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Abstract Salient object detection aims to emulate the extraordinary capability of human
visual system, which has the ability to find the most visually attractive objects in a com-
plex visual scene. The human visual attention is often complicated and affected by many
factors. In this paper, we present a novel bottom-up approach to automatically detect salient
objects of an image via multiple visual cues. The key idea of our approach is to represent a
saliency map of an image as an integration of multiple visual cues (saliency weights), which
have been proven to be effective and useful. Specifically, we propose four saliency weights,
i.e., local contrast weight, superpixel clarity weight, background probability weight, and
central bias weight, to effectively represent each visual cue. To obtain our saliency map,
the four resulting saliency weights are integrated in a principled way via multiplication
and summation based fusion. Furthermore, we propose a new superpixel-level saliency
smoothing approach to optimize the integrated results for producing clean and consistent
saliency maps. Our experimental results on three standard benchmark datasets demonstrate
that the proposed approach outperforms other saliency detection approaches in terms of the
subjective observations and objective evaluations.
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1 Introduction

Vision is one of the most intensively studied directions in the research of human brain, espe-
cially with pre-attentive visual selection behavior, which makes a lot of scientists fascinated,
including cognitive neuroscience, neuropsychology, and computer science and so on [22].
Recently, theoretical studies of vision indicate that neural activities in retina and primary
visual cortex (V1) represent the saliencies of visual inputs in a bottom-up pattern, such
that visual information can be efficiently encoded and selected for further detailed or atten-
tive processing [22, 41]. Saliency of vision, a bottom-up visual process, is highly related
to visual uniqueness, differences, clarity, surprise, and so on. Inspired by biological vision,
there is a lot of work to exploit image properties such as color, illumination, gradient, edges,
the spatial relationship of foreground and background to estimate saliency [2, 8, 10, 19, 33].

Different from general segmentation algorithms partitioning an image into multiple
regions with coherent properties, saliency detection aims to identify salient object regions
from an image. Since the saliency map can represent the important information in the source
image, saliency detection plays a vital role in image understanding, analysis, and process-
ing. It has been applied to a variety of applications including image segmentation [37],
object recognition and understanding [31], content-aware image/video retargeting [23] [38],
content-based image retrieval [14], and image/video compression [18], etc.

In order to obtain high quality and accurate saliency detection results, a lot of bottom-
up works have been proposed to explore the distinction between objects and backgrounds
in recent years. We review the representative and relative works that employ various visual
cues for salient object detection. For a more comprehensive survey of state-of-the-art in
visual attention modeling, we refer readers to [35] and [8].

A widely used saliency cue is the globally statistical features of an image, including
color contrast [10], luminance, edges and gradients [19], and spectral analysis [2]. Itti
et al. [19] propose to use color contrast for salient region detection. Seo and Milanfar [33]
propose a saliency measure called self-resemblance to calculate pixel’s saliency. The self-
resemblance measure is computed by comparing a pixel to its surroundings. Achanta
et al. [2]. propose to compute the saliency of each pixel based on the difference between
pixel’s color and the average image color. Hou and Zhang [17] propose a fast saliency detec-
tion approach based on the discovery of spectral residual. Their approach is able to detect
foreground objects in an image without any prior knowledge. Rahtu et al. [30] employ a
conditional random field (CRF) model to segment initial saliency map, which is produced
by using local feature contrast in illumination, color, and motion information. Since sliding
window is used in their approach, the authors exploit integral histogram method and graph
cut solvers to improve the computational efficiency.

Besides, the image background information is also exploited in several approaches [21,
42] and has been proven to be a useful saliency clue. Zhu et al. [42] proposed a background
measure called boundary connectivity, which is the ratio of the connected boundary length
of a superpixel to the superpixel size. Because image segmentation itself is a unsolved prob-
lem, it is hard to estimate the size of a superpixel and its connected boundary length. So Zhu
et al. [42] proposed a “soft” approach to compute each superpixel size and its connected
boundary length. They constructed an undirected graph with edges weighted by the color
contrast between neighboring superpixels. The contribution of a superpixel to another one
are computed based on the accumulated edge weights along their shortest path on the graph.
The “soft” computing approach can solve the estimation problem of superpixel size and
its connected boundary length to some extent. However, it fails when the colors of salient
object are similar to boundary. Besides, it is not an efficient approach for computing.
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The approaches mentioned above usually operate on raw image or video. Recently, sev-
eral approaches exploit the compressed domain information such as transform coefficients
and motion vectors to directly detect the saliency of an image [12] or a video [13] in the
compressed domain. Fang et al. [12] is a good example. Fang et al. [12] propose a saliency
detection approach in the compressed domain. They calculate four feature maps for a JPEG
image based on the image features including intensity, color, and texture. These features
are extracted based on the DCT coefficients. The final saliency map for the JPEG image is
obtained by integrating these four feature maps. Their approach yields impressive results.

