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Abstract Achieving high embedding capacities for information hiding systems while main-
taining high perceptual stego quality is a critical challenge in steganography. This quandary
is attracting researchers to overcome the trade-off barrier between high capacities and
enhanced levels of stego image quality. This work introduces a promising transform-domain
hiding scheme that aims to achieve ultimate hiding capacity with premium perceptual qual-
ity results. The proposed scheme is based on the fact that highly correlated images are
represented by significant coefficients that are strongly packed in the transform-domain of
the image. This allows for a large space in the insignificant coefficient areas to embed in.
To exploit this feature optimally, a curve-fitting approach is introduced and implemented
in various adaptive-region transform-domain embedding schemes. Experimental results
demonstrate that this curve-fitting methodology is able to enhance adaptive transform-
domain embedding schemes where very high embedding capacities can be achieved that are
much higher than competing high-capacity hiding schemes. The other noticeable result is
that although the embedding capacity has increased compared to earlier work, the perceptual
quality level has also improved over previous methods.
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1 Introduction

Steganography is the art that deals with concealing the existence of messages. The invention
of this art is not new, some historical studies traced back this science to 440BC [17]. How-
ever, the interest in information security techniques, such as steganography and encryption,
has widely grown in recent decades with the massive increase in the exchanged multimedia
data over insecure networks [6, 14, 20, 21, 40].

Steganography differs from encryption in that encryption is concerned with encoding
messages, so that only authorized entities can understand them. Steganography adds a
further security step since it conceals the occurrence of the hidden data exchanged. “Water-
marking”, on the other hand, is a different category of data hiding techniques. This class is
used for authentication and integrity purposes [23].

There are four different aspects that researchers try to improve; capacity, perceptibil-
ity, robustness, and security. The capacity attribute refers to the size of the hidden data
in a cover medium. Perceptibility deals with the amount of “noise” in the stego medium.
Robustness refers to the “solidity” of the stego medium, and its ability to keep the secret
information undestroyed with the existence of noise and impairments, and security refers to
an eavesdropper’s inability to detect and inturn extract or change the hidden message.

The recent growth in data sizes has attracted many researchers to contribute in the embed-
ding capacity area of research [2, 5, 8, 9, 16, 18, 25, 30]. The drive to improve the embedding
capacity is hindered by the fact that an increase in the amount of embedded secret data will
typically result in poor stego channel quality.

In this work, we present a transform-domain embedding scheme that addresses the
shortcomings in previous high capacity embedding schemes where researchers had to trade-
off between higher capacities and reduced perceptual quality or choose higher perceptual
quality at the expense of lower capacities.

In images, the core concept behind data embedding is the fact that most images can be
partitioned into different regions based on their inter-pixel relations. These regions vary
between high frequency areas where pixels have almost no correlation, and low frequency
areas (highly correlated). Embedding schemes will usually find the redundancy in the pixel
information of the cover image where the correlation is at its minimum level, and use it to
hide the secret data.

Recent work by Rabie & Kamel [33, 34] has tried to address the problem of capacity ver-
sus perceptual stego quality by estimating adaptive square regions inside fixed and adaptive
blocks of the DCT of the cover image. These schemes were able to reach extremely high
embedding capacities above 21bpp while maintaining perceptibility at an acceptable level
of around 27dB.

The steganography scheme described in this paper is mainly based on the idea that the
DCT coefficients of a correlated image will be strongly packed in the top left region of
the DCT domain. This suggests segmenting the cover image into different segments based
on their inter-pixel correlation level. By transforming each segment using DCT, we insure
having a very large area to embed in, as important coefficients will be concentrated in a
small area due to the strong “energy compaction” property of the DCT.

Unlike previous adaptive region embedding approaches [33, 34], where only a square
region in the lower-right corner of the possible hiding area in the DCT block is used to
embed in, our new scheme introduces a curve-fitting (CF) approach to utilize fully the whole
area that is suitable to embed in. This has led to a substantial increase in the available embed-
ding area in the DCT of the cover image and has consequently resulted in improved hiding
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capacities while achieving very high perceptibility values for the stego image in comparison
to these earlier schemes. As a matter of fact, we were able to reach an embedding capacity
of 22bpp at 35.83dB, as will be shown in detail in Section 5.

The rest of this paper is organized as follows. Section 2 discusses related research work
in the area of high-capacity data hiding. Section 3 briefly reviews the discrete cosine trans-
form and the discrete wavelet transform, and their importance for high-capacity data hiding.
The proposed Curve-Fitting methodology is discussed in significant detail in Section 4.
Section 5 presents comparison results and demonstrates the highest capacity/perceptibility
levels that can be achieved based on the proposed approach. Finally, concluding remarks
appear in Section 6.

2 Related work

The traditional methods to embed information into a cover image are the Least Significant
Bit (LSB) methods. The general idea of this technique is to embed in the least significant
bit in each pixel of the cover image. There are many implementations of this method. In
[39] only one of the three channels at each pixel of the cover image is elected by a Sample
Pairs analysis, then a LSBMatch method is performed so that the final color is similar to the
original one in terms of colors. The Least significant bit (LSB) methods along with Spread
Spectrum and code based techniques are examples of the spatial techniques [41]. Spatial
schemes are simpler and faster than other hiding techniques. However, these methods are
less robust, and are easier to be detected by an attacker.

In [19] the authors propose a gray-scale image hiding scheme where the cover image
is divided into blocks of two sequential pixels. These blocks are grouped based on their
smoothness and contrast attributes. The amount of information that can be hidden in a block
is determined by its smoothness and contrast level. Since it is tougher for human perception
to detect changes in non-smooth areas, this algorithm suggests to embed more data in edge
areas.

Image inpaintaing was also used for data hiding in [24, 26]. A scheme that utilizes data-
hiding and compression simultaneously using side match vector quantization and image
inpainting is proposed in [24]. Since this method combines data hiding and image compres-
sion, the maximum capacity reached by this method was quite low (0.14bpp for an R,G,B
color secret image). Another class of spatial hiding schemes are the reversible data hiding
schemes. Examples of such schemes are the work are [27] and [25].

The second embedding category is the transform-domain methods. In these techniques,
an image is transformed from it’s spatial domain to a different domain. The hiding process
is then performed in the transformed domain by inspecting the less important coefficients,
and replacing them by scaled bits from the secret image. Finally, a stego image is produced
by taking the inverse transform. There are several transforms that are used in image hid-
ing schemes. Examples are, the discrete Fourier transform, discrete cosine transform, and
discrete wavelet transform. The advantage of these techniques is the improved security and
robustness comparing to the spatial domain techniques.

A frequency domain hiding scheme is introduced in [28, 29]. The idea is to use
the ‘Matryoshka principle’ or the ‘nested doll principle’ which is a well-known design
paradigm. The author’s theory states that the Fourier phase of the cover image is much
more important than its Fourier mgnitude when reconstructing the image. Thus, the scheme
keeps the Fourier phase intact and embeds in the Fourier magnitude. This has allowed a
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robust embedding with acceptable quality of the stego image and minor degradation in the
extracted secret image.

The same authors have investigated the trade-off between hiding capacity and percep-
tibility in many papers. In [32] a Fixed-Block-size locally Adaptive-Region (FBAR) DCT
approach was implemented to discover this relationship. An improvement over the previ-
ous method using a Fixed-Block-size Globally Adaptive-Region (FB-GAR) DCT method
had enabled to embed and extract with higher capacities and perceptibility [33]. More-
over, the authors made a further step in challenging this trade-off in [34]. The new idea
is based on partitioning the cover image into non-overlapping segments using a Quad-
Tree Adaptive-Region (QTAR) DCT embedding scheme. This has achieved the highest
capacity/perceptibility levels among all of their previous work.

