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Abstract Product image search aims to retrieve similar product images based on a query
image. While deep learning based features work well in retrieving images of the same
category (e.g. “searching for T-shirts from all the clothing images”), they perform poorly
when retrieving variants of images within the same category (e.g. “searching for uniform
of Chelsea football club from all T-shirts image”), since it requires fine-grained matching
on image details. In this paper, we present a spatial quantization approach that utilizes spa-
tial pyramid pooling (SPP) and vector of locally aggregated descriptors (VLAD) to extract
more discriminative features for instance-aware product search. By using the proposed spa-
tial quantization, spatial information is encoded into the image feature to improve the fine
grained product image search. We also present an triplet learning to rank method to finetune
the deep learning model on product image search task. Finally, the experiments conducted
on a large scale real world dataset provided by Alibaba large-scale image search challenge
(ALISC) demonstrate the effectiveness of our method.

� Xuan Wang
wangxuan@cs.hitsz.edu.cn

Shuhan Qi
shuhanqi@gmail.com

Zawlin Kyaw
kzl.zawlin@gmail.com

Zoe L. Jiang
zoeljiang@gmail.com

Jian Guan
j.guan@cs.hitsz.edu.cn

1 Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China

2 School of Computing, National University of Singapore, Singapore, Singapore

Multimed Tools Appl (2019) 78:27045–27065

Published online: 1 May 2017
/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-4739-1&domain=pdf
mailto:wangxuan@cs.hitsz.edu.cn
mailto:shuhanqi@gmail.com
mailto:kzl.zawlin@gmail.com
mailto:zoeljiang@gmail.com
mailto:j.guan@cs.hitsz.edu.cn


Keywords Product image retrieval · Deep learning · Spatial quantization · Triplet metric
learning · Salient region detection

1 Introduction

Widespread proliferation of smart phones coupled with fast growing acceptance for online
shopping1 has prompted most online retailers2 to include “search by image” feature. This
allows a user to find a product easier when it is difficult to describe the product textually
such as when the user is looking for a specific design style and pattern. In general, there
are two key differences between product image search and traditional Content Based Image
Retrieval (CBIR) [33]. First, product image can be taken under unprofessional conditions
such as various lighting conditions, viewpoints and cluttered background (such as the top
and middle rows of Fig. 1). These consumer level images significantly increase the visual
diversity of the database. Second, the intra-category variance within each product category is
very small. In other words, the product images in the same category is visually very similar
to each other, (such as the bottom row of Fig. 1) and the task requires to return the products
exactly the same with the query instance from such small intra-variance categories. In this
way, making a instance aware product image search is a challenge task. These characteristics
requires a robust and discriminative image representation.

Early work in image retrieval research, which mostly based on hand designed features
such as SIFT [21], and bag-of-words based model [40], works well for retrieving near-
duplicate images and highly-textured objects, but not for our task. Further, the product
images are always weakly supervised, which means the product only sizes a small region
in a image without annotation. However, common weakly supervised trained methods [55,
57, 59] are not suitable for our task, as most of them are designed for category level image
retrieval.

Deep learning techniques, which attempt to model high-level abstractions in data by
employing deep architectures composed of multiple nonlinear transformations [35, 45],
have been very successful in CBIR task [2, 38, 46].

The deep learning techniques demonstrate great robustness in handling the consumer
level image problem, and work well in image retrieval problem for categories (e.g. searching
for T-shirt from the clothing images) [6]. However, addressing the instance-aware product
image search (e.g. searching for uniform of Chelsea football club from all T-shirt images)
by deep learning techniques is still a big challenge. As the small intra-category variance of
product images, many images with different style may belong to the same category with
similar appearance. The instance-aware product image search requires fine-grained match-
ing on image details. Since the deep learning models abstract global image appearance into
much higher level features, it is difficult for deep learning techniques to discriminate small
local details in the images. Therefore, the instance-aware product image search needs deep
learning based features with better discriminative ability.

