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Abstract This work explores the use of phoneme level information in cohort selection to
improve the performance of a speaker verification system. In speaker verification, cohort is
used in score normalization to get a better performance. Score normalization is a technique
to reduce the undesirable variation arising from acoustically mismatched conditions. Proper
selection of cohort significantly improves speaker verification performance. In this paper,
we investigate cohort selection based on a speaker model cluster under the i-vector frame-
work that we call the i-vector model cluster (IMC). Two approaches for cohort selection
are proposed. First approach utilizes speaker specific properties and called speaker spe-
cific cohort selection (SSCS). In this approach, speaker level information is used for cohort
selection. The second approach is phoneme specific cohort selection (PSCS). This method
improves cohort set selection by using phoneme level information. Phoneme level informa-
tion is further employed in a late fusion approach that uses a majority voting method on
normalized scores to improve the performance of the speaker verification system. Speaker
verification experiments were conducted using the TIMIT, HINDI and YOHO databases.
An equal error rate improvement of 19.01%, 14.61% and 19.4%is obtained for the proposed
method compared to the standard ZT-Norm method for TIMIT, HINDI and YOHO datasets.
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Reasonable improvements in performance are also obtained in terms of minimum decision
cost function (min DCF) and detection error trade-off (DET) curves.

Keywords Speaker verification · Speaker recognition · Cohort selection

1 Introduction

Speaker verification is a method for verifying a claimed identity (target) using the speaker’s voice
[4, 5, 31, 34]. It has wide ranging applications in access control, forensics, and security.
Speech is preferred over other biometrics in remote authentication cases because of speech
is easier to capture and send over a voice channel. The classifications of speaker verification
is broadly divided into two categories such as text-dependent and text-independent. In the
case of text-dependent speaker verification, text of uttered speech is available as well as
an extra information can be extracted from the available text which leads to better speaker
verification system performance [33, 38], while there is no restriction on the uttered speech
in text independent speaker verification [8, 20]. The Performance of a speaker verification
system is adversely affected by training and testing mismatch conditions [32, 36]. This
mismatch can be reduced at three level, i.e signal, model and score level.

The technique like score normalization is performed at the score level to reduce the
effects of mismatch between training and testing conditions [3]. The cohort normaliza-
tion method is one of the score normalization methods which significantly reducing the
mismatch condition [35]. Cohort is defined as a set of people with a shared characteris-
tic. In Speaker Verification literature, it refers to a speaker-dependent set of anti-speakers
(impostors) [22]. The proper selection of a cohort is critical for implementing in a speaker
verification system [22, 28]. In biometric authentication, there are two kinds of errors, i.e.
false acceptance (FA) and false rejection (FR). FA means accepting an impostor and FR
refers to rejecting a genuine speaker. In such circumstances the verification threshold is
generally adjusted to obtain a balance between these two types of errors. So, the number
of false rejections can be reduced by lowering the verification threshold, but at the cost of
an increase in the number of false acceptances. The number of false acceptances can be
reduced by setting a high threshold, but this causes to increases the false rejections. There-
fore, this problem is challenging when highly trained impostors gain access to an online
speaker authentication system.

Subsequently, the current state-of-art in speaker verification system utilizes the i-vector
which is based on the total variability subspace [29]. I-vector is a representation of a
speaker’s utterance that are extracted using a low- dimensional total variability subspace.
Speaker verification scores are obtained by the dot product between the test and speaker i-
vector model. Further, the scores are normalized to minimize the acoustic variation between
the training and testing conditions. The normalized scores are compared with the threshold
to make the final decision. In forensic speaker verification, a relevant background popula-
tion is used for estimating the likelihood of a random match based on the acoustic evidence
collected. Given a large number of speakers, the relevant background population can be
found for cohort selection. In a speaker verification system, this approach is realized using
the T-Norm (Test normalization) method. This technique is test dependent, where the impos-
tor score distribution is estimated for each test utterance by performing non-target trials with
the cohort [30]. Then the similarity between the test and target utterance is normalized by
using this distribution.
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Motivation A phoneme contains valuable information about the speaker and has been used
to improve the performance of a speaker verification system [16, 24, 25]. Most of the work
related to normalization in speaker verification is based on the Gaussian Mixture Model-
Universal Background Model (GMM-UBM) method. Recently, the concept of i-vector was
proposed, which outperforms the GMM-UBM based speaker verification method [27, 29].
In general, score normalization is applied after the scores are obtained. A new scoring
method is proposed in [10], where the score normalization step is merged with the final
scoring technique. This normalized scores are computed by using the average of the impos-
tors i-vectors. The overall success of this scoring method greatly depends on the proper
selection of the impostors in order to obtain the average i-vector parameters.