A wavelet transform scheme is presented in [36]. This method encrypts the secret data,
and then embeds into the wavelet coefficients of the cover image to produce a stego-image.
Furthermore, the algorithm increases the robustness of the proposed method by electing
the approximation band of the wavelet domain, and embed in that band. In [11] another
novel wavelet approach that embeds hidden information in the integer wavelet coefficients
of the cover image. To increase the security, a pseudorandom function is applied to select
the coefficients that will be used in hiding.

A third class in hiding schemes is the compression-based algorithms. The author in [35]
introduces a methodology that combines Least Significant Bit(LSB), Discrete Cosine Trans-
form(DCT), and compression techniques. At the first place, the secret data is embedded into
the cover image using a LSB algorithm to produce a stego image. Then, DCT is used to
transform the image to the frequency domain. Finally compression techniques like quanti-
zation and runlength coding are performed to compress the stego-image in order to make it
more secure.

The embedding scheme introduced in this paper is based on a Curve-Fitting (CF)
methodology applied in the transform domain and implemented on the previously published
embedding algorithms in [33, 34]. It is shown that this proposed enhancement will allow for
higher embedding capacities while improving the quality of the stego image in comparison
to results obtained using these previous schemes. A comparison with the embedding capac-
ity and perceptibility of various steganography schemes that have been recently published
in the literature is also demonstrated.

3 Theoretical background

3.1 The discrete cosine transform

The strong “energy compaction” property has made the Discrete Cosine Transform (DCT) a
widely used utility in signal and image processing applications. When using the DCT trans-
form, most of the signal information is concentrated in the top-left area of the domain, which
is the area that has low-frequency coefficients [1, 37]. Since images are two-dimensional
signals, the 2-dimensional DCT (2D-DCT), which is an extension of the 1D-DCT, is often
used in image processing.

For images, the strong “energy compaction” property of the DCT manifests clearly with
highly correlated images. In contrast, uncorrelated images have their energy spread out in
the domain where some large values of the DCT coefficients are found in the high frequency
areas.
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Another property of the DCT transform is the importance of the DCT-phase component
for reconstructing an image in the spatial domain. It has been found that the DCT-phase car-
ries a significant amount of the image information. On the other hand, the DCT-magnitude
of the image provides much less significant information about an image [3, 4]. Therefore, it
is practical to hide in the magnitude of the DCT, and to keep the DCT-phase intact.

The strong energy compaction property of the DCT and the significance of its magnitude
and phase spectra can be found with more details in [31] and [33].

3.2 The discrete wavelet transform

The other transform domain that has been widely utilized in recent years in steganography
is the discrete wavelet transform (DWT). A Wavelet is a small wave that has its energy con-
centrated in time to allow dealing with time-varying and non-stationary cases. The Wavelet
Transform is a process that can decompose a signal into coefficients that represent the sig-
nal within a certain time period [12]. The transform can be defined on an input function
f (t) using the following equation:

W(R, S) =
∫ ∞

−∞
f (t)ψt (R, S)dt, (1)

where W(R, S) represents the coefficients which are a function of scale and position
transform parameters (R, S), and ψt represents the mother wavelet function.

Since an image is considered as a discrete two-dimensional signal, the 2D Discrete
Wavelet Transform (2D-DWT) must be applied instead of the continuous wavelet transform.
The 2D-DWT can be defined on an input image x(k, j) in the form:

D(r, s) =
∑

k

∑
j

x(k, j)ψkj (r, s), (2)

where D(r, s) represents the 2D-DWT coefficients as a function of the scale and shift trans-
form parameters (r, s), and ψkj is the mother wavelet basis time function with finite energy
and fast decay.

The DWT decomposition can also be obtained by using filter banks. A filter bank is a
series of filters that divides an input signal into multiple components. For images, wavelet
analysis can help separate the input image into approximate and detailed sub-images. This
can be done by applying a 1D low-pass filter on the rows of the input image, which pro-
duces the horizontal approximation of the input image. A 1D high-pass filter is also applied
on the rows of the input image, which produces the horizontal details of the input image.
Next, a second round of filters are applied to both the horizontal approximation and the hor-
izontal details, but this time, these filters are applied on the columns. The second filtering
stage results in 4 sub-images; the approximation image (LL), the vertical details (LH), the
horizontal details (HL), and the diagonal details (HH). Figure 1 illustrates the filter bank
operation on an input image.

3.3 Stego image quality measures

Perceptibility is an embedding system aspect that deals with the amount of ”distortion” in
the cover medium due to the hiding process. The perceptibility level plays an important role
in evaluating the performance of an embedding system. It is important in the evaluation to
consider both the visual quality of the stego images and the analytical performance of the
hiding scheme.
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Fig. 1 Steps to obtain the wavelet bands; The Approximate Image (LL), Vertical Detail (LH), Horizontal
Detail (HL), and the Diagonal Detail (HH) bands using filter banks

Capturing the existence of an embedded message breaks the fundamental goal of
steganography. The definitive measure of visual fidelity are those tests that are related to
our human perception. However, these test will give various results since human perception
system differs from a person to another.

Tests are performed by people who search for visual differences between the stego and
cover images, and trying to detect the original cover image. According to International
Telecommunication Union rules and recommendations [13, 38], if the percentage of success
approaches 50%, then it can be considered that the message is securely hidden.

A well established approach to image fidelity measurement that tries to emulate the
human visual perception of image structure, is the Structural SIMilarity (SSIM) index.
Under the assumption that human visual perception is highly adapted to extracting structural
information from a scene, SSIM was introduced as an alternative complementary frame-
work for quality assessment based on the degradation of structural information [42, 43].
Since the human visual system is more sensitive to changse in the luminance or the contrast
channel, this new technique calculates the similarity based on some luminance and contrast
measurements.

Contrary to the subjective approach which is based on human perception, another robust
measure of image quality that has been widely used by the signal processing community
is the Peak-Signal-to-Noise-Ratio (PSNR) in decibels (dB) [7, 22]. This measure is less
sensitive to minor deviations between images and, together with the SSIM index, will be
adopted for measuring the performance of our embedding scheme.
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A description of each of these quality measures, including mathematical formulations,
can be found with more details in [33, 34].

4 The proposed curve-fitting scheme

The essential feature that attracts researchers to transform domain techniques based on DCT
is its energy compaction property. As discussed in Section 3, the DCT domain of a corre-
lated image has few coefficients concentrated at the top left corner. These few coefficients
represents the low frequency component of an image. As a result, it is guaranteed to have a
large area to hide in which lies in the high frequency region of the DCT domain.

The strong compaction property of the DCT for highly correlated images is the key fea-
ture allowing our new scheme to break the traditional barrier between capacity and stego
fidelity. The merits of the proposed scheme is two fold; because our scheme is able to
properly utilize the full high frequency areas made available by the DCT’s strong energy
compaction by utilizing a Curve-Fitting (CF) approach applied in the DCT domain, an opti-
mally large area is available for embedding the secret data, thus allowing for optimally high
capacity rates. Secondly, since the scheme is utilizing the high frequency areas to embed
in, the scheme is able to achieve excellent stego image quality because of the fact that our
human visual system is less sensitive to distortion around edges or in high frequency areas.
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Fig. 2 A general illustration of the hiding procedure
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To clarify this idea, we use the Quad-Tree Adaptive-Region (QTAR) scheme of [34],
and the Fixed-Block Global-Adaptive-Region (FB-GAR) method of [33] to show improve-
ments in these methods by re-implementing them using our novel curve-fitting methodology
proposed in this work. We thus denote the curve-fitting schemes as (CF-QTAR) and (CF-
FB-GAR). To start, CF-QTAR segments the cover image into highly correlated blocks using
a quad-tree approach. Then the 2D-DCT is applied to each block to transform the block to
the DCT domain. A quantization/thresholding process is performed on each block to obtain
a binary image that marks the embedding area.