In this paper, we propose a spatial quantization approach to enhance image representation
and improve instance-aware product image search. Unlike most of the deep learning based
image ranking models that use the fully connection layer outputs as image representation,
we utilize the outputs of convolution layer. By using the spatial pyramid pooling (SPP) and

1http://www2.alizila.com/taobao-report-mobile-shopping-catching-quickly-china/.
2Amazon, Yahoo, Taobao.
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Fig. 1 Illustrative examples of product image. Product images with various viewpoints (top); cluttering
background (middle); product images belong to the same category with similar appearance but different
instance (bottom)

vector of locally aggregated descriptors (VLAD), feature maps are encoded into a global
descriptor while preserving spatial information. SPP enables more discriminative features
by integrating global and local information. It also allows the features to be more resistant
to deformation. VLAD further improves SPP features through quantization to reduce the
influence of noise. Moreover, based on the observation that product is almost always the
salient region of image, an efficient saliency based product region localization method is
employed to reduce the impact of clutter background. The final distance between the query
and the testing image is determined by combining the Euclidean distances of different types
of feature linearly. A preliminary version of this work is reported in a conference paper
[25], which only utilized some classification task pretrained deep learning models for spa-
tial quantization. However, due to the intrinsic difference between image classification and
similar image ranking tasks, a good pretrained deep learning model for image classifica-
tion may not be optimal enough for distinguishing product image similarity. In this paper,
we proposed an triplet learning to rank method to further improve the accuracy of product
search. Specifically, we finetune the pretrained deep learning models by utilizing an triplet
ranking loss function, and the final performance achieves an MAP@20 of 37.64 on ALISC
dataset with the 3567 query images and 3 million evaluation images.

The main contributions of this paper can be summarized as follows:

1. We investigate the product image search problem and propose a practical framework
for large scale product image search. In this framework, multiple deep learning models
with triple loss are utilized to enhance the robustness and discriminability of image
representation. Moreover, SPP and VLAD are utilized to encode the spatial information
into the image representation.

2. We also propose an efficient saliency based product region localization algorithm to
reduce the impact of clutter background in the images.
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3. We conduct experiments on the Alibaba large scale image search dataset consisting
of 4984 queries and 3.1 million testing images collected from E-commerce platform
TAOBAO. The evaluation validates the proposed approach is able to achieve remarkable
search performance for product image search.

2 Related work

2.1 Deep learning for image retrieval

Early work in image retrieval research is done mostly under the bag-of-words model adopted
from text retrieval. Hand designed features such as SIFT [21] are extracted from the query
image and histogram of visual words is constructed based on a predefined dictionary.
This histogram is treated as a feature vector matched against database images. The perfor-
mance of these models is largely bottleneck-ed by the representation power of hand crafted
features.

Deep learning models have been very successful at classification tasks [10, 12, 35].
Indeed, the features learned from classification perform well as a strong baseline in image

retrieval tasks [26]. Deep learning features have been utilized for CBIR in [2], which use a
transfer learning deep neural works to learn the high-level image representation of queries.

In [38], by conducting a series of evaluations on various deep convolutional neural net-
works with application of CBIR, the authors suggested that the retrieval performance could
be boosted significantly by deep learning. In [42], a convolutional network has been trained
to output binary similarity decision from a pair of input images. However, it suffers from
having to perform expensive forward pass when the similarity needs to be measured. An
alternative approach is to extract the features in advance and calculate Euclidean distance
between features as a measure of similarity. For product search in reality situation, query
images are generally more uncontrolled and the system needs to provide the results fast
enough in order to meet usability needs. In [33], Shen et al. computes a weighted mask to
locate and split query object before extraction. Lin et al. [11] learns binary hash code with
deep learning to reduce retrieval time cost.

Learning a distance metric that directly optimizes the distance in the embedding space
has been well studied [3, 7]. A popular variant of this approach, Siamese network, which
maps input patterns into a target space that the L1 norm distance in the target space approx-
imates the semantic distance in the input space by minimizing a discriminative similarity
loss function, has been applied to face verification [4, 36]. However, the Siamese network
is sensitive to calibration in the sense that the notion of similarity vs dissimilarity requires
context [8]. Triplet network improves the Siamese network by introducing the triplet which
contains an anchor, an positive image and an negative image instead of a pair to induce
the relative pairwise similarity ordering [39]. Zhang et al. [61] proposed an triplet-based
hashing learning method for image retrieval, which incorporates a hashing related regular-
ization term into the triplet metric learning to preserve the adjacency relation in Hamming
distance.