Contributions Contribution of this work is as follows

• Determining the effects of incorporating phoneme level information into text-
dependent speaker verification. This has been implemented for English as well as for
Hindi speakers.

• A novel technique for cohort selection in the i-vector framework has been proposed and
its performance has been compared against the standard normalization methods.

• A new speaker verification system based on majority voting method which uses
multiple threshold in final scoring has been proposed.

It is found that the proposed methods lead to significant improvement in performance over
the conventional methods.

The remainder of this paper is structured as follows. Section 2 presents an overview of
the speaker verification and score normalization methods in the i-vector framework. The
channel compensation methods to reduce the channel and inter-session variability at the
model level is also discussed. Section 3 describes the method for cohort selection based on i-
vector model cluster. It includes the selections based on speaker specific, phoneme specific
and a combination of both methods. A late fusion method that utilizes the majority voting on
normalized scores are also discussed herein. Section 3 discuss the performance evaluation
of the proposed method based on experiments conducted on TIMIT, HINDI and YOHO
databases. The performance of the proposed method is evaluated in terms of equal error rate
(EER) and minimum decision cost function (min DCF). Section 5 concludes the paper with
a discussion on the results obtained and possible future applications and extensions.

2 Speaker verification and score normalization in the I-vector framework

In this section, an overview of the speaker verification system in the i-vector framework
has been presented. It also discussed the standard normalization methods used in the
i-vector framework. Standard methods of channel compensation techniques, i.e Linear Dis-
criminant Analysis (LDA) and Within-Class Covariance Normalization (WCCN) are also
explained.

The task of speaker verification is a hypothesis testing problem and can be formulated
in the following manner. For the given test utterance Y , with a claimed identity S. The null
hypotheses, H0 : Y is from the claimed speaker S and the alternative hypothesis, H1 : Y is
not from the claimed speaker S. The verification selects one of the hypothesis. In Fig. 1, the
block diagram for the speaker verification system in the i-vector framework is illustrated.
Extraction of i-vectors from the speech utterances is explained in the ensuing section.
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Fig. 1 Block diagram of the i-vector based speaker verification system

2.1 I-vector extraction

I-vector is a low dimensional representation of the utterances. In GMM-UBM system, a
speaker model is obtained by adapting a background model to data of a target speaker. A
background model is a GMM with large number of mixture components trained on the fea-
tures from non-target speakers speeches. The main problem of this adaptation technique
is the adaptation of non-speaker parameter (channel and other non-speaker factor) along
with the speaker specific parameter. In the factor analysis method, a GMM mean super-
vector of target model is assumed to have speaker independent, speaker dependent, channel
dependent and speaker dependent residual components [19]. The supervector is obtained by
concatenation of means of all the mixture components of the target model [7].

Combining all the variable component in one matrix is given in [29] and termed as
total variability subspace. In this approach, a supervector is assumed to have the following
structure.

s = m + Tw (1)

Where m is the UBM supervector and T is the total variability matrix and w is the total
variability factor, termed as the i-vector. The training of the matrix T is done in exactly the
same way as that of the speaker subspace in the JFA approach with a slight modification
by assuming the speech utterances from the same training speaker as from the different
speakers. Matrix T is a low rank matrix. For the given matrix T, i-vector w is obtained for
the given utterance. The i-vector representing the utterance is calculated by:

w =
(
I + T t�−1NT

)−1
T t�−1F (2)

where I is the identity matrix and N is a diagonal matrix of dimension CF × CF , its diag-
onal blocks are NcI, (c = 1, 2, ..C) where c is the Gaussian index and F is the supervector
formed by concatenating all the centralized first order statistics. � is a diagonal covari-
ance matrix of dimension CF × CF . The block diagram in Fig. 2 illustrates the procedure
for extracting the i-vector. The i-vector extraction itself does not perform any channel and
inter-session compensation method. LDA and WCCN methods are used to compensate the
channel and inter-session variability from the i-vector which is explained in the next section.
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Fig. 2 Diagram illustrating the i-vector extraction from speech dataset

2.2 Linear discriminant analysis method

Linear Discriminant Analysis (LDA) is applied to compensate for the inter-session and
channel variability in speech data. The main objective of LDA method is to find new orthog-
onal axes which maximizes between class variation and minimizes within class variations.
This leads to getting better discrimination between different classes and reduces the dimen-
sionality of the data. The LDA transformation matrix ALDA consists of the eigenvectors
having the largest eigenvalues of the eigenvalue problem SBv = λSW v, where the between
and within speaker scatter matrices, SB and SW respectively are calculated using