Detecting saliency in crowded scenes is a novel work. Jiang et al. [20] propose an inter-
esting approach for detecting saliency in crowded scenes. Based on the observation that face
features play an important role in determining saliency, especially in the context of crowd,
the authors extract low-level center-surround contrast and high-level semantic face features
for saliency prediction in crowd. To automatically combine these features for predicting
saliency in crowd, they use multiple kernel learning (MKL) to learn a classifier from their
built eye-tracking dataset [20]. Based on the Random Forest algorithm, Ma et al. [26] pro-
pose a new crowd saliency prediction approach by optimizing feature combination. Instead
of only using traditional features such as low-level features (i.e., color, intensity, orientation)
and face features (i.e., face size, face density, frontal face, profile face), they define two
new features, FaceSizeDiff and FacePoseDiff, to improve the quality of saliency detec-
tion [26].

Since visual attention is often affected by various factors, we need to consider multi-
ple visual cues simultaneously in order to obtain accurate and robust saliency detection
results. In fact, by integrating multiple cues to get the final results, this idea can be seen
in a lot of works. Yang et al. [39] is a good example for image quality prediction. Yang et
al. [39] propose two novel sub-models to separately process user-generated images, which
is a multi-dimensional data including text, image, and social relations. The results of these
two models are fused together to generate the final score of quality prediction. The results
of their approach indicate that their predicted score is fairly consistent with the ground truth.

In this paper, we propose a novel bottom-up approach to automatically detect salient
object regions in an image. Our approach is performed in superpixel level for reducing
computations. We first segment the input image into a set of superpixels using superpixel
segmentation algorithm [24]. Since the superpixels are often the result of over-segmentation,
the regions in the input image having coherent image attributes may be partitioned into mul-
tiple independent superpixels. In order to make the representation of regions more compact
while further reducing the number of superpexels, we propose to fuse neighboring super-
pixels with consistent image features such as color and texture. After the input image has
been separated into several distinct regions, our goal is to find the salient region in the sepa-
rated regions. Based on the widely accepted biological visual saliency cues, we propose four
saliency weights, i.e., local contrast weight, superpixel clarity weight, background probabil-
ity weight, and central bias weight, to effectively measure the saliency of each region. The
results of these four weights will be integrated together to produce our final saliency map.
Furthermore, in order to obtain a clean saliency map that its saliency areas are more consis-
tent with the object regions, we propose a superpixel-level saliency smoothing algorithm to
optimize the integrated saliency map. The overview of our approach is presented in Fig. 1.
The key contributions of our paper are summarized as follows:

• We propose a superpixel fusion algorithm, which is helpful to reduce the number of
superpexels and makes the saliency map more consistent with object. The main idea is
to fuse neighboring superpixels with consistent features such as color and texture.
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Fig. 1 Procedure of the proposed approach

• We propose four powerful saliency weights that consider clarity of superpixels, spatial
informations and color contrast between superpixels. These saliency weights have low
computational complexity and are capable of effectively representing visual saliency
cues. In addition, the four resulting saliency weights are integrated in a principled way
via multiplication and summation based fusion.

• In order to optimize the integrated saliency map obtained above, we propose a
superpixel-level saliency smoothing algorithm to make the saliency areas more consis-
tent with the object regions.

In the following sections, we will detail these four saliency weights and the saliency
smoothing algorithm, and show how each weight is to determine the saliency of each region.
The remainder of this paper is organized as follows. In Section 2, we introduce our saliency
detection approach in detail. Section 3 presents the experimental results. An application of
our approach is introduced in Section 4. We will draw our conclusions in Section 5.