2.2 Multimedia content analysis

Recently, many graph-based models are applied in multimedia and computer vision. They
can be used as geometric image descriptors [57, 58] to enhance image categorization. These
methods can also be used as image high-order potential descriptors of superpixels [52, 53].
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Further, graph-based descriptors can be used as a general image structure descriptors to
improve the results of fine-grained image categorization [48, 60]. Besides, many progress
in related-technical such as image segmentation [50, 59], photo retargeting and cropping
[49, 54, 57] may help to localize the product region in images, and some aesthetics based
methods [51, 56] can be used to improve the quality of returning results. Some developments
in cross-media retrieval [24, 43] and discrete image hashing [44], are also helpful to improve
the accuracy of product image search.

With the increasing amount of the UGC, the requirement of searching specific content
in UGC is ever growing [18, 22]. However, because of the complexity of UGC, deploying
an accurate product search method in UGC is an challenge problem. Thus, some UGC ori-
ented feature extraction and recognition methods have significant value of referential. Liu
et al. [19] utilized Sift descriptors to model the visual contextual information for refinement
of the video retrieval. Shah et al. [31, 32] leveraged contextual information such as mobile
sensors to recommend matching soundtracks for user-generated videos on social media.
The multimodal (both content and contextual) information access of such UGC benefits
a number of diverse multimedia applications[27, 28]. For instance, it is advantageous in
an effective semantics understanding such as event summarization [29] and sentics under-
standing [30] from large multimedia collections. In [13, 16] and [17], vision-based action
recognition models are trained by multi-tasks learning to identify temporal patterns among
actions and further utilize the identified patterns to represent activities for automated recog-
nition. Moreover, multimodal information is exploited in determining multi-view structures
such as tracking the human motion in video [5, 14] and predicting the water quality from
ubiquitous sensor data [15, 20].

3 The proposed method

3.1 Architecture overview

As shown in Fig. 2, the procedure of the proposed framework contains four stages. First,
given an image, an efficient saliency based object detection is utilized to localize the product
region in the image. Second, the local descriptors in the product ROI (region of interest)
of the image are extracted by multiple models. In this work, two deep learning models
with spatial pyramid pooling (SPP), are employed to extract high level local descriptors,
while sparse SIFT is employed as well to extract the low level local descriptors. Third,
the extracted local descriptors with different modalities are encoded by vector of locally
aggregated descriptors (VLAD) into global descriptors. Finally, Euclidean distances of the
three extracted global descriptors between the testing image and the query are calculated,
and the final distance is decided by optimal linear combination of the three distances.

3.2 Product region localization

In many E-commerce images, the product object occupies only a small area. Extracting fea-
tures from the whole image will include cluttered background, which significantly reduces
the image retrieval accuracy. According to our observation on the dataset, most of the prod-
uct regions are the salient regions of E-commerce images. Inspired by the work in [47], we
propose an efficient saliency based product region localization approach, as shown in Fig. 3.
The generation of saliency map contains two steps: Fast Minimum Barrier Transform (fast
MBD) and Image Boundary Contrast (IBC) Transform.
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Fig. 2 The framework of the proposed method. The framework contains 4 stages: product localization, local
descriptors extraction, VLAD encoding and distance calculation

3.2.1 Fast minimum barrier transform

Given an image A, the fast MBD transform aims to minimize the barrier distance in the
image. To update the barrier distance of each pixel in the image, the fast MBD scans the
whole image in forward (left to right, up to down) and backward (right to left, down to up)
iteratively. In each scan, the barrier distance L of pixel x is updated as

L(x) =
{

L(x)

ηy(x),
(1)

where ηy(x) is the MBD cost and defined as:

ηy(x) = max(P (y), A(x)) − min(Q(y),A(x)). (2)

Fig. 3 The illustration of product localization in the image. In the product localization, two transforms MBD
and IBC is made to form an enhanced saliency map, then the Otsu thresholding is preformed to generate
bounding box of product
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Note that y is an adjacent neighbor of current pixel x, and the P and Q are two auxiliary
maps that keep track of the highest and lowest pixel values on the path for each pixel. Since
in each iteration the barrier distance L is non-negative and non-increasing, the iterative
update will converge in the end. The Fast MBD is an efficient saliency map transformation
approach since the complexity is linear to the number of image pixels.