SB =
S∑

s=1

Ns

(
μs − μ

) (
μs − μ

)t (3)

SW =
S∑

s=1

Ns∑
i=1

(
wi

s − μs

) (
wi

s − μs

)t (4)

where μs is the mean i-vector of each speaker, S denotes the total number of speakers in
consideration and Ns stands for the total number of utterances for speaker s. N is the total
number of sessions. The mean i-vector for each speaker μs and mean i-vector across all the
speaker μ is defined as

μs = 1

Ns

Ns∑
i=1

wi
s (5)

μ = 1

N

S∑
s=1

Ns∑
i=1

wi
s (6)

The matrix ALDA is calculated as follows:

ALDA = arg max
A

|AT SBA|
|AT SW A| (7)
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2.3 Within-class covariance normalization

In sequence to LDA Within-Class Covariance Normalization (WCCN) [15] method is
applied to reduce the within speaker variance that remains after LDA. This helps in reducing
the within class split and leads to an improved system performance. The WCCN matrix B

is found by the Cholesky decomposition of W−1 = BBt , where the within-class covariance
matrix is calculated by:

W = 1

S

S∑
s=1

Ns∑
i=1

(
ALDA

twi
s − μ̂s

) (
ALDA

twi
s − μ̂s

)t
. (8)

Where, ALDA is the LDA projection matrix, μ̂s is the mean of the LDA projected i-vector
of each speaker s and S is the total number of speakers.

2.4 Cosine scoring

The cosine score for a trial between a set of test and target i-vectors wtarget and wtest

is given by the dot product
(
w′

target ,w
′
test

)
between the inter-session compensated

normalized i-vectors.

score
(
w′

target , w
′
test

) = 〈w′
target , w

′
test 〉

‖w′
target‖‖w′

test‖ (9)

Where ‖w′
target‖ and ‖w′

test‖ are the L1-norm of the w′
target and w′

test respectively. This
score is compared with the threshold to make a final decision for speaker verification. It
should be noted that, both target and test i-vectors are estimated exactly in the same manner,
i.e. using the same UBM and same total variability subspace. The use of the cosine score as
a decision score for speaker verification makes the process faster and less complex.

2.5 Score normalization in the I-vector framework

In the i-vector framework the normalization (Both T-Norm and Z-Norm) can be incorpo-
rated [10] in the score computation step as

sznorm =
(
w′

target

)t (
w′

test − w′
z imp

)

‖Cz imp.w′
target‖ (10)

stnorm =
(
w′

target − w′
t imp

)t(
w′

test

)

‖Ct imp.w′
target‖ (11)

In (10), sznorm is the Z-Norm score, w′
target is the target i-vector, w′

test is the test i-vector.
w′

z imp is the average impostor i-vector and Cz imp is a diagonal matrix containing the
square root of diagonal Z-Norm impostor’s covariance matrix. Similarly, in (11), stnorm is
T-Norm score, w′

target is the target i-vector, w′
test is the test i-vector. w′

t imp is average
impostor i-vector and Ct imp is a diagonal matrix containing the square root of diagonal
T-Norm impostor covariance matrix. A combined scoring method is given as in (12). It
combines the effect of both Z-Norm and T-Norm method.

sztnorm =
(
w′

target − w′
t imp

)t(
w′

test − w′
z imp

)

‖Ct imp.w′
target‖‖Cz imp.w′

test‖ (12)
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The performance of the i-vector based speaker verification system depends on the average
impostor i-vectors wt imp and wz imp estimation . If this estimation is made based on speak-
ers that are closer to the target speakers then it leads to improved speaker verification system
performance. wz imp is the average impostor i-vector for z-norm which is computed over
a set of utterances from speakers different than the target speaker (i.e., impostor). Here in
this work, the training i-vectors of a target model are used for selecting the impostors close
to the target model using cosine similarity. Once the set of impostor is selected, wz imp is
computed as

wz imp = wz imp1 + wz imp2 + .... + wz impN

N
(13)

where wzimp1, wzimp2, ...wzimpN are set of N impostor for the target model. In T-Norm
scoring, the task is to select the speakers for the cohort, which are nearest to the given target
model and diverse from each other [31]. By selecting cohort for the same IMC as that of
the target it is guaranteed that impostors near to the target model are selected. In this work,
wt imp is estimated by using the test i-vectors of the target model and a set of impostor
i-vectors. The next section will describe the cohort selection method and the combined
method for speaker verification using phoneme level information.