Unlike previous adaptive region embedding approaches in [32–34], where only a block
or a segment of the possible hiding area is used to embed in, this scheme fully utilizes the
area that is possible to hide in. The CF-QTAR scheme will select 3 points at the edges of the
hiding area, and a piecewise linear curve fits these three point underwhich will lie the entire
embedding area. These 3 points are then sent along with the stego image to the receiver side
to be able to determine the embedding area, and extract the secret image successfully. This
novel curve fitting approach has allowed the embedding algorithms to achieve top capacity
results that reached 22bpp at PSNR values that reached 35.83dB.

4.1 The embedding process

Segmenting the cover image into coherent regions is the first step in our proposed method.
The partitioning technique used follows a quad-tree approach for all of the three (R,G,B) color
channels. The quad-tree dividing approach can be classified as a top-down segmentation
method that has been widely used in many image processing applications [10, 34].
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The quad-tree method starts by dividing an image into four equal sized blocks. Then,
it checks the correlation level in each pixel. This check is done by simply computing the
difference between the maximum pixel value and the minimum pixel value in a block. If the
difference value is greater than a pre-defined “threshold” value, then this block is further
sub-divided into four blocks. Otherwise, the block is assumed that it has met the pre-defined
coherence standard, and it is not divided any more. This process is performed repeatedly
until each block meets the criterion.

Along with the threshold value, there are two more quad-tree parameters; the maximum
block size, and the minimum block size. The quad-tree algorithm will not sub-divide a
block to a lower block size than the minimum block size even if the block did not meet the
criterion. In the same way, the algorithm will force segmenting a block that is larger than
the maximum block size even if the difference between the maximum and minimum pixel
value in that block is less than the threshold value.

After partitioning the cover image using a quad-tree approach, the 2D-DCT is applied to
each block. Next, a quantization process begins to estimate the embedding region in each
block. The embedding process is performed by replacing the unimportant DCT coefficients
by a scaled version of the secret image. The inverse DCT is then applied to each pixel
producing the stego image in the spatial domain. Figure 2 shows a general demonstration of
the embedding process.

The quantization process is used to locate the region that is appropriate for embedding.
CF-QTAR uses a quantization technique that is similar to the one used in JPEG compression
standard. The idea is to choose one of the JPEG quantizationmatrices, and divide the magnitude
of the DCT of the current block with the quantization matrix values element by element,
after first resizing the quantization matrix to the same size as the current block. We use the
Matlab function “imresize” to resize the original 8 × 8 JPEG quatization matrix, shown
in step-1 of Fig. 3, to the same size as the current block size of the quad-tree-segmented
cover image. The main purpose of this quantization step is to distinguish between important
and redundant DCT coefficients, masking out the less important coefficients and replacing

Point 1 

Point 2 

Point 3 

a) CF-QTAR b) QTAR

Fig. 4 a The black region represents the area that has less important DCT coefficients in a Quad-Tree block,
and can be replaced by scaled pixel values from the secret image without sacrificing the stego image quality.
b In QTAR [34], the embedding area is selected by finding the largest square block that can fit in the lower-
left corner of the black area. On the other hand, CF-QTAR utilizes the whole proposed area by fitting a
piecewise linear curve to three points bordering the region as shown



8304 Multimed Tools Appl (2018) 77:8295–8326

them with the scaled secret data while keeping the important DCT coefficients intact, so
that the scheme can reconstruct the cover image with minimal distortion, which is of utmost
improtance for the security of steganography applications.

After quantizing the magnitude of the DCT of a block, a thresholding process begins.
The quantized DCT block is divided into 8 × 8 non-overlapping segments, and the values
inside each segment is checked. If a non-zero value is found in the segment, then the whole
segment is turned to white. Otherwise, the block is kept unchanged if all values inside this
block are zeros. This process converts the quantized matrix to a binary image, where the
black area (zeros) is the proposed embedding area. On the other hand, the white region
indicates the area that contains the important DCT coefficients that must be kept intact. The
quantization and thresholding step is shown in Fig. 3.

The pre-embedding step is to fit the black area by a piecewise linear curve. This is done
by locating 3 points; points 1 and 3 are located at the edges of the black area, point 2 is the
intersection between the diagonal and the black area. These points are then connected by a
line generated by a linear interpolation algorithm. The black area must be now bordered by
the line from top, and thus the region under this line is the embedding area. Figure 4 shows
the curve-fitting procedure. These points must be sent to the receiver so that it can locate
the embedding area, and extract the secret image. The maximum square size of the secret
image that can fit into the proposed area can be estimated as follows:

S x S =
⎢⎢⎢⎣

√∑
m

bm

⎥⎥⎥⎦ , (3)

Fig. 5 The pseudocode of the CF-QTAR embedding process
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where S is the maximum dimension of the square secret image, m is the index of quad-
tree blocks, bm is the number of pixels that lie under the piecewise linear curve in block
bm; m = 1, 2, 3, · · · , N blocks.

Finally, the embedding is done in the magnitude of the DCT in the locations of the
black areas of the quantized matrix after thresholding. Coefficients are replaced by scaled
pixels from the secret image in the range [1,5] pixel by pixel column-wise from the top
left to the bottom right. The re-scaling step is important to allow the hidden secret image
values to blend into the natural range of values of the DCT coefficients. Figure 5 shows the
pseudocode for the embedding process.

4.2 The DWT-QTAR and CF-DWT-QTAR schemes

In this section, we investigate our Curve-Fitting hiding approach using wavelets. DWT-
QTAR is a modified version of QTAR where the DWT of the quad-tree blocks is used
instead of the DCT. First, the cover image is segmented in a quad-tree segmentation fashion
similar to QTAR. Then DWT is applied on each block. This operation produces 4 sub-
blocks in each quad-tree block, namely the Approximate Image (LL), Vertical Detail (LH),
Horizontal Detail (HL), and Diagonal Detail (HH). After that, the LL band is transformed
to the frequency domain using DCT. This will make the whole quad-tree block represented
in the frequency domain. The magnitude of the DCT of the LL band is then quantized to
find the area (P) that has the least important DCT coefficients. Then, a contiguous square
region in the lower-right corner of this (P) area is selected to be a feasible area to hide in.
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This square region is embedded with part of the secret image and the rest of the secret image
pixels will replace the DWT coefficients of the LH, HL, and HH bands. Figure 6 clarifies
the idea of DWT-QTAR.

CF-DWT-QTAR on the other hand, is an implementation of our Curve-Fitting approach
on the DWT-QTAR technique. CF-DWT-QTAR tries to utilize the whole feasible area (P)
in the LL band, instead of hiding in a square region which would not fully utilize the whole
area (P) for hiding. Figure 7 presents the idea of CF-DWT-QTAR. The pseudocode of the
CF-DWT-QTAR embedding process is presented in Fig. 8.

4.3 The CF-FB-GAR scheme

A special case of the QTAR scheme of [34] is the FB-GAR scheme introduced in [33],
which differs from QTAR by setting the block size for the maximum and minimum quad-
tree blocks to the same value. This segments the image into fixed-size blocks. Similar
improvements as those achieved by the CF-QTAR can also be obtained for the FB-GAR
scheme by using the proposed curve-fitting methodology. We call this the curve-fitted
fixed-block global-adaptive-region (CF-FB-GAR) scheme.