3.2.2 Image boundary contrast transform

The fast MBD transform is not stable in situation that the product region touches the image
boundary. An Image Boundary Contrast (IBC) map [47] is generated to complement the
fast MBD.

Assuming that the background regions are likely to possess similar appearance to the
image boundary regions, the IBC map highlights regions with a high contrast against the
boundary regions. The IBC takes four boundary regions (upper, lower, left and right) into
consideration. For each region t = {1, 2, 3, 4}, the mean color of each color channel mt =
[ml,ma,mb] and color covariance matrixWt ∈ R3×3 are calculated. Then four intermediate
IBC maps vt = [vij

t ] ∈ R3×3 are computed based on the Mahalanobis distance:

v
ij
t =

√
(x

ij
t − mt)W

−1
t (x

ij
t − mt)

T
. (3)

The final IBC map V = [vij ] is determined by:

vij =
(

4∑
t=1

v
ij
t

)
− max

t
v

ij
t . (4)

By considering the appearance of four boundary regions in the image, the IBC map will
be more robust when one of the boundary regions is mostly occupied by product objects.

A linear combination of the MBD map U and IBC map V is made to form an enhanced
saliency map S = U + V . Then we preform the Otsu thresholding [23] to generate a binary
mask, and then use the size and aspect ratio as heuristics to select the final bounding box.

3.3 Feature representation

The accuracy of product image retrieval depends highly on quality of feature representation.
Recent research efforts have shown that combining multiple features extracted by different
models may yield a good image representation [37]. In this work, we use two deep learning
based features (CaffeNet and Network in Network) and a hand crafted feature (SIFT) to
make a better set of image features. It is worth noting that for Network in Network and SIFT,
we use saliency based product location to detect the product region in the images, while
for CaffeNet, the fixed size center crop is taken. We use the fixed size crop for CaffeNet
because the CaffeNet also takes the response of general classification in our solution (to
be elaborated in Section 3.4). Fixed size crop maintains better global information which is
important for general classification.

VLAD has been proposed for image retrieval to encode image local descriptors such
as SIFT and HOG. Inspired by the work in [41], in order to diversifiy the outputs with
aggregation on multiple spatial locations at deeper stage of network, we accumulate the
response of specific location of CNN convolution filter into high level local descriptors, and
employ VLAD to encode the high level local descriptors as well as spatial information into
a more discriminative image representation.
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3.3.1 High level local descriptors

In this work, the high level local descriptors are extracted by two deep learning models
respectively.

The first model is the CaffeNet model from CAFFE [9]. The model is pre-trained on
ImageNet ILSVRC-12. The CaffeNet consists of 8 learned layers, which include 5 convo-
lutional layers and 3 fully-connected layers, follows with some ReLU activation functions
and max pooling layers. In this paper, the outputs of the last convolution layer with shape
size 14 × 14 × 256 are extracted.

The second model is the NIN-Imagenet model [12] from CAFFE. The NIN builds micro
neural network with more complex structures to abstract the data within the receptive field.
By using the micro neural network, people can use much less parameter to build a more
complex deep learning model. The NIN model contains 12 learning convolutional layers,
as well as several ReLU activation functions and pooling layers. The outputs of cccp7 layer
with shape size of 6 × 6 × 1024 are extracted.

