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Abstract Locality-preserving (distance preserving-mapping) is a useful property to man-
age multidimensional data. Close points in space remain -as much as possible- close after
mapping on curve. That is why Hilbert space-filling curve is used in many domains and
applications. Hilbert curve preserves well locality because from a construction aspect, it is
guided by adajacency constraint on points ordering : the curve connects all points of a D-
dimensional discrete space, without favoring any direction, under the constrainst that two
successive points are separated by an unit distance. Originally defined in 2-D, all existing
multidimensional extensions of the Hilbert curve satisfy adjacency by using the RBG pattern
(based on Reflected Binary Gray code). The RBG pattern is then duplicated and arranged
(geometrical transformations) to build the multidimensional Hilbert curve at a given order.
In this paper, we emphasize that there are other patterns that can satisfy the adjacency. A for-
mulation is given, an algorithm to find out solutions is provided and their respective level of
locality preservation is estimated through a standard criterion. Results show that some new
patterns can carry a comparable levels of locality and sometimes better than RBG. More-
over, selecting the best locality preserving pattern allows one to design, through orders, a
new curve with a comparable overall locality preserving refer to Hilbert curve. The contri-
bution of new patterns is experimented through a CBIR (Content-Based Image Retrieval)
application. Large-scale image retrieval tests show that exploring the image feature space
with an alternative way to the classical Hilbert curve can lead to improved image searching
performances.
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1 Introduction

A space-filling curve is a path going through every point of a given space. It is represented
by a function which maps each point in the space with its index position along the curve.
The space-filling curves cross many applications of computer science [5, 28, 51] and other
domains such as mathematics [6, 48], electronics [14, 33] etc. In the field of image pro-
cessing, the Hilbert curve is useful for several tasks as compression, image representation,
matching (extended to 3 − D object), image features mapping [2, 5, 42, 52, 53] etc.

An interesting property of this kind of curve is the locality preserving, that represents the
capacity to map close points (locality) to close indexes and vice versa. With a such property,
a part of the spatial relationship between multi-dimensional points in the original space is
not totally lost in 1 − D space. It is a key property because it conditions the fact that any
interpretation of the data structure set up on the analysis on one-dimensional space is still
reliable. Among the famous space-filling curves (Peano [45], Hilbert [18], Lebesgue [30]
etc.), the curve proposed by Hilbert is considered as the most locality-preserving [35, 37,
46]. Referring to the original article [18], Hilbert curve fills a 2 − D space. So, a multidi-
mensional extension is needed to fill higher dimensional spaces. There are several proposals
for generating multidimensional versions of the Hilbert curve [7, 22, 29]. From a construc-
tion point of view, these models start from a m−D basic pattern that will later be combined
in order to define a m − D Hilbert curve at order n. However, only one basic pattern is gen-
erally used in the literature: the RBG pattern (Reflected Binary Gray code). We think that
restricts the ways to fill a space and that consequently limits the level of locality preservation
reached.

In this paper, the main contributions deal with :

– the definition of new patterns, different from classical RBG, in order to build multi-
dimensional extensions of the popular Hilbert space-filling curve. These new patterns
carry out a comparable level of locality than RBG, and sometimes better.

– we also show that selecting the best locality-preserving pattern could contribute to
designing, across orders, a new curve with a comparable - and sometimes better - overall
locality preserving level than the referent Hilbert curve.

To assess the relevance of our proposition, a CBIR (Content-Based Image Retrieval)
experiment was conducted on a collection of 19270 images (283 classes) issued from three
data-bases (GREC,1 MPEG-7,2 and LBID3). The curve generated from the most locality
preserving pattern was used to explore the multidimensional image features space. Compar-
ative large-scale image retrieval tests show that a locality preserving gain could be translated
into image search performance.

The rest of the paper is organised as follows: first, in Section 2, some generalities of the
space-filling curves are introduced before highlighting, in Section 3, the role of pattern on
locality preservation. Section 4 is dedicated to our proposition: a formulation of new basic
patterns to fill a space is given, an algorithm to build them is provided and their level of
locality is measured according to the standard criteria in [12].

1http://grec2013.loria.fr/GREC2013/node/16.
2http://mpeg.chiariglione.org/standards/mpeg-7.
3http://www.lems.brown.edu/∼dmc/.

http://grec2013.loria.fr/GREC2013/node/16
http://mpeg.chiariglione.org/standards/mpeg-7
http://www.lems.brown.edu/~dmc/
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The application of the curve - generated from the most locality preserving pattern - in
CBIR framework is presented in Section 5. Comparative results refer to the multidimen-
sional Hilbert curve are pointed out and analyzed in Section 6.