Wavelets can also be applied to the FB-GAR scheme of [33] using the same approach
described in Section 4.2 for QTAR. We call this DWT-FB-GAR, and experiemental results
in Section 5 will show that our curve-fitting technique when applied to these adaptive-region
embedding schemes will improve the visual quality of the stego image while allowing higher
capacities for data hiding.
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Fig. 8 The pseudocode of CF-DWT-QTAR embedding process

Fig. 9 The pseudocode of CF-QTAR extraction process

Fig. 10 The pseudocode of CF-DWT-QTAR extraction process
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a) b) c) d) e) f) g)

Fig. 11 a-d The four 512 x 512 cover image used, from left to right: “Balloons”, “TigerPounce”, “F15large”,
and “Zebras”. e-g The three secret images: “Flower”, “Handwriting”, and “Pasta” are shown respectively

4.4 The CF-QTAR extraction process

To successfully extract the secret image, the size of the adaptive blocks, their locations, and
their 3 points must be transmitted along with the stego image. Extraction is performed in
the reverse order as follows:

Table 1 Comparative results expressed as maximum Capacity/PSNR values for the various methods

Method Capacity PSNR

Lee & Chen (2000) [15] 12.18 bpp 34.03 dB

Yang et al. (2004) [44] 1.96 bpp 28.16 dB

Brisbane et al. (2005) [5] 6 bpp 40 dB

Lin & Shiu (2010) [18] 1.02 bpp 28.22 dB

Rabie (FFT) (2013) [30] 6 bpp 19.51 dB

Qin et al. (2015) [25] 3.48 bpp 41 dB

Rabie & Kamel FBAR (2015) [32] 20.22 bpp 25 dB

Rabie & Kamel FB-GAR (2016) [33] 20.83 bpp 27 dB

Rabie & Kamel QTAR (32 × 32) [34] 19.29 bpp 27.89 dB

Rabie & Kamel QTAR (64 × 64) [34] 19.97 bpp 27.73 dB

Rabie & Kamel QTAR (128 × 128) [34] 21.01 bpp 27 dB

CF-FB-GAR (32 × 32) 19.54 bpp 35.03 dB

CF-FB-GAR (64 × 64) 22.43 bpp 28.49 dB

CF-FB-GAR (128 × 128) 20.83 bpp 32.54 dB

CF-QTAR (32 × 32) (Max. PSNR) 19.88 bpp 35.02 dB

CF-QTAR (32 × 32) (Max. Capacity) 22.70 bpp 28.15 dB

CF-QTAR (64 × 64) (Max. PSNR) 20.05 bpp 34.37 dB

CF-QTAR (64 × 64) (Max. Capacity) 22.61 bpp 28.23 dB

CF-QTAR (128 × 128) (Max. PSNR) 19.79 bpp 34.0 dB

CF-QTAR (128 × 128) (Max. Capacity) 22.52 bpp 28.4 dB

CF-DWT-QTAR (32 × 32) (Max. PSNR) 21.26 bpp 37.85 dB

CF-DWT-QTAR (32 × 32) (Max. Capacity) 22.52 bpp 33.80 dB

CF-DWT-QTAR (64 × 64) (Max. PSNR) 22.0 bpp 35.83 dB

CF-DWT-QTAR (64 × 64) (Max. Capacity) 22.0 bpp 35.83 dB

CF-DWT-QTAR (128 × 128) (Max. PSNR) 18.77 bpp 43.41 dB

CF-DWT-QTAR (128 × 128) (Max. Capacity) 20.5 bpp 31.06 dB

Highest Capacities and PSNR values are emphasized in a bold font
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Cover image Quad-tree  segmenta�on CF-Quan�zed DCT blocks Stego image Extracted image

512 x512 Threshold: 0.1, 32 x32 – 256 x 256 PSNR: 35.0 19.62 bpp, 463 x 463 (90.4 %)

Fig. 12 Hiding the secret image “Flower” into 512 x 512 “Balloons” cover image. From left to right: 1) The
cover image, 2) Quad-tree segmentation with threshold value of 0.1, 3) The curve-fitted DCT of each block
after quantization 4) The stego image with 35.0 dB, 5) The extracted secret image with size of 463 x 463
(19.62bpp)

Cover image FBGAR  segmenta�on CF-Quan�zed DCT blocks Stego image Extracted image 

512 x512 64x64  PSNR: 34.37 20.05 bpp, 468 x 468 (91.4 %) 

Fig. 13 Hiding the secret image “Flower” into 512 x 512 “Balloons” cover image using CF-FB-GAR. From
left to right: 1) The cover image, 2) FB-GAR segmentation using 64 × 64 block size, 3) The curve-fitted
DCT of each block after quantization 4) The stego image with 34.37 dB, 5) The extracted secret image with
size of 468 x 468 (20.05bpp)

Cover image Quad-tree  segmenta�on CF-Quan�zed DCT blocks Stego image Extracted image 

512 x 512 Threshold: 0.9, 64 x 64 – 256 x 256 PSNR: 34.42 19.88 bpp, 466 x 466 (91.0 %) 

Fig. 14 Hiding the secret image “Flower” into 512 x 512 “Balloons” cover image. From left to right: 1) The
cover image, 2) Quad-tree segmentation with threshold value of 0.9, 3) The curve-fitted DCT of each block
after quantization, 4) The stego image with 34.42 dB, 5) The extracted secret image with size of 466 x 466
(19.88bpp)

Cover image Quad-tree  segmenta�on CF-Quan�zed DCT blocks Stego image Extracted image 

512 x512 Threshold: 0.1, 64 x 64 – 256 x 256 PSNR: 28.45 22.43 bpp, 495 x 495 (96.6 %) 

Fig. 15 Hiding the secret image “Flower” into 512 x 512 “F15Large” cover image. From left to right: 1)
The cover image, 2) Quad-tree segmentation with threshold value of 0.1, 3) The curve-fitted DCT of each
block after quantization, 4) The stego image with 28.45 dB, 5) The extracted secret image with size of 495 x
495 (22.43bpp)
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Cover image Quad-tree  segmenta�on CF-Quan�zed DCT blocks Stego image Extracted image 

512 x512 Threshold: 0.9, 128 x 128 – 256 x 256 PSNR: 34.0 19.54 bpp, 462 x 462 (90.2 %) 

Fig. 16 Hiding the secret image “Flower” into 512 x 512 “Balloons” cover image. From left to right: 1) The
cover image, 2) Quad-tree segmentation with threshold value of 0.9, 3) The curve-fitted DCT of each block
after quantization, 4) The stego image with 34.0 dB, 5) The extracted secret image with size of 462 x 462
(19.54bpp)

– The received stego image is segmented into quad-tree blocks using the received size
and locations of each block.

– The 2D-DCT of each block is computed and the magnitude of this DCT is obtained.
– A piece-wise linear curve is fitted to each block’s 3 points (which are received with the

stego image), as shown in Fig. 4.
– The region under each block’s curve is assumed to have the secret data. The secret data

is extracted from each block pixel by pixel column-wise from the top left to the bottom
right, in the same order that was used during the embedding process.

– Finally, the values of the pixels must be rescaled from the current range to the original
intensity range of [0, 255] per color channel.

Figures 9 and 10 show the pseudocode of the extraction process for both CF-QTAR and
CF-DWT-QTAR methods.

5 Experimental results and analysis

In this part, we compare results obtained by utilizing our curve-fitting embedding scheme
against various other steganography schemes which have been recently published in the
literature. Detailed demonstrative results of the CF-FB-GAR, CF-QTAR, and CF-DWT
schemes applied at different block-size dimensions of {32 × 32, 64 × 64, 128 × 128}, and
tested on four different color cover host images are presented. Figure 11 shows the four
different cover images used: “Balloons”, “TigerPounce”, “F15Large”, and “Zebras”. The
three secret images used, “Flower”, “Handwriting”, and “Pasta” are also shown in the same
figure.