The feature maps which are extracted from the convolution layer of CNN contain spa-
tial information. The standard way of converting feature maps into feature vector, which
flattens the feature maps into a vector, will leads to high dimensional feature and heavy
computational cost. The convolutional filters can be regarded as the generalized linear clas-
sifiers of some underlying patterns, in this way, each convolutional filter corresponds to
a latent concept. The latent concept descriptor, which consists of the activations of spe-
cific position in feature maps, is able to represent the responses from convolutional filters
for a corresponding spatial location. In this work, the latent concept descriptor is adopted
as the high level local descriptor. Specifically, as shown in Fig. 4, for the feature maps in
shape a × a × M , where a is the size of each feature map and M is the number of con-
volution filters in the convolution layer (for CaffeNet a = 14 and M = 256, while for
NIN a = 6 and M = 1024), the spatial pyramid pooling (SPP) layer is utilized to pool
each feature map into three size: 1 × 1, 2 × 2, 3 × 3. Three groups of feature Maps with
1×1×M , 2×2×M , 3×3×M are formed. Then 13 latent concept descriptors with length
M are formed by accumulating the value of specific position of M feature maps in the same
group.

Fig. 4 The illustration of converting feature maps into latent concept descriptors. The feature maps are
pooled into different size (2 × 2 in this example) by SPP layer, latent concept descriptors are formed by
accumulating the value of specific position in different feature maps
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3.3.2 Learning to rank

Most of the pretrained CNN models are trained to solve the category level classification
problems, for example, in [10, 35], all the images belong to the same category are consid-
ered similar. However, such CNN models are insufficient to handle the product search task.
As discussed in the Section 1, the product search requires a model can distinguish the small
intra-category differences between two images in the same category. In the way, the clas-
sification task pretrained CNN models may not fit the task of product search. Inspired by
[39], we employ a triplet metric learning model, which characterizes the product similarity
relationships with a set of triplets, to further finetune the CNN model.

The triplet ranking model is a kind of pairwise ranking model, whose goal is to learn an
embedding function f (·) that maps an image to a point in Euclidean space. The more similar
the two images xi and xj is, the smaller the distance D(f (xi), f (xj )) = ‖f (xi) − f (xj )‖22
is. In the triplet metric ranking model, the training instance is composed by a triplet: the
anchor sample which is usually randomly selected from training dataset, a positive sample
which is “sharing the same label with an anchor sample, a negative sample is labeled dif-
ferent against the anchor. Compared with Siamese ranking model [4] only consider pairs
globally, which can result in insufficient sampling of positive and negative samples, the
triplet model utilizes two type of pairwise relationships: a similar pairwise and a dissimilar
pairwise in the training process, and samples better potential pairs during optimization.

To be specificly, given a triplet object (x, x+, x−), where x, x+ and x− are the anchor,
the positive sample and the negative sample respectively. The objective of triplet rank-
ing optimization is to reduce the distance between the anchor and the positive sample and
increase the distance between the anchor and the negative sample in each iteration. The loss
function is defined as:

L(θ) =
N∑

n=1

[‖f (x) − f (x+)‖2 − ‖f (x) − f (x−)‖2 + m] + ‖θ‖2, (5)

where m is a small margin that enforce minimum inter cluster distance in the embedding
space.

Since the number of possible negative pairs are much larger than positive pairs, in this
paper, the hard negative mining is utilized to avoid inefficient training on trivial examples.
To further restrict the set of all possible models for faster convergence, two additional con-
straints are enforced here. First, we require the embedding space lies along the surface of a
unit hypersphere, i.e, ‖f (x)‖2 = 1. Second, we enforce the embedding model to belong to
the set of models that also perform well on softmax regression by multi-tasks training the
softmax loss and the triplet loss.

3.3.3 Low level local descriptors

While CNNs learn high level semantic features very well, their performance degrades when
the query object is rotated or when it is in cluttered scene. We extract rotation and scale
invraint SIFT features [21] to complement the high level CNN features. We then extract
SIFT descriptors at detected key points and used VLAD to encode them into final quan-
tized features. We used opencv’s implementation of SIFT and used nOctaveLayers = 3,
contrastThreshold = 0.04, edgeThreshold = 10, sigma = 1.6.
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Fig. 5 The illustration of the VLAD procedure. The procedure contains the offline clustering and online
encoding. In offline stage, the local descriptors are sampled, and PCA whitening and K-means clustering are
performed. In the online stage, the local descriptors are encoded into the VLAD by accumulating the residual
between descriptors and cluster centers