2 Space-filling curve

Space-filling curve is a self-similar path which goes through every point of a given mul-
tidimensional grid space. Hence, it is a bijection f which maps each D-dimensional point
p belonging to the space to its index I (an integer) on the curve. An n-order space-filling
curve is defined by:

f : {0, 1, ..., 2n − 1}D → {0, 1, ..., 2nD − 1}
p �→ I = f (p)

(1)

With I = f (p) is the index of a point p on the curve f .
When the space is filled by f , the localisation of a D-dimensional point p on the grid

space (square, cube or hypercube) is substituted by its 1 − D position I on the curve. For
example, two famous space-filling curves are illustrated in the Fig. 1, others curves can be
found in [3, 47].

3 Locality preservation

3.1 Locality preservation

Using a space-filling curve can be seen as way of linearly ordering multidimensional points
into a 1 − D line, where the order of a point p is coded by its index I .

Once a 1 − D points ordering is found, analyzing the indexes neighborhood of a given
point can provide a view on multidimensional data localization and nearest-neighbors points
queries can be performed [12, 21]. This track still realiable under the asumption of the
distances is globally preserved after the mapping i.e. if close points in space are close in the

0            1             2           3
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P
I=2

1I=0 15

Fig. 1 2 − D Hilbert and the Z-order curves expressed at order n = 2. The Hilbert curve [18] proposed in
1891 is detailed in this paper; and the Z-order curve, which is a discrete version of the Lebesgue curve [30].
Example of the mapping of a point p with coordinates (1,1) onto the Hilbert curve: the localisation of p in
the grid space is replaced by its 1 − D position I = 2 on the curve
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line : this is the so called locality preserving or preserving mapping property. Several works
have studied, analyzed and compared classical curves (sweep, scan, etc.) with space-filling
curves (Peano, Hilbert, Lebesgue etc.) and it is now admitted that the Hilbert space-filling
curve achieves the best locality preservation [35–37, 46]. However, in a multidimensional
grid space, a path visiting every point exactly once, without crossing itself, and which would
totally preserve the spatial locality does not exist. Whatever curve is used, cases of topology
breaks can be observed (cf. Fig. 2) and they are taken into account by the handled locality
preservation measure.

In this paper, the criterion provided by Faloutsos et al. in [12] is used to measure the local-
ity preservation reached by our curves. Described below, L is the average farthest distance
between all D-dimensional points p(i) and p(j) on the grid space whose corresponding
indexes i and j are within the neighborhood radius N/2 :

L(c) = 1

ND

∑

i,j∈[ND ],i<j with �(i,j)≤N/2

Max{�(p(i), p(j))} (2)

L the level of locality preservation of a curve c.
With: ND the number of points of the grid space of size N = 2n, N/2 the radius of

interest, � the metric used, and i respectively j the index of the D-dimensional points p(i)

resp. p(j) on the curve c.
This is a practical criterion and well adapted to the proposed CBIR application because,

for a given point’s index, L determines how many points with indexes entering into a fixed
neighborhood radius are really inside the same radius in space. Initially fixed to N/2 in
[12], the radius was extended because in many applications a larger neighborhood is usually
needed. What is the behavior of the best locality preserving curve in this case? It could be
interesting to assess the locality preservation level of the Hilbert curve (compare with our
curves) when the radius of neighborhood increases (cf. Section 4.4).

3.2 Preserving locality property: role of the basic pattern

Space-filling curve is self-similar, i.e. at a given n order it is composed by sub-curves which
have the same shape as the curve itself but on a smaller scale. From construction point of
view, this property is naturally coded in computer science by recursive functions. Starting
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Fig. 2 Two cases (worst) where the topology between the spaces is broken. (a) p1 and p2 are two points
far away in the space (d(p1, p2) = 4, Manhattan metric) but they have closest indexes into the 1 − D line,
respectively I = 7 and I = 8. (b) p1 and p2 are two close points in the grid space (d(p1, p2) = 1) but they
are far away into the 1 − D line (respectively I = 1 and I = 14)
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from a m − D basic pattern at the first order n = 1, bulding the n order curve consists of
a recursively copied and transformed, scaled version of the curve obtained at the previous
n − 1 order. An illustration of this process applied on the 2 − D Hilbert curve is given in
Fig. 3.

The role of the basic pattern is emphasized in this process of construction :

– the basic pattern is the first order curve, it is the path ordering 2D points;
– it is widely copied to fit the n order curve (n > 1). The number of patterns which

composes a D-dimensional space-filling curve at order n is 2(n−1)D . For example, for
n = 2, the 2-Dimensional Hilbert curve is set up from 2D = 4 copies of the the basic
pattern and 16 copies at order n = 3 (cf. Figs. 3, 4).