Cover image Quad-tree  segmenta�on CF-Quan�zed DCT blocks Stego image Extracted image 

512 x512 Threshold: 0.9, 128 x 128– 256 x 256 PSNR: 28.65 22.07 bpp, 491 x 491 (95.89 %) 

Fig. 17 Hiding the secret image “Flower” into 512 x 512 “F15Large” cover image. From left to right: 1)
The cover image, 2) Quad-tree segmentation with threshold value of 0.9, 3) The curve-fitted DCT of each
block after quantization, 4) The stego image with 28.65bpp, 5) The extracted secret image with size of 491 x
491 (22.07bpp)
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5.1 Comparative results

For the fixed-block adaptive-region (FBAR) embedding scheme proposed in [32], the
authors were able to embed, in a typical cover image of a natural scene, and losslessly

Table 2 This table presents results from FB-GAR

Block size Cover Secret PSNR SSIM Capacity

32 × 32 Balloons Flower 33.37 0.9708 16.23

Handwriting 32.5 0.9579 16.22

Pasta 32.54 0.9579 16.22

TigerPounce Flower 28.71 0.9994 17.17

Handwriting 33.30 0.9579 17.16

Pasta 31.15 0.9991 17.16

F15Large Flower 27.95 0.9871 18.05

Handwriting 28.18 0.9767 18.04

Pasta 27.07 0.9830 18.04

Zebras Flower 23.31 0.9467 15.24

Handwriting 22.61 0.9298 15.24

Pasta 23.06 0.9320 15.24

64 × 64 Balloons Flower 32.51 0.9844 17.25

Handwriting 31.4 0.9579 17.24

Pasta 31.54 0.9872 17.24

TigerPounce Flower 27.64 0.9968 19.04

Handwriting 30.67 0.9579 19.04

Pasta 29.34 0.9961 19.03

F15Large Flower 27.67 0.9851 19.29

Handwriting 27.35 0.9787 19.29

Pasta 26.46 0.9815 19.29

Zebras Flower 19.74 0.9553 15.24

Handwriting 19.27 0.9518 15.24

Pasta 19.56 0.9536 15.24

128 × 128 Balloons Flower 31.15 0.9212 18.21

Handwriting 29.37 0.9237 18.54

Pasta 29.56 0.9352 18.54

TigerPounce Flower 27.23 0.9967 19.63

Handwriting 29.97 0.9963 19.62

Pasta 28.80 0.9579 19.63

F15Large Flower 27.24 0.9766 20.83

Handwriting 30.67 0.9579 19.04

Pasta 25.62 0.9784 20.83

Zebras Flower 16.53 0.8437 15.24

Handwriting 16.23 0.8453 15.24

Pasta 16.43 0.8499 15.24
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extract, from the generated stego image, approximately 6.74bpp per color channel of a three
channel (R,G,B) color cover image for a maximum overall 20.22bpp embedding capacity
with a perceptibility measured at PSNR of 25dB. This corresponds to embedding a color
image of size 470 × 470 inside a color cover image of size 512 × 512.

Table 3 This table presents results from CF-FB-GAR

Block size Cover Secret PSNR SSIM Capacity

32 × 32 Balloons Flower 35.03 0.9787 19.54

Handwriting 34.57 0.9675 19.54

Pasta 34.91 0.9699 19.54

TigerPounce Flower 33.39 0.9996 19.96

Handwriting 34.89 0.9995 19.97

Pasta 34.85 0.9995 19.96

F15Large Flower 29.20 0.9875 21.71

Handwriting 28.56 0.9859 21.71

Pasta 29.67 0.9879 21.71

Zebras Flower 28.5 0.9652 15.24

Handwriting 27.75 0.9629 15.5

Pasta 28.21 0.9629 15.4

64 × 64 Balloons Flower 27.95 0.9871 18.05

Handwriting 33.73 0.9689 20.05

Pasta 34.23 0.9661 20.05

TigerPounce Flower 32.73 0.9994 20.74

Handwriting 33.50 0.9991 20.74

Pasta 33.71 0.9992 20.74

F15Large Flower 28.49 0.9896 22.43

Handwriting 27.63 0.9848 22.43

Pasta 28.73 0.9871 22.43

Zebras Flower 27.47 0.9644 15.84

Handwriting 26.75 0.9629 15.84

Pasta 27.18 0.9645 15.84

128 × 128 Balloons Flower 34.0 0.9767 19.79

Handwriting 33.29 0.9623 19.79

Pasta 28.73 0.9621 19.79

TigerPounce Flower 32.54 0.9995 20.83

Handwriting 33.22 0.9992 20.83

Pasta 33.44 0.9994 20.83

F15Large Flower 28.15 0.9812 22.52

Handwriting 27.35 0.9867 22.52

Pasta 28.37 0.9894 22.52

Zebras Flower 27.45 0.9743 15.76

Handwriting 26.72 0.9615 15.77

Pasta 27.16 0.9629 15.76
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The fixed-block global-adaptive-region (FB-GAR) scheme, described in [33], was able to
embed at a capacity of 20.83bpp with a fixed block size of 128×128 and for the “F15Large”
cover image at a PSNR of 27.24 dB.

The quad-tree-adaptive-region (QTAR) embedding scheme, proposed in [34], was able
to introduce improvements over the FB-GAR scheme for the same perceptibility PSNR

Table 4 This table presents results from DWT-FB-GAR

Block size Cover Secret PSNR SSIM Capacity Wavelet

32 × 32 Balloons Flower 32.17 0.9840 18.1 bior1.1

Handwriting 32.61 0.9843 18.1

Pasta 32.35 0.9842 18.1

TigerPounce Flower 32.34 0.9993 19.33 coif5

Handwriting 32.31 0.9995 18.83

Pasta 32.01 0.9995 18.83

F15Large Flower 42.06 0.9895 18.11 db7

Handwriting 40.5 0.9954 18.1

Pasta 42.3 0.9922 18.13

Zebras Flower 23.12 0.9786 18.1 db7

Handwriting 23.16 0.9787 18.1

Pasta 23.0 0.9786 18.1

64 × 64 Balloons Flower 32.16 0.9838 18.02 bior1.1

Handwriting 32.61 0.9843 18.1

Pasta 32.35 0.9842 18.1

TigerPounce Flower 33.60 0.9995 18.02 bior4.4

Handwriting 33.1 0.9994 19.15

Pasta 33.1 0.9994 19.15

F15Large Flower 41.62 0.9922 18.02 bior4.4

Handwriting 41.2 0.9953 18.4

Pasta 40.58 0.9931 18.41

Zebras Flower 22.57 0.9778 19.03 coif5

Handwriting 22.86 0.9778 19.04

Pasta 22.6 0.9778 19.03

128 × 128 Balloons Flower 31.96 0.9838 18.21 bior1.1

Handwriting 32.4 0.9841 18.42

Pasta 32.0 0.9840 18.40

TigerPounce Flower 32.69 0.9995 18.36 rbio2.8

Handwriting 35.23 0.9995 18.56

Pasta 34.37 0.9995 18.56

F15Large Flower 40.24 0.9920 18.17 rbio2.8

Handwriting 39.59 0.9958 18.55

Pasta 40.58 0.9942 18.55

Zebras Flower 22.62 0.9793 18.45 coif5

Handwriting 22.5 0.9793 18.45

Pasta 22.68 0.9793 18.45
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of the stego image. It is able to embed, in a typical cover image of a natural scene, and
losslessly extract, from the generated stego image, approximately 7bpp per color channel
of a three channel (R,G,B) color cover image for a maximum overall 21.01bpp embedding
capacity for the same cover image (the “F15Large” cover image) when setting the minimum