3.3.4 VLAD encoding

To encode the local descriptors into global feature representation, Vector of Locally Aggre-
gated Descriptors (VLAD) is employed. As shown in Fig. 5, VLAD has two stages: offline
clustering and online encoding. For offline clustering, the local descriptors are sampled
from training images, then PCA whitening and K-means clustering are performed. Note that
the PCA whitening pre-processing is necessary for a better fit on the diagonal covariance
matrix assumption [34]. In this work, efficient K-means in VLFEAT3 library is conducted
to obtain K coarse centers {c1, c2, ..., cK }, such K centers are then used as vocabulary in
the online encoding stage. In the online encoding stage, the local descriptors with PCA pre-
processing are assigned to p closest cluster of the vocabulary. For each clustering center in
vocabulary, the residuals (vector differences between descriptors and clustering centers) are
accumulated by

uk =
∑

ck∈NN(xi )

(xi − ck), (6)

where NN(xi) is the p nearest neighbors set of xi among the K coarse centers. By con-
catenation of the uk of all the K centroids, the VLAD is formed with size KN , where
N is the dimension of local descriptor after PCA pre-processing. Finally, we apply Intra-
normalization [1], Signed Square Root (SSR) normalization, l2 normalization to the VLAD
features.

More specifically, for CaffeNet VLAD and NIN VLAD, we use K = 32 and p = 12,
and PCA reduces the dimension of latent concept descriptors to 192 and 768 respectively,
while for the low level local descriptor, we set K = 200 and p = 5, and PCA reduces the
dimension of SIFT to 64.

3http://www.vlfeat.org.
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The summarization of the procedure about extracting the image features is described in
Algorithm 1:

3.4 Result reranking and model fusion

Since the query images always belong to the same general class as the results, apply-
ing class level classification as a filtering step can significantly improve the retrieval
results. We train a classification model based on CaffeNet. This model’s parameters are
shared with the feature extraction model in Section 3.3.1 to reduce computation time.
We achieve 92.5% accuracy on 10 class general classification. However, it may not be
accurate enough for using as hard category filter since it will incorrectly remove 8%
of valid results from the final results. We treat softmax outputs as another kind of fea-
ture and compute the final distance between query image Iq and evaluation image Ie as
follow:

df inal = αdCaff eNet (Iq, Ie) + βdNIN(Iq, Ie)

+ δdSIFT (Iq, Ie) + γCcat , (7)

where

Ccat =
{
1, if ‖xq − xe‖ > Cthresh

0, otherwise.
(8)

where xq and xe are softmax outputs.
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4 Experimental evaluation

4.1 Experimental dataset

In our experiments, we utilize the ALISC dataset, which contains 2 million training images
with tags (10 product categories, 676 subcategories and 6 product attributes), 3 million
evaluation images, 3567 evaluation query images and 1417 validation query images with
ground truth result sets. All the images are collected from TAOBAO E-commerce platform.
The ALISC limits the running time of feature extraction to 1 second per image, based on the
a single thread CPU Intel Xeon E5-2420 1.90GHz. Therefore, the efficiency of algorithm is
also an important factor to be considered.

4.2 Evaluation metric

There are various metrics to evaluate retrieval results such as precision,recall, F measure,
MAP and NDCG. The retrieval engine can present at most 20 images without having the
user to scroll.

We use mean average precision (MAP) at 20 for our evaluation. MAP has been shown
to be a good discrimination and stability evaluation metric for retrieval. For a given query,
average precision is the average of precision values for the set of top k items. MAP@k is
the mean of average precision over all queries. Given that Q is the set of all queries and Rjk

is the set of top retrieved images up to k, MAP@k is calculated as follow.