Since it is the input of the process of construction and it is widely copied, the basic
pattern fixes the points ordering of the 2(n−1)D sub-curves and consequently it must have an
impact on the overall locality preservation. Picking out a better locality preserving pattern,
or define a new one (cf. Section 4), could help to designing a curve with an overall better
level of locality preservation. This idea is confirmed on two space-filling curves below (cf.
Fig. 4).

4 Proposition of new basics patterns for multidimensional extension
of the Hilbert space-filling curve

Our proposition is oriented toward the curve that maximizes the locality-preservation i.e.
the Hilbert curve and it is focused on the definition of new alternative basic patterns. In this
paper, the pattern is the first order (n = 1) space-filling curve, it is the model to create sub-
curves of the curve through orders, and it is the path connecting all 2D points (exactly once
without crossing itself) in a D-dimensional grid space of size N = 2.

4.1 The Hilbert curve and multidimensional extensions

In response to Peano [45], Hilbert presents in 1891 another way to fill a 2 − D space which
better preserves the locality [18].

Fig. 3 Recursive construction of the 2-Dimensional Hilbert curve for n = 1, 2. The basic pattern is the
first order curve. The second order curve is composed by 4 copies of a scaled version of the basic pattern;
sometimes geometrical transformations may be also applied. For example, the left-bottom resp. the right-
bottom sub-curve is the result of rotation and reflection of the basic pattern and resp. reflection
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Fig. 4 Selecting a better locality-preserving basic pattern leads to design, through orders, an overall better
locality preserving curve: case of the 2−D Hilbert and Z-order space-filling curves for n = 1, 2, 3. Ln is the
level of locality-preservation of the n order curve via the criteria described in Section 3.1 under Manhattan
metric. A smaller L value corresponds to a better locality preservation. The locality superiority observed at
the starting step for the Hilbert curve (50%) is conserved across the different orders (resp. 37.5%, 47.5%).
This is also confirmed for upper dimensions

Since then, some multidimensional extensions of the 2D Hilbert curve were developed
and several models have been proposed. In [7] sets of low level binary operations are pro-
vided, state diagram based-models are given in [28], a table-driven framework is suggested
in [22] etc. To our knowledge, all these contributions refer to the RBG code to order points
at the first order curve (RBG4 pattern). More recently, some works have attempted to access
in other ways to fill a space. Liu in [32] puts forward four alternative sets of geometric
transformations to arrange the 2D-RBG pattern to set up a curve at upper-orders. According
to the set of transformations selected (L configuration) new paths are outlined, which form
together with Hilbert and Moore curves a set named “complete set of the Hilbert curve”.
This is a relevant study but it stills focusing on 2D space and it usually starts from RBG
pattern.

A novel geometric approach with the aim to define a multidimensional compact Hilbert
index dedicated to spaces with unequal size dimensions is established in [15]. The lines -
usually used on Hilbert curve to symbolize points ordering- are replaced by arcs. We note
that this geometric change does not modify the order where points (cells in the article) are
visited. The cells ordering stills initialized by standard RBG code, i.e. it follows the RBG
pattern.

4The RBG pattern is founded on the Reflected Binary Gray code. The RBG code generates binary words
of the given size D (i.e. each word contains D bits) satisfying the condition that two successive words have
D − 1 identical bits.
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4.2 Adjacency and pattern solution

In the Hilbert’s original paper [18], the construction of the 2D curve is driven by an implicit
rule : “each square must have a common side with the previous square”. Extended to higher
dimensions, this rule conveys the idea that each dimension must be sequentially visited. The
RBG code - in which only one bit change is observed on two successive words – offers
an intuitively response. But, when the dimensions are increasing, there are other solutions
(than the RBG code) to connect all 2D points (exactly once without crossing itself) while
satisfying the Hilbert source idea. We propose to formalize the original 2D Hilbert rule to
higher dimensions into adjacency constraints on D dimensional points (cf. (3)).

First, new pattern solutions are then resulting and secondly, we show later they reach dif-
ferent levels of locality preserving (cf. Section 4.4). Accessing to various solutions opens the
possibility to select the pattern which better preserves locality. On the other hand, we have
checked in Section 3.2 that selecting a better locality-preserving pattern leads to design,
through orders, an overall better locality preserving curve. The 2 − D and 3 − D RBG
patterns are shown in Figs. 5 and 6.

In the case of the multidimensional Hilbert curve, the pattern P must satisfy the adjacent
condition, i.e.