Table 5 This table presents results from CF-DWT-FB-GAR

Block size Cover Secret PSNR SSIM Capacity Wavelet

32 × 32 Balloons Flower 32.18 0.9898 18.52 bior1.1

Handwriting 32.8 0.9843 18.58

Pasta 32.35 0.9842 18.58

TigerPounce Flower 33.08 0.9993 21.40 coif5

Handwriting 33.2 0.9995 19.0

Pasta 32.3 0.9995 19.0

F15Large Flower 42.08 0.9912 18.40 db7

Handwriting 42.44 0.9923 18.83

Pasta 42.8 0.9911 18.82

Zebras Flower 24.2 0.9778 18.5 db7

Handwriting 24.2 0.9787 18.5

Pasta 24.2 0.9790 18.5

64 × 64 Balloons Flower 33.01 0.9835 18.53 bior1.1

Handwriting 33.5 0.9880 19.1

Pasta 32.54 0.9579 16.22

TigerPounce Flower 33.64 0.9995 18.1 bior4.4

Handwriting 33.4 0.9994 19.4

Pasta 33.4 0.9994 19.4

F15Large Flower 41.60 0.9936 18.31 db7

Handwriting 43.03 0.9951 18.86

Pasta 40.6 0.9931 18.86

Zebras Flower 22.74 0.9785 19.54 coif5

Handwriting 22.62 0.9785 19.54

Pasta 22.53 0.9785 19.54

128 × 128 Balloons Flower 30.14 0.9827 19.52 bior1.1

Handwriting 32.5 0.9838 18.6

Pasta 32.1 0.9879 18.8

TigerPounce Flower 31.06 0.9993 20.51 rbio2.8

Handwriting 35.23 0.9995 18.56

Pasta 34.37 0.9995 18.55

F15Large Flower 41.2 0.9927 18.68 rbio2.8

Handwriting 40.76 0.9956 19.15

Pasta 40.52 0.9943 19.15

Zebras Flower 22.86 0.9795 19.17 coif5

Handwriting 22.91 0.9795 19.17

Pasta 23.0 0.9794 19.17
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quad-tree block size to 128×128 and maximum to 256×256, with a perceptibility measured
at PSNR of 27.21 dB. This corresponds to embedding a secret color image of size 479×479
inside a color cover image of size 512 × 512.

Table 6 This table presents results obtained from QTAR

Block size Threshold Cover Secret PSNR SSIM Capacity

32 × 32 0.8 Balloons Flower 33.16 0.9701 17.48

Handwriting 31.63 0.9676 17.48

Pasta 31.83 0.9676 17.48

0.9 TigerPounce Flower 28.85 0.9990 18.8

Handwriting 31.48 0.9986 18.87

Pasta 29.92 0.9991 18.87

0.3 F15Large Flower 24.74 0.9854 19.54

Handwriting 27.23 0.9767 19.54

Pasta 26.44 0.9820 19.54

0.5 Zebras Flower 23.22 0.9787 15.61

Handwriting 22.51 0.9787 15.61

Pasta 22.97 0.9787 15.61

64 × 64 0.8 Balloons Flower 32.48 0.9856 17.97

Handwriting 30.88 0.9849 17.96

Pasta 31.14 0.9863 17.96

0.9 TigerPounce Flower 28.1 0.9969 19.37

Handwriting 30.62 0.9950 19.37

Pasta 29.31 0.9959 19.37

0.3 F15Large Flower 24.63 0.9853 19.97

Handwriting 27.00 0.9787 19.96

Pasta 26.25 0.9822 19.96

0.5 Zebras Flower 27.95 0.9871 15.61

Handwriting 23.0 0.9787 15.61

Pasta 23.0 0.9787 15.61

128 × 128 0.8 Balloons Flower 31.81 0.9420 18.29

Handwriting 30.2 0.9787 18.29

Pasta 30.5 0.9787 18.29

0.9 TigerPounce Flower 27.23 0.9967 19.63

Handwriting 29.97 0.9963 19.62

Pasta 28.80 0.9787 19.63

0.3 F15Large Flower 27.21 0.9767 21.01

Handwriting 26.13 0.9787 21.0

Pasta 25.6 0.9787 21.0

0.5 Zebras Flower 22.9 0.9787 15.61

Handwriting 23.0 0.9787 15.61

Pasta 22.9 0.9787 15.61
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Table 1 shows the different embedding capacities and PSNR values reached by some
recent state-of-the-art schemes in comparison to our curve-fitting (CF) methodology imple-
mented in both the QTAR scheme (CF-QTAR and CF-DWT-QTAR) and the FB-GAR
scheme (CF-FB-GAR). The table clearly shows that the high capacity results achieved by

Table 7 This table presents results obtained from CF-QTAR

Block size Threshold Cover Secret PSNR SSIM Capacity

32 × 32 0.8 Balloons Flower 34.91 0.9716 19.79

Handwriting 34.1 0.9787 19.79

Pasta 34.49 0.9787 19.79

0.9 TigerPounce Flower 32.88 0.9996 20.74

Handwriting 33.22 0.9992 20.74

Pasta 33.44 0.9993 20.74

0.3 F15Large Flower 28.22 0.9888 22.61

Handwriting 27.35 0.9851 22.61

Pasta 28.42 0.9868 22.61

0.5 Zebras Flower 28.27 0.9787 16.1

Handwriting 27.51 0.9787 16.1

Pasta 28.0 0.9787 16.1

64 × 64 0.8 Balloons Flower 34.39 0.9934 20.0

Handwriting 33.61 0.9987 20.0

Pasta 34.1 0.9987 20.0

0.9 TigerPounce Flower 32.82 0.9996 20.83

Handwriting 33.13 0.9992 20.83

Pasta 32.54 0.9979 20.83

0.3 F15Large Flower 28.23 0.9875 22.61

Handwriting 27.37 0.9844 22.61

Pasta 28.44 0.9860 22.61

0.5 Zebras Flower 27.47 0.9787 16.1

Handwriting 26.75 0.9787 16.1

Pasta 27.19 0.9787 16.1

128 × 128 0.8 Balloons Flower 34.23 0.9752 19.54

Handwriting 33.34 0.9787 19.54

Pasta 33.85 0.9787 19.54

0.9 TigerPounce Flower 32.54 0.9995 20.83

Handwriting 33.22 0.9992 20.83

Pasta 33.44 0.9994 20.83

0.3 F15Large Flower 28.16 0.9515 22.52

Handwriting 27.39 0.9869 22.52

Pasta 28.40 0.9891 22.52

0.5 Zebras Flower 27.45 0.9787 16.1

Handwriting 26.72 0.9767 16.1

Pasta 27.16 0.9767 16.1
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our scheme is the highest among all of our previous work. The scheme is able to embed
approximately 22.7bpp for the “F15Large” cover image. The quality of the cover image
is measured to be 28.15 dB, which is even higher than other lower capacity schemes.