MAP@k(Q) = 1

|Q|
|Q|∑
i=1

1

k

k∑
j=1

Precision(Rjk) (9)

4.3 Experimental results

4.3.1 Product image search

In this section, we will present the experiments on the proposed solution (NINtpl+v+
CaffeNettpl+v+ SIFTv). We will also compare the experiment results of searching with
triplet NIN VLAD (NINtpl+v), triplet CaffeNet VLAD (CaffeNettpl+v), triplet NIN VLAD
fusion with triplet CaffeNet VLAD (NINtpl+v+ CaffeNettpl+v), NIN VLAD (NINv), Caf-
feNet VLAD (CaffeNetv), NIN VLAD fusion with CaffeNet VLAD (NINv+ CaffeNetv)
and SIFT VLAD (SIFTv). The results of using the average pooling layer of NIN based
models (NINtpl+avg and NINavg) and fully connection layer of CaffeNet based models
(CaffeNettpl+f c and CaffeNetf c) are provided as baseline. To generate the triplet train-
ing data, first, we generate a small dataset by randomly selecting 1000 image queries and
their related from the ALISC development set. Then for each training triplet, we randomly
selected an image and one of it’s related image as anchor and positive sample, and selected
an unrelated image as negative sample.

The saliency based product localization is utilized to detect the product for NINv , SIFTv

and NINavg . For CaffeNetv and CaffeNetf c fixed size center crop is used to generate the
input image. We also find that the configure of taking fixed size center crop for CaffeNet
and saliency based method for NIN leads to a better performance than using saliency based
method for both of CaffeNet and NIN. It means that the fixed size center crop is a good
complementary for saliency based product localization, since more global information is
preserved.
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For NIN based VLAD, CaffeNet based VLAD and SIFT VLAD, the dimension of local
descriptors are reduced to 768, 192 and 64 by PCA pre-process respectively. The number
of clustering centers of NIN based VLAD, CaffeNet based VLAD and SIFT VLAD are 32,
32 and 200.

The experimental results are shown in the Table 1. In the experimental result, we can
see that the proposed method significantly outperforms the other compared methods, which
reaches an MAP@20 of 37.64. It suggested that the proposed methods are effective in solv-
ing the product search problems. We further show some results of product image search in
the Fig. 7.

For triplet metric learning. The results of NINtpl+avg and CaffeNettpl+f c, which employ
the triplet metric learning to fine-tune the deep learning model, are compared with the results
of NINavg and CaffeNetf c. In the comparisons we find that by using the triplet metric learn-
ing, the performance of NIN and CaffeNet are boosted about 9.07 and 9.21% respectively.
It may because the deep learning models we used here are trained to handle the ImageNet
classification task, and they can discriminate the difference between categories. However,
the product search tasks require the models are able to discriminate not only the category
difference but also the details between the instances in the same category. Nevertheless,
as there are some connections between general image classification task and our product
search task, in both cases, the CNN are learned to understand some latent patterns lies in
the image dataset, such as the lines, corners, gredients in images. By adopting the triple
metric learning, the pertrained CNN are finetuned to understand how these patterns are
arranged in the product search dataset. After finetuning by triple metric learning, the fea-
tures belong to same instance are trend to similar and the features belong to vary instances
are trend to differential, and in this way the discriminative of deep learning model are
improved.

For spatial quantization. We compared the performance of NINavg and CaffeNetf c

with NINv and CaffeNetv , which employ the spatial quantization as feature enhancement
method. In the comparison we can see the two results generated by CNNwith spatial quanti-
zation are much better those without, it suggest that the spatial quantization is effectively in
improving the deep feature discriminative. There are two reasons for such result: First, the

Table 1 Performance
comparison (MAP@20 in
percentage)

Methods MAP@20 (%)

SIFTv 11.09

CaffeNetf c 13.37

NINavg 15.06

CaffeNettpl+f c 22.58

CaffeNetv 22.89

NINtpl+avg 24.13

CaffeNettpl+v 24.34

NINv 27.43

NINtpl+v 29.90

NINv+CaffeNetv 32.03

NINtpl+v+CaffeNettpl+v 33.74

NINv+CaffeNetv+SIFTv 35.35

NINtpl+v+CaffeNettpl+v+SIFTv 37.64
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fully connection layer as well as global average pooling in CNN is a kind of summarization
of the local feature, which ignore lots of detail information in image. On this other hand, the
spatial quantization, which utilizes the feature maps of convolution layer as local descrip-
tors, maintains more detail information and spatial relationships in the final feature. Second,
the spatial quantization employed VLAD as coding method, which records the residual
between local descriptors and visual vocabulary, in this way, the information loss in quan-
tization are reduced. It’s worth noting here that, compareing the results of NINtpl+v and
CaffeNettpl+v with NINtpl+avg and CaffeNettpl+f c, we can see that even been employed in
the triplet finetuned CNNmodel, the spatial quantization can still improve the discriminative
of CNN feature.