D∑

i=1

|p(k)i − p(k + 1)i | = 1, 0 ≤ k < 2D − 1 (3)

Where p(k) is the k − th point in the pattern P and p(k)i is the i − th coordinate of
the point p(k). Therefore, the pattern P of the D-dimensional Hilbert curve is a path going
through every point in {0, 1}D . In Section 4.3 an algorithm is provided to generate for a
given D dimension all the patterns P solutions of (3). In this article, two solutions are con-
sidered as identical if they are isometric. Isometry is a distance-preserving transformation
such as rotation or reflection. Because only isometric independent patterns could modify the
locality-preserving of the curve, among all solutions of (3) only the independent solutions
P∗ are retained.

For example, in the 2−D case, there is only one isometric independent pattern P∗ satis-
fying (3), i.e. the 2 −D RBG pattern (Fig. 5, left). From 3 −D, there are many independent
patterns being solution of (3) (cf. Fig. 6).

4.3 Generating adjacent patterns

A recursive algorithm is proposed in Fig. 7 to list all patterns P corresponding to a given
dimension, solution of (3). A pattern solution is a sequence composed of 2D points in which
every two consecutive points are separated by a unit distance. This is a successive append-

0

1 2

3 0 1

23 0

1 2

3 0

12

3

Fig. 5 Example of patterns solution of (3) in a 2 − D space. They are mutually isometric. As a result, they
lead to the same level of locality preservation (L = 1.0) so, only isometric independent patterns solution are
selected
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Fig. 6 New ways to fill a 3 − D space : example of 3 independent patterns P∗ generated from the Fig. 7.
P∗

1 is the RBG classical way and P∗
2 and P∗

3 define new ways

ing of a new point which is adjacent to the last point of the actual sequence. To satisfy the
adjacent condition, the new point is obtained from the last point by modifying only one
coordinate. Therefore, we have D − 1 possibilities for the new point. D − 1 possibilities
and not D, because the coordinate previously selected by the last point must be excluded
under penalty of passing twice through the same point. Accordingly, for a curve evolv-
ing in D-dimension, with the first point fixed (the sequence is initialized with the origin
(0, 0, ..., 0)) listing all patterns, which contain 2D − 1 adjacent points, the algorithm scans
over (D − 1)2D−1 possibilities at most. The algorithm complexity is high but in practice it
remains computable; the search of patterns is a process lead off-line and for dimensions not
exceeding 20 (cf. Section 5).

4.4 Measure of locality preservation of new patterns

The preservation of locality is a highly sought property needed by applications managing
multidimensional data [12, 21, 37]. But, what is the level of locality preservation reached
by the new patterns?

Some comparative results are synthetized in Tables 1, 2, 3 and 4 respectively for the 4−D

and 5 − D cases. Only independent isometric patterns P∗, solutions of (3) and generated
from the Algorithm given in Fig. 7, are taken into account. The locality preservation of
candidates is estimated through the criterion described and justified in Section 3.1. L is
assessed not only for a single neighborhood radius as originally in [12] but for several radius

values ∈ [1− ND

4 ]. Note that, a smaller L value corresponds to a better locality preservation.
From these results, we see that:

– From 3 − D, there exists more than one pattern verifying (3). In fact, the number of
new pattern solutions (independent isometric) increases with the space dimension, that
opens the possibilities to fill a given space and to find a good pattern from locality

Table 1 Locality preservation L

of the new 4-D patterns : RBG is
not the most locality preserving
pattern, there is a new way to fill
a space P∗

1 that reaches the same
level of locality

Neighborhood Radius

1 2 3 4

RBG 1 2 2.7500 2.7500

New Patterns P∗
1 1 2 2.7500 2.7500

P∗
2 1 2 2.7921 2.7921

P∗
3 1 2 2.8125 2.8125
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Table 2 Identification of the two
4-D spatial ordering which leads
to the best locality preservation :
RBG and P∗

1 (cf. Table 1)

best locality preserving 4-D patterns

Patterns RBG P∗
1

Points list 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

0 1 0 0 0 1 0 0

0 1 1 0 0 1 1 0

1 1 1 0 1 1 1 0

1 0 1 0 1 0 1 0

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 1

1 0 1 1 1 0 1 1

1 1 1 1 1 0 0 1

0 1 1 1 0 0 0 1

0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1

1 0 0 1 1 1 1 1

0 0 0 1 0 1 1 1

The index of the first, resp. last,
point p with the coordinates
(0,0,0,0), resp. (0,1,1,1), is I = 0
resp. I = 2D − 1 = 15

criterion. For example, more than four patterns have been identified in the 4 − D case
in which the classical RBG is contained (cf. Table 1) and there is a new pattern P∗

1 that
reaches the same level of locality.