2 The proposed approach

As Fig. 1 shows, firstly, the input images are segmented into a set of superpixels using a fast
and robust superpixel segmentation algorithm [24]. Secondly, we fuse those neighboring
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superpixels with consistent color and texture features in order to reduce the number of super-
pixels. Then, based on the theory of human visual attention and the observation of spatial
layout difference of image background and foreground, we propose four saliency weights,
i.e., local contrast weight, superpixel clarity weight, background probability weight, and
central bias weight, to effectively measure the saliency of each fused superpixel. Finally, the
final saliency maps are obtained by integrating all saliency weights. Furthermore, to obtain a
clean saliency map, we perform saliency smoothing step to optimize the integrated saliency
map. Figure 2 illustrates the pipeline of our saliency detection approach. In the following
subsections we will describe our approach in detail.

2.1 Superpixel segmentation and fusion

Our approach is performed in superpixel level, so we first segment the input image into a set
of superpixels using Liu’s algorithm [24] (we use a MATLAB implementation from http://
mingyuliu.net/), which is fast and robust for images with different natural scenes. Figure 2b
shows the over-segmentation results.

Then, we fuse neighboring superpixels with coherent features. The motivation for per-
forming superpixel fusion is to reduce the impact of superpixel segmentation results on the
saliency detection. Besides, fusing the superpixels with coherent features is not only bene-
ficial to improve the computational efficiency, but also makes the final saliency value more

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2 The pipeline of our approach. (a) Input Image, (b) Superpixel Segmentation, (c) Superpixel Fusion,
(d) Local Contrast Weight, (e) Superpixel Clarity Weight, (f) Background Probability Weight, (g) Central
Bias Weight, (h) Integration Weight, (i) Superpixel-Level Saliency Smoothing, and (j) Ground Truth. It
demonstrates that after combining the weights of local contrast, superpixel clarity, background probability,
and central bias, we get high quality saliency maps (h and i) comparable to human labeled ground truth

http://mingyuliu.net/
http://mingyuliu.net/
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consistent. We use a four-dimensional feature vector to represent each superpixel. Follow-
ing [15], the feature vector consists of CIE-Lab color and Gabor filter. The Gabor filter
responses with 8 orientations. Both the bandwidth and the extracted scale are set to one. The
amplitude response of Gabor filter is calculated by combining 8 orientations as the texture
feature. When the feature contrast of two neighboring superpixels is less than the thresh-
old T , the two superpixels are fused into a new large superpixels. Therefore, the number of
superpixel clusters is determined by the content of the detected image. In the experiment,
we observe that the number of superpixel clusters after fusion is about 4∼18. The threshold
T is defined as:

T = mean(SP contr ) − std(SP contr )/2 (1)

where SP contr denotes the contrast of neighboring superpixels in the CIE-Lab color and
texture feature space for the detected image. mean(SP contr ) and std(SP contr ) denote the
mean and the standard deviation of SP contr , respectively.

Figure 2c shows the results of superpixel fusion. From Fig. 2c we observe that the back-
ground consists of only a few superpixels, and the foreground is essentially represented by a
new large superpixel. In our approach, we use vector f = {fi}, i = 1, 2, . . . , M , to denote
the fused superpixels. M represents the total number of fused superpixels. fi denotes the
ith fused superpixel.

2.2 Saliency weight calculation

Local contrast weight The human visual system pays close attention to the local part of
an image. Theories of physiology of vision and neuroscience has proven that the central
10 ◦C of visual field is represented by at least 60% of the visual cortex and has the greatest
visual acuity and color sensitivity [6, 11, 32]. Figure 3 illustrates an example. It shows only
a small portion of the image will be processed by the human visual system carefully, while
the rests are almost ignored. This conclusion is also accepted by human visual attention
theory [3, 19, 21, 34, 36].

Based on the theories of visual field and human visual attention [19, 21, 36], we propose
a local contrast approach to calculate the saliency value of each superpixel. The superpixels
having more contrast than its surroundings attract more visual attention. This particular
superpixel will be selected as the perceptually salient region.