For the comparison deep learning feature and traditional feature. In the experiments, we
found that the deep learning based methods are better than the traditional feature based
methods, even the pretrained model with no finetuning are outperform the SIFTv by 3%.
However, we also found that, even the result of traditional features much is worse than
deep learning features, combine these two methods together can still obtain a better perfor-
mance. For Error analysis. We tested our methods in the validation dataset. In the Fig. 6, we
show the performance of our methods on the 10 categories of ALISC. In the experimental
results, we find that our method has a better performance in category of top-wear, snacks
and cosmetics, and perform worse in jewelry, dress and shoes. According to our observa-
tion, compared the categories with better results, the images in jewelry, dress and shoes
may have such problems: the simple texture or patterns, the unfixed viewpoints and the un-
salient objects. A promising solution for these problems is to utilize some technical like
Hough transformation to detect and rectify the viewpoints of objects, and further take some
super-pixels methods to enhance the details and patterns in images.

4.3.2 Efficiency analysis

We also evaluate the running time of the proposed method. The total running time of feature
extraction is 0.78 second, which is less than the 1 second limit of ALISC, the running time of
each step is shown in Table 2. It suggests that the proposed product image search framework
is very efficient. Note that it is the running time for single thread on CPU only machine.
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Fig. 6 The performance of proposed paradigm on 10 categories
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Fig. 7 Some sample results of product image search. The first column is the query, the other columns are
results; bounding boxes of product localization are also provided

The extraction of CNN descriptors, which is the bottle neck of the whole framework, can
be accelerated significantly by utilizing GPU.

4.3.3 Product localization

To evaluate the influence of the proposed saliency based product localization, we also test
performance of removing product localization and using center crop image as input for
NIN VLAD (NINv no PL) and SIFT VLAD (SIFTv no PL). Although the CaffeNet use
center crop in this work, we also provide the performance of CaffeNet VLAD with prod-
uct localization here for comparison. From Table 3. it can be seen that, by using saliency
based product localization, the NIN VLAD, CaffeNet VLAD and SIFT VLAD obtain great
imporvment of 4.30, 2.85 and 2.26% on MAP@20.

The product localization step takes only 40ms to detect product in the image, which is
much lower than the time consumed for the feature extraction step. Moreover, we randomly
selected 500 images from training images and labeled the position of product in images. We
then use this small image dataset to test the accuracy of the product localization method.

Table 2 Time consuming of
each step Steps Runing time (s)

Product localization 0.04

NIN VLAD 0.31

Caffenet VLAD 0.29

SIFT VLAD 0.14

Total 0.78
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Table 3 The influence of
product localization Methods MAP@20 (%)

NINv with PL 27.43

NINv no PL 23.13

CaffeNetv with PL 25.74

CaffeNetv no PL 22.89

SIFTv with PL 11.09

SIFTv no PL 8.83

The Intersection over Union (IOU) rate of product localization reaches 83% on average. We
show some example results of product localization in Fig. 7.

5 Conclusion

We have presented an approach for improving the discriminative capacity of deep fea-
tures using SPP pooling and VLAD encoding. We have also demonstrated an efficient and
effective saliency based product localization approach.

We further note that while deep learning features outperform traditional features such as
SIFT, SIFT can still improve the overall performance when used in conjunction with deep
features.

We used fusion of multiple models and our results on a challenging real world dataset are
significantly better than single models or methods using just deep features without spatial
pooled quantization.

Multiple deep learning models were utilized to enhance the robustness and discriminabil-
ity of image representation. Experiments on ALISC dataset demonstrated the effectiveness
of our approach.

While we have demonstrated that significant performance gains can be obtained beyond
baseline CNN features via VLAD quantization, further performance gains are obtained
when used in conjunction with metric learning models. In the future work, we are expected
to exploit a more discriminative CNN model by using some lastest deep learning technical
such as generative adversarial networks (GANs) et al.
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