– From 5−D, even if the L values evolve in the same order of magnitude5 (cf. Table 3) a
partition between new solutions and RBG is observed especially from medium to high
neighborhood radius. For example, in the 5 − D case, the RBG is the best preserving
pattern for radius ∈ [3 − 5], but when the locality is studied for radius > 5 then four
new competitive patterns (P∗

1 ,P∗
2 ,P∗

3 ,P∗
4 ) emerge.

The existence of patterns that improve the locality not only for a single radius value
but for several consecutive values of neighborhood (6,7,8) could be interesting for a CBIR
application. The results of image queries are often presented as top ranking which leads us to
consider rather a range of neighborhoods than a single value. For example, P∗

1 which is the
best preserving pattern for radius 6,7 (with resp. L = 3.468 vs 3.750, L = 3.500 vs. 3.750)
remains competitive for the radius 8 (L = 3.656 vs 3.750).

A smaller L value means that, when the points are ordered according to the P∗
1 model

(cf. Table 4) few points located outside the radius of interest in space are view as neighbors
on the 1 − D line. In other words, a smaller L value illustrates that points considered as
neighbors according to their respective indexes are really neighbors in multidimensional
space. So, improving the level of locality preservation could have a positive impact on the
results of image retrieval.

5This is not surprising because by satisfying the proposed multidimensional generalization of the Hilbert rule,
the patterns solution belongs to the same family of curves i.e. the family of Hilbert-like space-filling curve.
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Table 3 Locality preservation L of the new 5-D patterns: RBG, so far used in previous multidimensional
extensions of the Hilbert curve, is not the most locality preserving

Neighborhood Radius

1 2 3 4 5 6 7 8

RBG 1 2 2.875 2.875 3 3.750 3.750 3.750

New Patterns P∗
1 1 2 2.906 3.156 3.218 3.468 3.500 3.656

P∗
2 1 2 2.875 3.125 3.250 3.593 3.593 3.656

P∗
3 1 2 2.875 3.062 3.187 3.562 3.562 3.718

P∗
4 1 2 2.906 3.125 3.187 3.500 3.500 3.593

When the radius of neighborhood increases (> 5) then new competitive patterns appear (P∗
1 ,P∗

2 ,P∗
3 ,P∗

4 )

Moreover, among new solutions, there are patterns whose locality remains competitive
including through orders. The locality score evolution according the orders n = 1, 2, 3 of
the 5 − D curve built from P∗

1 and P∗
2 is reported in Table 5. This behaviour, also observed

for upper dimensions, tends to confirm that selecting a better locality-preserving pattern
contributes to designing a curve with good overall locality.

5 Using new pattern-based space-filling curve for CBIR application

The contribution of new patterns is experimented through a CBIR application. An overview
of the existing systems, questions of performance evaluation and future challenges can be
found in [11, 26, 38, 54].

Fig. 7 Algorithm to list D-dimensional patterns P solution of (3)
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Table 4 Identification of the five 5-D points ordering which lead to the best locality preservation: RBG and
P∗

1 ,P∗
2 ,P∗

3 ,P∗
4 , (cf. Table 3)

Best locality preserving 5-D patterns

Pattern RBG P∗
1 P∗

2 P∗
3 P∗

4

Points list 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0

1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0

1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0

0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0

1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0

1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0

0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1

1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1

0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1

0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1

1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1

1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1

0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1

0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1

1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 1

1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1

0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1

0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1

1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1

1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1

0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1

The curve generated from the most locality preserving 20 − D pattern (noted Max) is
tested to quickly explore the image feature space. Through an efficient image descriptor,
two visually similar images are featured by two close vectors. With the new pattern-based
space-filling curve, the close vectors (feature space) are mapped to close indexes (index
space). Hence, similar images correspond to close indexes. After ordering the images in
the database according to their respective indexes (off-line indexation), searching images



8430 Multimed Tools Appl (2018) 77:8419–8440

Table 5 Locality preservation L -across orders n = 1, 2, 3- of 5-D curves built from some new patterns:
cases of P∗