Table 8 This table presents results obtained from DWT-QTAR

Block size Threshold Cover Secret PSNR SSIM Capacity

(Wavelet)

32 × 32 0.8 Balloons Flower 31.4 0.9833 18.5

(bior1.1) Handwriting 31.47 0.9830 18.4

Pasta 31.5 0.9839 18.4

0.9 TigerPounce Flower 32.48 0.9995 18.27

(rbio2.8) Handwriting 26.71 0.9989 20.71

Pasta 27.02 0.9989 20.71

0.3 F15Large Flower 39.94 0.9896 18.03

(db7) Handwriting 42.7 0.9951 18.8

Pasta 36.2 0.9897 20.7

0.5 Zebras Flower 23.16 0.9787 18.07

(db7) Handwriting 23.1 0.9781 18.07

Pasta 23.0 0.9781 18.1

64 × 64 0.8 Balloons Flower 28.8 0.9823 19.97

(bior1.1) Handwriting 30.73 0.9834 18.4

Pasta 30.6 0.9835 18.4

0.9 TigerPounce Flower 31.83 0.9994 19.5

(rbio2.8) Handwriting 30.5 0.9994 18.1

Pasta 32.50 0.9994 18.72

0.3 F15Large Flower 37.5 0.9922 18.03

(db7) Handwriting 35.84 0.9893 18.70

Pasta 36.5 0.9919 18.72

0.5 Zebras Flower 22.70 0.9781 18.02

(db7) Handwriting 22.2 0.9753 18.02

Pasta 22.70 0.9781 18.02

128 × 128 0.8 Balloons Flower 32.17 0.9824 18.2

(bior1.1) Handwriting 31.21 0.9821 18.1

Pasta 32.0 0.9800 18.2

0.9 TigerPounce Flower 31.7 0.9994 19.5

(rbio2.8) Handwriting 32.45 0.9994 18.38

Pasta 34.49 0.9994 18.38

0.3 F15Large Flower 41.05 0.9921 18.1

(db7) Handwriting 42.30 0.9952 18.2

Pasta 42.01 0.9941 18.2

0.5 Zebras Flower 22.56 0.9780 18.3

(db7) Handwriting 22.7 0.9780 18.33

Pasta 22.82 0.9787 18.33
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Another promising result obtained by our curve-fitting CF-QTAR scheme is a capacity rate
of 19.88bpp at a PSNR of 35.02 dB for the “Balloons” cover image and a scale size of
32×32, which is an improvement over the capacity of the curve-fitting CF-FB-GAR scheme

Table 9 This table presents results obtained from CF-DWT-QTAR

Block size Threshold Cover Secret PSNR SSIM Capacity

(Wavelet)

32 × 32 0.8 Balloons Flower 31.4 0.9833 18.5

(bior1.1) Handwriting 32.47 0.9839 18.64

Pasta 32.3 0.9839 18.65

0.9 TigerPounce Flower 33.80 0.9991 22.52

(rbio2.8) Handwriting 30.8 0.9991 22.53

Pasta 31.1 0.9991 22.53

0.3 F15Large Flower 37.8 0.9908 21.26

(db7) Handwriting 37.85 0.9931 21.26

Pasta 37.78 0.9906 21.2

0.5 Zebras Flower 27.95 0.9871 19.02

(db7) Handwriting 22.62 0.9781 19.02

Pasta 27.07 0.9830 19.02

64 × 64 0.8 Balloons Flower 28.1 0.9769 22.03

(bior1.1) Handwriting 31.19 0.9837 18.93

Pasta 31.0 0.9837 18.93

0.9 TigerPounce Flower 30.68 0.9994 20.38

(rbio2.8) Handwriting 32.52 0.9995 19.47

Pasta 32.46 0.9995 19.47

0.3 F15Large Flower 35.83 0.9896 22.0

(db7) Handwriting 35.16 0.9905 22.0

Pasta 36.66 0.9896 22.0

0.5 Zebras Flower 27.95 0.9871 18.84

(db7) Handwriting 22.59 0.9784 18.84

Pasta 22.59 0.9783 18.84

128 × 128 0.8 Balloons Flower 30.07 0.9824 19.87

(bior1.1) Handwriting 32.30 0.9836 18.81

Pasta 32.0 0.9836 18.82

0.9 TigerPounce Flower 31.06 0.9993 20.5

(rbio2.8) Handwriting 34.49 0.9994 19.53

Pasta 33.61 0.9994 19.53

0.3 F15Large Flower 41.11 0.9927 18.68

(db7) Handwriting 43.41 0.9952 18.77

Pasta 42.22 0.9922 18.77

0.5 Zebras Flower 27.95 0.9871 19.22

(db7) Handwriting 23.0 0.9780 19.22

Pasta 23.12 0.9779 19.22
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for the same “Balloons” cover image and at the same scale size of 32 × 32 achieving only
19.54bpp for the same visual stego quality of 35.03 dB, as is clear from Table 1.

5.2 Analysis of results

A sample of the results demonstrating our CF-QTAR curve-fitting scheme are shown in
Figs. 12, 13, 14, 15, 16 and 17. The “Flower” image was the embedded secret image used
in these example results. Tables 2, 3, 4, 5, 6, 7, 8 and 9 illustrate comparative results
between our proposed curve-fitting approach for both DCT and DWT transform domains
(namely; CF-FB-GAR, CF-DWT-FB-GAR, CF-QTAR, CF-DWT-QTAR) with the DCT-
based Fixed-Block Global-Adaptive-Region (FB-GAR) scheme of [33], the DCT-based
Quad-Tree-Adaptive-Region (QTAR) scheme of [34], the DWT-FB-GAR and DWT-QTAR
approaches implemented in Section 3.2. For the quad-tree approaches, experiments were

Table 10 A comparison of the CF-QTAR scheme at various other thresholds which produce improved
results for highly correlated cover images and using the “Flower” secret image for embedding

Block size Threshold Cover PSNR (dB) SSIM Capacity (bpp)

32 × 32 0.1 Balloons 35.00 0.9637 19.62

TigerPounce 33.19 0.9996 20.39

F15Large 28.71 0.9241 22.16

0.5 Balloons 35.02 0.9654 19.88

TigerPounce 33.18 0.9996 20.65

F15Large 28.15 0.9229 22.70

0.9 Balloons 34.70 0.9720 19.79

TigerPounce 32.88 0.9996 20.74

F15Large 28.64 0.9251 22.07

64 × 64 0.1 Balloons 34.37 0.9673 20.05

TigerPounce 32.63 0.9994 20.83

F15Large 28.45 0.9197 22.43

0.5 Balloons 34.32 0.9716 20.05

TigerPounce 33.03 0.9994 20.83

F15Large 28.18 0.9205 22.61

0.9 Balloons 34.42 0.9633 19.88

TigerPounce 32.82 0.9996 20.83

F15Large 28.65 0.9214 22.07

128 × 128 0.1 Balloons 34.00 0.9767 19.79

TigerPounce 32.54 0.9995 20.83

F15Large 28.15 0.9512 22.52

0.5 Balloons 34.00 0.9767 19.79

TigerPounce 32.54 0.9995 20.83

F15Large 28.16 0.9515 22.52

0.9 Balloons 34.2 0.9752 19.54

TigerPounce 32.54 0.9995 20.83

F15Large 28.65 0.9525 22.07
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done at various minimum quad-tree block sizes, but were allowed to grow to a maximum of
256 × 256.

The cover images used “Balloons”, “TigerPounce”, “F15Large”, and “Zebras” have dif-
ferent levels of correlation and are all of size 512 × 512. Since “F15Large” has the largest
highly correlated area of all the cover images used, the capacity achieved using this image
as a cover image was the highest among all the other cover images. The capacity reached an
upper limit of 22.7bpp which is equivalent to embedding a secret image of size 498 × 498.
When using the “Zebras” as a cover image, it is clear from the tables that this cover image
gave the lowest capacity (19.22bpp) due to the highly uncorrelated nature of the image (too
many high-frequency regions). This is a natural consequence of the type of quad-tree seg-
mentation used and shows that our technique is more suitable to highly correlated cover
images, which is a reasonable choice if high capacity is desired.