It should be noted that our local contrast approach is different from the widely used
global contrast method. Figure 4 shows an illustrative example of global contrast vs. our

(a) (b) (c) (d)

Fig. 3 (a) Visual acuity as a function of position on the retina. Note that visual acuity is maximal at 0 ◦C
eccentricity (the central visual field), whereas it is minimal in more peripheral areas [6, 11, 32]. (b) Orig-
inal image. (c) Pixel spatial distribution. (d) An example of retinal imaging: from the image center to the
peripheral areas, the resolution is changed from high to low
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(a) Input Image (b) Global Contrast (c) Our Local Contrast

Fig. 4 Global contrast vs. our local contrast. The red block in the input image (left) is more salient than the
others. If using the global contrast method, the black block becomes the most salient object (middle), while
the detection results of our local contrast is the red block (right), which gives more consistent result with the
human visual attention

local contrast. In Fig. 4, obviously, the most salient object is the red block instead of the
black block in the input image. The possible reason is that the red block is surrounded
by the white background in local area, while the black block is surrounded by the white
background as well as a green block and a blue block. The saliency contribution of the white
area on the top right corner of the black block is greatly reduced because the green block
and the blue block are on the top and right side of the black block, respectively.

Specifically, we define the saliency of a superpixel fi using its feature contrast to its
surrounding superpixels in the image. To calculate the local contrast weight, we construct an
undirected weighted graph by connecting all neighboring superpixels (fi, fj ) and assigning
their weight Dist (fi, fj ) as the Euclidean spatial distance between superpixel fi and fj .
The local contrast weight WLC(fi) of a superpixel fi is defined as:

WLC(fi) =
M∑

j=1

Cfi,fj
· √

Size(fj )

Dist (fi, fj )
(2)

where Size(fj ) is the number of pixels in superpixel fj . Cfi,fj
is the local feature contrast

between superpixel fi and superpixel fj . Note that Cfi,fj
is different from feature distance

between superpixels fi and fj in the CIE-Lab color and texture feature space. Cfi,fj
is

computed as:

Cfi,fj
=

{
Contr(fi, fj ), if (fi, fj ) adjacent

Contr(fi, fj ) − max
k∈Path(i,j)

Contr(fk, fk+1), if (fi, fj ) not adjacent (3)

where Contr(fi, fj ) is the feature contrast between superpixels fi and fj in the CIE-Lab
color and texture feature space. Equation (3) shows that when the superpixel fi and fj are
not adjacent, the local contrast Cfi,fj

equals Contr(fi, fj ) minus the maximum feature
contrast along their shortest path on the graph. That is to say, the final contrast of the super-
pixel fi and fj should consider not only their feature contrast, but also the feature contrasts
in their shortest path on the graph.

Equations (2) and (3) encourage those superpixels with large feature contrast to its sur-
rounding regions. Note that this is quite different from global contrast method which defines
the saliency for each region as the weighted sum of the region’s contrasts to all other regions
in the image [10]. We calculate the shortest paths between all superpixel pairs using algo-
rithm [7]. As our graph is very sparse, computing (3) is efficient and low storage. Figure 2d
shows the results of normalized local contrast weight.
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Superpixel clarity weight Compared with blur regions, we are usually more interested in
objects that are clarity in an image. So the clarity cue should be considered in the calculation
of perceptually salient region. The question is how to measure the clarity of a region in an
image.

Based on the observation that image clarity is correlated with the image attributes such as
richness of edge, contrast, illumination, etc. We propose an approach to measure the clarity
of each superpixel. The superpixel clarity weight WSC(fi) of a superpixel fi is defined as:

WSC(fi) = Edge(fi)

Gray(fi)
(4)

where Edge(fi) is the average value of color edge of superpixel fi [16]; Gray(fi) is the
average gray value of superpixel fi . Equation (4) means that if a region has rich edges
and relatively low illumination, its clarity is relatively high. Figure 2e shows the results of
normalized superpixel clarity weight. It demonstrates that the importance of each superpixel
can be well discriminated according to (4). Figure 5 shows more results of superpixel clarity
weight.

