The
method of [21] performs slightly better than our method. However, this method relies on
skeleton tracking to obtain 3D joint positions which is unreliable when depth images are
noisy or severe occlusions are present. Note that our method outperforms the method of [5]
which uses LBP for constructing local descriptors and the method of [7] which relies on a
recurrent neural network. When one temporal pyramid is used, our method gives an aver-
age accuracy of 96.14%, demonstrating that the directional LDPs computed from the side
and top views capture well the motion cue for accurate action recognition. Ours 3rdOrder
gives a similar accuracy as our method, while Ours 4thOrder has an accuracy of 95.78%,
0.94% inferior to our method. These results show that the second-order directional LDPs
perform similarly or better than the third-order and the fourth-order ones on MSRAction3D.
Our method outperforms Ours FV by 8.48% on AS1, 5.31% on AS2 and 4.46% on AS3,
showing that SCFVC is better than FV in terms of accuracy on the three subsets. By using
ELM instead of SVM for action classification, our method achieves better results on the
three subsets and its average accuracy over the three subsets is increased by 3.59%. The
training times per sequence of the ELM-based and SVM-based classifiers are approxi-
mately 63.64 milliseconds (ms) and 196 ms, respectively. The testing times per sequence
of the ELM-based and SVM-based classifiers are approximately 0.04 ms and 29.31 ms,
respectively. These results show that the ELM-based classifier is 3 times faster than the

Table 1 Recognition accuracy comparison of our method and previous methods on AS1, AS2, AS3 of
MSRAction3D

Method AS1 AS2 AS3 Ave.

Chen et al., 2013 [6] 96.2 83.2 92.0 90.47

Gowayyed et al., 2013 [10] 92.39 90.18 91.43 91.26

Zhu et al., 2013 [44] – – – 94.3

Luo et al., 2013 [21] 97.2 95.5 99.1 97.27
Vemulapalli et al., 2014 [35] 95.29 83.87 98.21 92.46

Chen et al., 2015 [5] 98.1 92.0 94.6 94.9

Du et al., 2015 [7] 93.33 94.64 95.50 94.49

Liang et al., 2016 [19] 97.2 92.9 94.6 94.9

Ours 99.05 92.92 98.21 96.72

Ours 3rdOrder 97.17 95.58 97.32 96.69

Ours 4thOrder 96.23 94.69 96.43 95.78

Ours FV 90.57 87.61 93.75 90.64

Ours SVM 96.23 85.84 97.32 93.13

LBP-TOP 87.74 74.34 87.5 83.19

The best result in each column is marked in bold
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SVM-based one in the training phase, and it is 732 times faster than the SVM-based one
in the testing phase. Thus, ELM is better than SVM not only in terms of accuracy but also
in terms of computation time on MSRAction3D. Note that our method significantly out-
performs LBP-TOP, demonstrating that it captures the joint shape-motion cues better than
LBP-TOP. The confusion matrices of our method are shown in Fig. 8. Most of the confu-
sions are between the actions tennis serve and pick up and throw (AS1), high arm wave and
hand catch (AS2), tennis serve and jogging and pick up and throw (AS3).

6.3 MSRActionPairs3D dataset

The MSRActionPairs3D is a paired-activity dataset of depth sequences captured by a depth
camera. The dataset contains 6 pairs of activities, which were selected so that within each
pair the motion and the shape cues are similar, but their correlations vary. There are 10
subjects with each subject performing each activity three times. This dataset is useful to
evaluate how well the descriptors capture the shape and motion cues jointly in the sequence.