1 ,P∗
2 compare to RBG

Patterns

P∗
1 P∗

2 RBG

Curves n = 1 3.156 3.125 2.875 R = 4 Neighborhood Radius

3.218 3.250 3.000 R = 5

3.468 3.593 3.750 R = 6

3.500 3.593 3.750 R = 7

3.656 3.656 3.750 R = 8

n = 2 3.564 3.540 3.183 R = 4

3.646 3.673 3.304 R = 5

4.000 4.082 4.242 R = 6

4.161 4.196 4.337 R = 7

4.310 4.342 4.365 R = 8

4.468 4.515 4.462 R = 9

4.772 4.704 4.673 R = 10

4.910 4.924 5.111 R = 11

5.042 5.113 5.282 R = 12

5.303 5.354 5.587 R = 13

5.525 5.607 5.693 R = 14

5.804 5.792 5.737 R = 15

5.955 5.925 5.537 R = 16

n = 3 3.618 3.593 3.210 R = 4

3.714 3.734 3.332 R = 5

4.080 4.150 4.270 R = 6

4.252 4.275 4.369 R = 7

4.412 4.434 4.403 R = 8

4.579 4.616 4.505 R = 9

4.887 4.709 4.711 R = 10

5.037 5.038 5.146 R = 11

5.181 5.235 5.319 R = 12

5.449 5.482 5.622 R = 13

5.683 5.743 5.730 R = 14

5.969 5.937 5.779 R = 15

6.126 6.080 5.785 R = 16

similar to the query one (on-line searching) involves selecting the sub-set of images whose
1 − D indexes are closest to the input one. The similarity of two images is the distance
(Manhattan metric) of their respective indexes I on the curve used to scan the image feature
space (Zernike moments). This key idea is used to set up a CBIR system synthesized in
Fig. 8.
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Fig. 8 Using new pattern-based space-filling curve for CBIR application: Overview

The following sections specify the conditions under which the experiments were conducted.

5.1 Image characterization via Zernike moments

Extracting the Zernike moments of an image is now an usual operation for image descrip-
tion. It consists in a projection of an image (or shape) onto a family of complex orthogonal
functions (on the unit disk) called Zernike polynomials. They were introduced by Teague
[49] and are considered as an efficient image descriptor, that was confirmed by many com-
parative studies [27, 34, 43]. Working with Zernike decomposition involves answering the
question: what is the highest-order moments value (noted q) required for an accurate image
representation? q, is determined according to the criterion in [25] based on image quality
reconstruction obtained from decomposition results.
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Table 6 Image dataset : heterogeneous and noisy sources

Description Samples

GREC is an image dataset used for interna-
tional symbol recognition contests organized
in the context of the IAPR international
workshops on Graphics RECognition (http://
grec2013.loria.fr/GREC2013/node/16).

MPEG-7 Core Experiment is a standard
image database commonly used for bench-
marking shape characterization algorithms
(http://mpeg.chiariglione.org/standards/
mpeg-7) provided by the Moving Picture
Experts Group.

LBID is a Large Binary Image Database
(closed binary shapes) supplied by the
LEMS Vision Group (Brown University
http://www.lems.brown.edu/∼dmc/).

This track6 leads to q = 7, which yields a 20 − D feature vector for each image. This
size achieved a trade off between effectiveness and robustness to noise. In noise context
(cf. GREC database 5.2), a compact description seems to be required because we know
that the higher order moments code the details which are precisely likely to be affected
by degradations. For a fast calculation, Zernike moments were implemented following the
algorithm in [20].

5.2 Image sources and dataset

The image dataset is built from the mixture of three image collections : GREC, MPEG-7
and LBID. It is composed of 19270 low-resolution binary images (∼ 300dpi) including
283 classes of object. Details on the collections and dataset constitution can be found in
Tables 6 and 7. This track leads to handling various kinds of images. MPEG-7 and LBID
refer to natural scenes while GREC is clearly related to technical drawing (architectural
and electrical symbols). Furthermore, degraded images also appear, more than 7000 noised
images are part of GREC (Kanungo noise model [24]).

Building a database from such sources contributes to process in the same system several
flows of various kind of images. These are realistic experimental conditions to estimate the
ability of the proposed curves to re-order images coming from heterogeneous and noisy
sources.

6The sample test was composed of 400 images randomly selected from the database.

http://grec2013.loria.fr/GREC2013/node/16
http://grec2013.loria.fr/GREC2013/node/16
http://mpeg.chiariglione.org/standards/mpeg-7
http://mpeg.chiariglione.org/standards/mpeg-7
http://www.lems.brown.edu/~dmc/
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Table 7 Details on the
constitution of the image dataset Sources Number of images Number of classes Average class size

GREC 16800 150 112

MPEG 1400 70 20

LBID 1070 63 17

Total 19270 283 ∼ 49

5.3 Metrics for CBIR performance evaluation

The following criteria have been estimated:

– Time computing:7

– the indexing time : the time required for the system (cf. Fig. 8) to index
images, including Zernike moments computation, mapping points to index on
the selected curve and insertion into B+Tree.

– the image-searching time : the time needed to output a rank of 20 images
whose indexes are the nearest neighbors of the query one (computation of
moments, mapping, reading access to the B+Tree).

– Image searching performance:

– precision : the average number of relevant images from a fixed number of
outputs (20).

– recall : the average ratio of the number of relevant image retrieved to the total
number of relevant images available in dataset.