Background probability weight Intuitively, background regions are much more con-
nected to image boundaries than foreground ones, i.e., the less the regions touch the image
boundary, the more salient they will be. Zhu et al. [42] proposed a “soft” approach to com-
pute the boundary connectivity, which is inefficient and fails when the colors of salient
object are similar to boundary. Different from [42], we directly compute each superpixel
size and its connected boundary length based on the results of our superpixel fusion. The
background probability weight WBG(fi) of a superpixel fi is defined as:

WBG(fi) = exp

⎛

⎜⎝−
(

Conbd(fi )√
Size(fi )

− ωbg

)2

2σ 2
bg

⎞

⎟⎠ (5)

(a) Input Image

(b) Superpixel Clarity Weight

Fig. 5 More examples of superpixel clarity weight. It clearly demonstrates the importance of each superpixel
can be well discriminated according to the superpixel clarity weight
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where Conbd(fi) is the number of pixels in the image boundary of superpixel fi . The
square root of the superpixel size is to achieve image size-invariance. In our implementation,
ωbg and σbg are set to 0 and 0.2, respectively.

Based on the superpixel fusion results, the calculation of (5) is very fast and effective
because we only need to count the number of pixels in the image boundary and each super-
pixel. This is feasible because we experimentally find that the foreground and background
in the input image are usually represented by only one or a few superpixels after superpixel
fusion operation. Figure 2f shows the results of normalized background probability weight.
It shows that the background in the input image can be well depressed according to (5).

Central bias weight In human visual system, the image center regions draw more atten-
tion than the other regions [15], i.e., the saliency values of central regions are higher than
the image boundary regions. Many works use the central bias as a saliency cue to suppress
the background close to image boundary [4, 15, 42]. In this fashion, the central bias weight
WCB(fi) of a superpixel fi in our notation can be written as:

WCB(fi) =
∑

pk∈fi
e

−Dist (pk ,0)2

2σ2
cb

Size(fi)
(6)

where Dist (pk, 0) is the spatial distance between pixel pk and image center. In our imple-
mentation, we set σcb = 0.5. Equation (6) shows that the central bias weight of each
superpixel is obtained by averaging the central bias weights of pixels in each superpixel.
Figure 2g shows the results of normalized central bias weight. It demonstrates that the
central bias saliency cue can depress the boundary backgrounds in the input image.

2.3 Weight integration

So far, we have introduced four bottom-up saliency weights. If used independently, each
weight has its merits and, of course, demerits. The common integration approaches are
linear summation and pixel-wise multiplication of all the saliency weights [15]. Figure 6
shows the difference between summation and multiplication combinations. Generally, mul-
tiplication encourages the common saliency regions in each weight and gives the saliency
of higher precision. Summation favors to obtain higher recall.

In this paper, we integrate the advantages of multiplication and summation and use the
following principle to combine our four saliency weights mentioned above. For a superpixel
fi , the integration of these weights is defined as:

S(fi) = ω · Smulti (fi) + ϕ · Ssum(fi) (7)

Smulti (fi) = WLC(fi) · WSC(fi) · WBG(fi) · WCB(fi) (8)

Ssum(fi) = α · WLC(fi) + β · WSC(fi) + γ · WBG(fi) + λ · WCB(fi) (9)

where WLC, WSC,WBG, and WCB are our four saliency weights. S(fi) is the integrated
weight of the superpixel fi . In our implementation, ω and ϕ are set to 0.5, which means
that the results of multiplication and summation make the equivalent contribution to the
integration result. The parameters in (9) such as α, β, γ, and λ are empirically set to 0.5,
0.5, 1, 0.5, respectively. Note that there are some approaches that aim at automatically fusing
multiple saliency weights/cues via learning algorithms. In our experiment, instead of using
the complex automatic fusion method, we empirically set the integrating parameters in (7)
and (9).
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(a) Weight Summation

(b) Weight Multiplication

Fig. 6 Weights combination: summation and multiplication. The background noises can be effectively
depressed by multiplying each weight, which can improve the saliency detection accuracy. And summation
favors to obtain higher recall

2.4 Saliency smoothing

By integrating each saliency weight, we have obtained the saliency map. Based on the obser-
vation that the neighboring superpixels with coherent color and texture features should have
consistent saliency values, we propose to refine the integrated saliency map by performing
superpixel-level saliency smoothing. Specifically, the saliency value of a superpixel is equal
to the weighted average of the saliency values of other superpixels. When calculating the
smoothed saliency value of a superpixel, we not only consider the feature contrast between
the superpixel and other superpixels, but also consider the spatial distance between them.