We used the experimental setting described in [28], where the first five actors were used
for testing, and the rest for training. Table 2 shows the accuracies of our method and dif-
ferent state-of-the-art methods on MSRActionPairs3D. Our method achieves an accuracy
of 99.44%, which is the same accuracy as the recent work [30] based on a deep convo-
lutional neural network. The accuracies of Ours 3rdOrder, Ours 4thOrder, Ours FV,
Ours SVM and LBP-TOP are also given in Table 2. As can be observed, the performance
of our method degrades when the order of local pattern is increased from the second-order
directional LDPs to the third-order and the fourth-order ones, showing that the nth-order
directional LDPs with n ≥ 3 do not improve the performance of our method on MSRAction-
Pairs3D. When FV is used instead of SCFVC for feature encoding, the accuracy goes down
to 97.78%, demonstrating that SCFVC is better than FV in terms of accuracy on MSRAc-
tionPairs3D. The accuracy of our method is 2.22% better than that of Ours SVM. The
training times per sequence of the ELM-based and SVM-based classifiers are approximately
98.53 ms and 233.61 ms, respectively. The testing times per sequence of the ELM-based
and SVM-based classifiers are approximately 0.039 ms and 29.56 ms, respectively. Again,
these results indicate that ELM is better than SVM in terms of both accuracy and computa-
tion time on MSRActionPairs3D. We can also observe that our method is significantly more
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Fig. 8 (Best viewed in color) The confusion matrices of our method on MSRAction3D (left: AS1, middle:
AS2, right: AS3)
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Table 2 Recognition accuracy
comparison of our method and
previous methods on
MSRActionPairs3D

Method Accuracy

Yang et al., 2012 [41] 66.11

Wang et al., 2013 [38] 82.22

Oreifej and Liu, 2013 [28] 96.67

Yang and Tian, 2014 [39] 98.89

Amor et al., 2016 [1] 93.00

Rahmani and Mian, 2016 [30] 99.44

Ours 99.44

Ours 3rdOrder 95.00

Ours 4thOrder 91.11

Ours FV 97.78

Ours SVM 97.22

LBP-TOP 87.78The best result in each column is
marked in bold

accurate than LBP-TOP, which confirms the effectiveness of our proposed local descrip-
tor compared to LBP-TOP. Since our method gives a high recognition accuracy, we do not
show the confusion matrix for this dataset.

6.4 MSRGesture3D dataset

The MSRGesture3D dataset contains 12 dynamic hand gestures defined by the American
sign language. Each gesture is performed two or three times by 10 subjects.

We used the leave-one-subject-out cross validation scheme proposed by [37]. The accu-
racy of our method and different state-of-the-art methods is given in Table 3. Our method
gives an accuracy of 95.12% which outperforms the competing ones. Experimental results
reveal that the second-order directional LDPs perform the best over the third-order and

Table 3 Recognition accuracy
comparison of our method and
previous methods on
MSRGesture3D

Method Accuracy

Kurakin et al., 2012 [15] 87.70

Wang et al., 2012 [37] 88.50

Yang et al., 2012 [41] 89.20

Oreifej and Liu, 2013 [28] 92.45

Yang and Tian, 2014 [39] 94.74

Rahmani and Mian, 2016 [30] 94.70

Liang et al., 2016 [19] 94.70

Ours 95.12

Ours 3rdOrder 94.03

Ours 4thOrder 92.22

Ours FV 94.55

Ours SVM 93.75

LBP-TOP 84.86The best result in each column is
marked in bold
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Fig. 9 (Best viewed in color) The confusion matrix of our method on MSRGesture3D

the fourth-order ones on this dataset. Consistent with the results obtained in our previous
experiments, SCFVC outperforms FV and the ELM-based classifier is more accurate than
the SVM-based one. The training times per sequence of the ELM-based and SVM-based
classifiers are approximately 208.41 ms and 314.47 ms, respectively. The testing times per
sequence of the ELM-based and SVM-based classifiers are approximately 0.04 ms and
29.83 ms, respectively. These results again illustrate the advantages of ELM compared to
SVM in our method. The accuracy of our method is 10.26% better than that of LBP-TOP,
demonstrating its superiority in recognition accuracy over LBP-TOP. The confusion matrix
is shown in Fig. 9. Most of the confusions are between the actions store and finish, past and
where, finish and bathroom.

7 Conclusions

We have proposed a new descriptor for action recognition in depth images. Our pro-
posed descriptor encodes jointly the shape and motion cues using second-order directional
LDPs. We have suggested SCFVC to effectively encode local descriptors into a global
representation of depth sequences. Action recognition has been performed using ELM.
We have presented the experimental evaluation on three benchmark datasets showing the
effectiveness of the proposed method.

For future research, we study the fusion of the proposed descriptor with other descriptors
based on depth and skeletal data in order to increase its accuracy.
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