6 Using new pattern-based space-filling curve for CBIR application:
comparative results

The performances of the curve generated from the most locality preserving 20 − D pat-
tern8 (noted Max) are compared to that of Hilbert9 in large-scale image retrieval tests. The
mapping of features on selected curve is performed thanks to the linear time algorithm pub-
lished by the authors in previous works [41]. Hilbert and Max curves do not require to be
already built and hardware stored. Only the operation of mapping needs to be computed fur-
thermore for fixed dimension and order, these practical considerations lead to reduced time
processing.

6.1 Building the database: time for image indexing

The indexation of 18870 images (cf. Table 7) has been performed in less than 12 minutes
(400 other images have been preserved for search test purposes) including Zernike moments

7Our tests are realized on a standard laptop PC (Intel Core 2 Duo T9800 2.93Ghz x 2, 8GB RAM) running
Ubuntu 12.10. The B+tree data structure is used for efficient implementation of the large-scale database.
8Practically, the considered most-locality preserving pattern is the best solution off-line obtained from Fig. 7
after twenty-four hours of calculation.
9The multidimensional Hilbert curve, is the RBG based-curve.
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computation, mapping features to index on curve and insertion into B+Tree. Whatever the
curve used, the time consuming evolves in the same order of magnitude, the average time
indexing per image is approximately 36.771 ms with the Max or Hilbert curve.

Furthermore, in the framework of this experiment, the system runs in linear time O(N)

according to the number of input images N .

6.2 Retrieval results: precision, recall and query run time

Precision and recall are estimated on 400 queries randomly selected from the data-set (cf.
Table 7). It is the sample of images not yet having undergone the indexing process. For
a query image, the response of the system is composed of the 20 images whose indexes
are the nearest neighbors of the input index, according the curve used to scan the feature
space. Examples of ouputs are illustrated in Fig. 9, and large-scale scores are synthetized in
Table 8.

6.3 Results analysis

Compared to the classic multidimensional Hilbert curve, the Max curve, which is generated
from the optimised pattern, allows a better overall performance in search precision (+9.2%)
and recall (+5.7%), cf. Table 8. These results confirm the influence of the locality preser-
vation on the image search performance. More broadly, the proposed CBIR system takes
advantage of :

Fig. 9 Responses of the system when the feature space is explored by Max or Hilbert curve. The majority
of outputs are similar to the query. Even if all the outputs do not belong to the same class, we can observe
a relation with it. For example, with the query “triangle”, all the outputs refer to electrical symbols and
they contain a triangle. This shows the advantage of the locality preserving property of space-filling curves:
similar images are ordered close together
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Table 8 Comparative results:
precision, recall and query run
time over a sample of 400
queries randomly selected

Curve Precision Recall Average query run time (ms)

Max 67.3 % 42.5% 39.631

Hilbert 58.1 % 36.8% 40.992

– the capability of space-filling curves to cluster data : the clustering properties of the
Hilbert curve were analysed in [37]. Locality between point groups (i.e. image clusters)
in the multidimensional space (feature space) being preserved as much as possible in
the linear space. On the other hand, we know that clustering techniques are useful on
CBIR to partition visual data into groups in order to organize the multidimensional
feature space with the aim of designing a scalability system [9, 39, 40].

– the dimensionality reduction : the 1 − D value is a simple and efficient data structure
used to fast index cluster of images in order to accelerate query run time. That was
confirmed - in the framework of these tests (fixed dimension, curves computed off-line
etc.) - by a short response time; a query run time is performed in less than 41 ms (cf.
Table 8). On the other side, we know that linear dimensionality reduction approaches
are suitable for CBIR problems [10, 17, 23]. For example, the Locality Preserving Pro-
jection [17] is designed for preserving in low dimension the local structure of the data
observed in high dimension.

– incremental mode : the databases are dynamics, new flow of images can be inserted
without modifying existing entities of the system. Furthermore, even the decision-
making is naive, it does not suffer from any dependence with a training process.

However, if the use of the Max curve increases image search performances, using a
space-filling curve for CBIR application also has limitations. From a theoretical point of
view, in a multidimensional space there is no total point ordering that preserves the over-
all spatial locality [21]. This explains why the level of precision does not currently exceed
67.3% even if it has previously been improved (+9.2%). Furthermore, searching all the
images belong to the same class of the query need to deeply explore the 1 − D line
because topology breaks remain (cf. Fig. 2) that consequently affect the recall score reached
(42.5%).