For a superpixel fi , the smoothed saliency value S′(fi) is defined as:

S′(fi) = h

(∑M
j=1

[
1 − Contr(fi, fj )

] [
1 − Dist (fi, fj )

]
S(fj )

∑M
j=1

[
1 − Contr(fi, fj )

] [
1 − Dist (fi, fj )

]

)
(10)

h(x) = e
− (x−ωsm)2

2σ2sm (11)

Equation (10) encourages those superpixels with low feature contrast and small spatial dis-
tance to make more contribution for the smoothed saliency value S′(fi). Equation (11)
is used to normalize the smoothed saliency value S′, which is computed by (10). In our
implementation, ωsm and σsm are set to 1 and 0.2, respectively.

Figure 2i shows the results of smoothed saliency maps. It illustrates that the non-saliency
noises in the weight combination results (Fig. 2h) are obviously reduced. It should be
noted that although saliency smoothing operation can optimize the integrated saliency map,
the quality of saliency detection depends mainly on the four powerful saliency weights
mentioned above.
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3 Experimental results

3.1 Experimental setup

Dataset To evaluate our approach, we carried out several experiments on three stan-
dard benchmark datasets: MSRA [2], SED1 [4], and SED2 [4]. MSRA [2] consists of
1,000 images with different natural scenes and complex backgrounds. SED1 [4] consists
of 100 images with low contrast and cluttered background scenes making it challenging
for saliency detection. SED2 [4] contains 100 images with two salient objects. The human-
labeled foreground masks used as ground truth for salient object detection in MSRA [2],
SED1 [4], and SED2 [4] datasets are also provided.

Evaluation criterion In our experiments, we adopt five criteria to evaluate the quanti-
tative performance of different approaches: receiver operating characteristic (ROC) curve,
mean absolute error (MAE) [29], mean precision, mean recall, and F-measure. The ROC
curve plots the true positive rate against the false positive rate and presents a robust
evaluation of saliency detection performance. Specifically, the ROC curve is obtained by
thresholding the saliency map using a series of fixed integers from 0 to 255.

MAE is proposed by [29], which provides a estimate of the dissimilarity between the
saliency map and ground truth. It calculates the mean absolute error between the detected
saliency map (S) and the binary ground truth (GT). MAE is computed as:

MAE =
∑W

i=1
∑H

j=1 |S(i, j) − GT (i, j)|
W × H

(12)

We also use F-measure to evaluate the overall performance. F-measure is computed as:

Fγ = (1 + γ 2) × Precision × Recall

γ 2 × Precision + Recall
(13)

where precision and recall are an average value which is obtained by averaging a number of
precisions of thresholding saliency map. As described in [2, 25], precision is more important
than recall for attention detection. Therefore, we use γ 2 = 0.3 to weigh precision more than
recall.

3.2 Comparison of saliency detection approaches

For convenience, we use (MSW) (Multiple Saliency Weights) to represent our multiple-
weight integration approach. We compare MSW with the following representative saliency
detection methods, including SR [17], IT [19], SIM [27], SUN [40], AC [1], SeR [33],
AIM [9], FT [2], SEG [30], and wCtr [42] respectively. These approaches are very typical
in saliency detection and implemented using their either publicly available source code or
original saliency detection results from the authors.

Figure 7 reports the experimental results of all approaches on the SED1, SED2, and
MSRA datasets. The results demonstrate the overall better quality of saliency maps gener-
ated by using our MSW approach in terms of the measures of MAE, ROC, and F-measure.
Specifically, Fig. 7 (left column) shows the MAE comparison results of all approaches,
which indicate that our MSW approach obtains the lowest MAE scores in SED1 [4],
SED2 [4], and MSRA [2] datasets, except for wCtr [42] approach on SED2 and MSRA [2].
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(a) SED1 [4] dataset
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(b) SED2 [4] dataset
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(c) MSRA [2] dataset

Fig. 7 MAE, ROC curve, and F-measure performance of all the ten approaches on the SED1 [4], SED2 [4],
andMSRA [2] datasets. From top to bottom: SED1 [4], SED2 [4], andMSRA [2] datasets are tested. From left
to right: MAE, ROC curves, and F-measure performance are displayed. The experimental results demonstrate
the overall better quality of saliency maps generated by using our approach

The experimental results demonstrate that the saliency maps produced by the proposed
approach are more consistent with the ground truth.