The experimental results and comparisons clarify that our curve-fitting scheme has
exceeded the maximum capacity level achieved by our earlier techniques without sacrific-
ing the stego image quality. Analysis of the data from Tables 2–9 shows that 91.97% of the
results of the curve-fitting technique have improved capacities without sacrificing the qual-
ity of the stego images. To be more specific, 73.24% of this 91.97% have also improved
the quality of the stego image, which represents 67.36% of the total recorded results. Our
statistics shows that only 4.47% of the results have higher capacities at lower PSNR values.
Only 3.56% of the results did not show any improvement neither in the capacity nor in the
quality of the stego image.

However, the DWT methods (DWT-FB-GAR versus CF-DWT-FB-GAR, and DWT-
QTAR versus CF-DWT-QTAR) did not show marked improvements while comparing
between the CF and non-CF versions of these DWT methods. The reason for this can be
understood by referring to the embedding procedure of both methods, which are clari-
fied in Figs. 6 and 7. Both methods are hiding in the HH, HL, and LH bands in each block.

PSNR: 14.88 dB 
SSIM: 0.7888 

PSNR: 14.2 dB 
SSIM: 0.6309 

PSNR: 14.0 dB 
SSIM: 0.6072 

5% tampering 20% tampering 40% tampering 

Fig. 18 Tampering a “Tigerface” stego image with a white square at different sizes to simulate data-loss
attack. The extracted secret image is at an acceptably readable state for small amounts of data-loss
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The only difference is in the LL band, which is 1/4 of a quad-tree block in size. This means
that the difference in the embedding area will not be too significant.

Another important note is that the curve-fitting approach has shown its best improve-
ment when applying it to QTAR. For example, referring to Tables 6 and 7, when using the
“TigerPounce” as a cover image, the “Flower” as a secret image, and when setting the min-
imum block size to 32×32, we have reached a PSNR value of 28.85dB with a capacity rate
of 18.8bpp in QTAR. In CF-QTAR, although the capacity has increased to 20.74bpp, the
PSNR was also raised to 32.88dB.

Another noticeable result is when using 128 × 128 as the minimum block size with the
“Balloons” cover image. The quality of the stego image has improved from 31.81 dB to
34.23 dB with also an increase in the capacity rate from 18.29bpp to 19.54bpp. CF-FB-
GAR method comes in the second rank after CF-QTAR. Referring to Tables 2 and 3, the
PSNR has grew from 27.23 dB to 32.54 dB while an increase also in the capacity rate
from 19.63bpp to 20.83bpp. This result was obtained by setting the minimum block size to
128 × 128, using the “TigerPounce” as the cover image, and “Flower” as the secret image.

Table 10 illustrates detailed results obtained by the CF-QTAR scheme at various thresh-
old values not used in Table 7 which produce improved results. The highest capacity rate
reached by CF-QTAR was 22.70bpp with a PSNR value of 28.15 dB. This is achieved when
setting the minimum block size to 32×32 and using the ‘F15Large” as the cover image. On
the other hand, CF-QTAR was able to embed the “Flower” secret image into the “Balloons”
cover image with a stego image PSNR of 35.02 dB and a capacity rate of 19.88bpp. This
result has the highest PSNR value, and is obtained by setting the minimum block size to
32×32. Another attractive result obtained by CF-QTAR is when using the “Balloons” cover
image with a minimum block size of 64 × 64. The capacity rate reached up to 20.05bpp
while having a stego image PSNR value of 34.37 dB.

PSNR: 14.57 dB 
SSIM: 0.7925 

 
PSNR: 14.56 dB 

SSIM: 0.7925 
PSNR: 16.16 dB 

SSIM: 0.6559 

Salt & paper : density of 0.005 Speckle: density of 0.005 Stretching horizontally by 30%  

Fig. 19 Tampering with different types of degredations for a “Tigerface” stego image where the “Hand-
writing” secret image is embedded. From left to right; Salt and Pepper, Speckle, and Streching deformation
attacks
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5.3 The curve-fitting advantage

Although CF-QTAR/QTAR schemes and CF-FB-GAR/FB-GAR schemes share the same
initial segmentation procedure, the curve-fitting implementations improved the embedding
capacity while enhancing the perceptual quality level. The main reason for this improvement
is clarified in Fig. 4. Curve-fitting allows for utilizing the whole proposed embedding area,
clearly shown in Fig. 4a. As such, the capacity will increase naturally.

On the other hand, the reason that curve-fitting schemes achieve higher PSNR is the
uniform embedding of the scaled secret image values that allow it to blend into the natural
range of values of DCT coefficients that it replaces. This embedding takes place in the whole
area under the curve for curve-fitting schemes, as compared to embedding in just a square
region in the lower-right corner of the DCT for non-curve-fitting schemes (for example
compare Figs. 6 and 7), which causes abrupt changes in DCT coefficient values between the
square region used to embed the scaled secret data and the rest of the DCT coefficients, as is
clear from Fig. 4b. When transforming back the DCT coefficients to the space domain, the
uniform embedding for curve-fitting schemes will cause less noise artifacts to be generated
in the stego image, thus contributing to its improved visual quality.

5.4 Robustness test

In this section we examine the robustness of our Curve-Fitting embedding scheme when
the stego image has been attacked by different types of additive noise as well as various
geometric deformations.

First, we simulate tampering the stego image with an information loss attack by deleting
a square region of different sizes. The results are shown in Fig. 18.

Next, we add Salt and Papper noise, and Speckle noise to the stego image. Our embed-
ding scheme also successfully passed through the stretching and warping attacks which
are considered as geometric attacks, albeit at higher levels of degradation to the extracted
hidden image.

Figure 19 shows the robustness test using different types of noise applied as well as the
stretching demormation attack. Figure 20 shows the extracted hidden image after degrading

SSIM: 0.9188 
 

SSIM: 0.8931 SSIM: 0.8404 

20 degree 30 degree 40 degree 

SSIM: 0.7925 SSIM: 0.7824 SSIM: 0.6389 

Fig. 20 Trying to recover after deforming the stego image with a warping attack at 20◦, 30◦, 40◦ degrees
for the “Flower” and “Handwriting” secret images. The proposed method clearly comes short of extracting
an acceptable hidden image evident by the low SSIM values
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the stego image with a warping geometric attack at 20◦, 30◦, 40◦ degrees for the “Flower”
and “Handwriting” secret images. The proposed method clearly comes short of extracting
an acceptable hidden image evident by the low SSIM values.

6 Conclusions

This paper has introduced a Curve-Fitting (CF) approach to transform domain steganogra-
phy schemes that demonstrated improvements in capacity as well as stego visual fidelity.
This work complements previous work published in the literature [32–34] investigating
the relationship between hiding capacity and stego image quality. This new methodology
was implemented as the CF-FB-GAR, CF-QTAR, CF-DWT-FB-GAR, and CF-DWT-QTAR
schemes and compared against the non-curve-fitted FB-GAR, QTAR, DWT-FB-GAR, and
DWT-QTAR schemes. In CF-QTAR, the idea was to segment the cover image into blocks
using the quad-tree segmentation algorithm thus forming statistically stationary regions of
increasing sizes. The secret data is then hidden in the least significant areas of the DCT of
each block by using a quantization step followed by piecewise linear curve fitting to three
points bordering the full least significant DCT coefficient area. Experimental results and
comparative evaluation have confirmed that although the embedding capacity has increased
when using curve-fitting compared to earlier work, the perceptibility level has also improved
over previous methods, thus breaking the traditional barrier that has confined the relation-
ship between capacity and perceptibility to either higher capacities with reduced perceptual
quality or higher perceptual quality at the expense of lower capacities.
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