In the field of CBIR, some interesting properties can be highlighted. Concerning the
clustering stage (on image features), many CBIR state-of-the art methods [1, 19, 39,
40] still - partially or totally - refer to the k-means algorithm [16] and variants (fuzzy
C-means [31], PCK-means [4] etc). This observation also regards recent models as bag-
of-words [50] where k-means are used to the quantization of multidimensional image
descriptors into words to form a visual vocabulary. However, with such approaches, we
know that the quality of results suffer from the dependency of some parameters (num-
ber of classes, initialization of class centers, definition of membership function, initial
choice of weights). Here, even the search performances are probably lower than a fine-
tuned k-means-based system, the clustering properties of the proposed system are related
to the curve itself and they are independent of a priori knowledge of the dataset. Con-
sequently, the results of the partition do not change with the number of classes or other
parameters related to the incoming data. Furthermore, no training process is needed and
coupled with the fast computational capability (discussed above), our approach, can design
a system adapted to manage a dynamic dataset. This is clearly an advantage over the
amount and diversity of available images (development of the Internet, and image capturing
devices etc).
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Another interesting characteristic is the possibility to connect the system to a decision-
making loop driven by users. Compared with closed CBIR approaches our system can be
embedded within a user-centered schema inspired by interactive clustering (relevant feed-
back [8, 11, 26]). More precisely, users could select the most relevant images obtained from
a preliminary response and move them on the 1−D line. Then new resulting indexes would
be updated inside the system. The retrieval performance should increase incrementally. So,
the performance of the proposed system could benefit with user interactions. This is a recent
track that has emerged in CBIR.

Improvements can be added at every stage of the proposed system. For example, even
Zernike moments were approved on MPEG-7 standard (region-based shape descriptors) it
was shown in [55] that the generic Fourier descriptor could outperform results on image
retrieval. A panorama of shape descriptors can be found in [56].

We emphasize that more intelligent strategy, like selection of discriminative features,
could be used. Our objective was to measure - under realistic experimental conditions
(including heterogenous sources and noised images)- the intrinsic performance of the pro-
posed curve to rapidly explore a multidimensional space and decision-making without an
optimal image representation.

Actually, the decision-making is guided by a conventional rule : images are sorted
according to their respective indexes on the curve. The response of the system can be
upgraded by post-processing refinement on features vectors of the images previously fil-
tered. Complementary tests have shown that spending 3ms more (7.3% of 41ms), can lead
to an average precison gain about 5% (67.3% → 72.3%). This result was obtained via
the sort of the distances (computed on moments, euclidean metric) between the query and
the sub-set of 40 images corresponding to closest indexes on the curve. More sophisticated
approaches such as re-ranking algorithms could also be envestigated, see [13, 44].

7 Conclusion

This paper deals with new ways to fill a multidimensional space - alternative to the famous
Hilbert space-filling curve - while maintaining the locality as much as possible. In the
same working direction, we can find [32]. The authors have checked in previous works,
favourably received by the community, the utility of the Hilbert curve to manage multidi-
mensional data [41, 42]. Here the focus is on the role of basic patterns to set up a curve
with an interesting level of locality preservation. We show that new patterns can satisfy
the adjacency - multidimensional generalization of the original 2D Hilbert curve condition.
An algorithm is provided to find solutions, examples of outputs are given supplemented
by illustrations. The number of new pattern solutions increases with the space dimension
and locality measures, estimated via standard Faloutsos criterion, showing that among all
solutions only isometric independant patterns lead to better level of locality preserving.
Experiments have enabled the identification of patterns which preserve the locality better
than the classical RBG, which has been used in every previous multidimensional extension
of the Hilbert curve. Moreover, selecting the most locality-preserving pattern contributes
to designing (through orders) a new curve with a good overall locality. This was translated
in CBIR application by an image searching gain compared to the referent Hilbert curve
(resp. +9.2%, +5.7% on precision resp. recall). Even the reached scores are not those of
specialized CBIR systems, that are encouraging results obtained on large-scale tests, under
realistic conditions including various classes of images issued from heterogeneous sources.
The capability of a system to handle different types of images (natural / technical) is a
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trend observed in multimedia domain due to the multiplicity of digital image acquisition
devices now available. Limitations have been identified and justificated and some paths
to improvement have been indicated. Providing new ways to fill a multidimensional space
while maintaining a level of locality comparable to the Hilbert curve, and sometimes better,
can benefit the applications and some studies can be revisited.

In the field of image processing, Yasser et al. [53] proposed to scan the image space via
the Hilbert curve to capture the spatial distribution of pixels. Selecting a new pattern-based
curve should lead to better precision on pixels localisation and consequently to a better
effectiveness on shape representation. Applied to image compression, improving locality
preserving should reduce the number of runs composed of similar pixel intensity values and
good compression rates should result [5, 37].

Secondly, space should be now filled by several curves and not -as usually- by a single
curve. That opens the possibility to define and combine complementary views on the same
multidimensional dataset that has often led to better decision-making, these are our future
work.
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