Figure 7 (middle column) shows the comparison results of ROC curves of our MSW
approach and other methods. Since our approach takes into account the multiple visual
cues instead of a single cue, our MSW approach reasonably outperforms other competing
methods in SED1 [4], SED2 [4], and MSRA [2] datasets. Given a fixed false positive rate,
MSW obtains a higher true positive rate than other saliency detecting approaches in most
cases.

Furthermore, Fig. 7 (right column) also shows the average F-measure performances of
our MSW approach and other methods on the SED1 [4], SED2 [4], and MSRA [2] datasets.
The experimental results demonstrate that our MSW approach outperforms other methods
in terms of precision, recall, and F-measure on both two standard benchmark datasets in
most cases.

Figure 8 presents some visual examples of salient object detection on the MSRA [2] and
SED1 [4] datasets for a subjective comparison. It intuitively demonstrates that the saliency
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(I) MSRA Dataset [2]

(a) IM (b) AC (c) AIM (d) FT (e) IT (f) SEG (g) SeR (h) SIM (i) SR (j) SUN (k) MSW(l) MSWS (m) GT

(II) SED1 Dataset [4]

Fig. 8 Visual comparison of saliency detection on the MSRA [2] and SED1 [4] datasets. (a) input images
(IM), (b) - (j): saliency maps generated using different approaches, (k) our MSW and (l) MSWS (Multiple
Saliency Weight Smoothing) approaches, and (m) ground truths (GT)

maps obtained by our approach provide visually more pleasuring saliency detection results
than other competing approaches, and surprisingly, are more close to the ground truth.

In Table 1, we compare the average processing time on SED1 [4] with other saliency
detection approaches mentioned above. The processing environment has an Intel® Xeon®

CPU with 2.53 GHz operational frequency and 24G bytes RAM size under Windows®

Server 2008 operating system. All the algorithms are implemented by MATLAB. Table 1
demonstrates that the time complexity of our MSW approach is relatively low compared
with other methods.

4 Application

The result of saliency detection can be used to improve the existing image processing
applications. Content-aware image retargeting is a good example. It judiciously retargets

Table 1 Comparison of processing time (seconds per image)

Method FT [2] SEG [30] SR [17] AC [1] SIM [27] MSW

Time(s) 0.21 16.42 0.13 15.18 2.14 0.56
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an image to the target resolution based on an importance map for the image [5, 28].
We experiment with using different saliency maps in the image retargeting approach: As
Similar-As-Possible (ASAP) [28]. ASAP [28], a typical continuous approach, was proposed
by Panozzo et al. [28]. It optimizes a mapping (warping) from the resolution of source image
to some target resolution using several types of constraints in order to protect the important
contents in the source image.

Figure 9 demonstrates the retargeting results using different saliency maps. The saliency
maps are from image gradient, FT [2], IT [19], and ourMSW. It intuitively demonstrates that

(a) Original (b) Gradient (c) FT[2] (d) IT[19] (e) MSW

Fig. 9 Image retargeting results (75% original width). Comparison of content-aware image retargeting
results [28] using the saliency maps of gradient, FT [2], IT [19], and our MSW
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the retargeting approach of ASAP [28] employing our saliency maps is capable of producing
better retargeting results. This is reasonable because the saliency maps produced by our
approach are consistent with the object regions, which is important for importance map
based retargeting approaches. However, gradient maps often have higher saliency values at
object boundaries. The saliency maps of FT [2] and IT [19] cover less object regions, which
are not suitable for image retargeting.

5 Conclusion

In this paper, we have presented a novel salient object detection approach that estimates the
saliency of regions by using our four powerful saliency weights, i.e., local contrast weight,
superpixel clarity weight, background probability weight, and central bias weight. The final
saliency maps are obtained by integrating these saliency weights. Furthermore, we propose
a superpixel-level saliency smoothing approach to optimize the integrated results for obtain-
ing clean and consistent saliency maps. Extensive experiments on three standard benchmark
datasets show that our approach achieves good performance and is computationally effi-
cient. In the future, we aim to exploit the extrinsic information (such as the images having
visually similar content with the original image) to further improve the performance of our
algorithm.
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