3 Cohort selection using speaker and phoneme specific I-vectors

In this section, we present the speaker clustering method in the i-vector framework. Cohort
selection is discuses by using speaker and phoneme specific properties. After that Major-
ity voting method is presented which is fused with cohort normalization to improve the
speaker verification system performance. Iterative proportional fitting procedure method for
normalizing the confusion matrix is also discussed herein.

3.1 I-vector based clustering method for cohort selection

Earlier, in the GMM-UBM based speaker verification method, speakers were clustered
using the k-means clustering algorithm to improve the performance of the system [1]. This
approach gives speedups in the speaker identification process as well as improvements in
speaker verification [1, 2]. We propose an algorithm to cluster speaker models by using i-
vectors that utilize the test utterances for grouping the similar set of speakers. This leads to
more meaningful clustering of the speakers. We presented it in Fig. 3 that shows the space
of the i-vector model cluster, claimant speaker i-vector and cohort i-vectors.

To cluster the speakers, a confusion matrix is generated by scoring the test utterances
with the target models using the dot product.The confusion matrix is then normalized using
the Iterative proportional fitting method [12]. The IPFP algorithm normalizes the confusion
matrix so that each row and each column individually sums to one and that is necessary
for appropriately measuring the similarity between the rows. A simple distance metric,
that quantifies the similarity between speakers is utilized to cluster similar sets of speak-
ers in multiple passes. In first pass two closest speakers are grouped into one class and this
process is repeated until a threshold in terms of accuracy is achieved. The i-vector represen-
tation of the clustered speaker is achieved by taking the average of the i-vectors of a similar
set of speakers. This i-vector based model cluster aids efficient speaker identification and
speaker verification scoring. Figure 4 illustrates the flow diagram of the proposed method
for speaker clustering in the i-vector framework for speaker verification.
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Algorithm 1 lists the steps involved in speaker clustering in the i-vector framework.

Once similar group of speakers is clustered, speaker specific cohorts are selected for
normalization which is discussed in the next subsection.

3.2 Speaker specific cohort selection (SSCS)

The SSCS is an online method for selection of the cohort and it is a data driven approach
[28]. In [28], a method called client-wise cohort set selection (CWCS) was proposed, which
uses client-wise speaker specific properties to obtain the cohort set in a GMM-UBM based
system. For the i-vector framework, it is termed as SSCS method. In this method, speakers
for cohort are selected during the matching phase. This method has an additional advantage
over offline cohort selection as it selects the speakers which are test dependent. Figure 5
shows a case where the offline selection fails.

The closest impostors to the target model are on the wrong side of the test i-vectors.
Consequently, the score for the target model will be higher than for any of the cohort.

Fig. 3 Space of i-vector model
clusters, cohort and claimant
speakers
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Fig. 4 Flow diagram illustrating the Speaker Model Clustering in the i-vector Framework

Thus, it wrongly accepts the claimant. However, it should be noted that the probability
of the test i-vector belongs to the right target model which is very high. But, when an
online selection is performed, the i-vector corresponding to the closest impostor to the test
sequence (client speaker) are selected for scoring. Therefore, it is expected that the number
of false acceptances is reduced by using an online approach. The block diagram is illustrated
in Fig. 6.

Algorithm 2 lists the steps involved in speaker specific cohort selection.

Fig. 5 Illustration of online and offline cohort speakers
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To get the best cohort, the impostor trials for each speaker model cluster has been started
and corresponding cohort matrix is obtained. Here the name cohort matrix is assigned as
row wise and column wise models are different as compared to confusion matrix where we
have the same model both in rows and column. The cohort matrix is then normalized using
the iterative proportional fitting procedure (IPFP) method [18]. In order to select the cohort
set from normalized cohort matrices, L1 distance metric [13] is used as it sums the abso-
lute differences of the corresponding coordinate values between two row vectors. It must
be noted here that, the row wise candidates of the cohort matrix are the claimed identities.
Hence, the possibility of pruning one closest speaker in the selection of the cohort is possible.

The most closest speakers to the target speakers are selected from the cohort set. After the
selection, each i-vector model cluster will have its own set of cohort. This cohort selection
method leads to better speaker verification system performance compared to conventional
cohort selection methods, which do not perform any similarity modeling and use the same
set cohort for all claimed speaker models.

3.3 Phoneme specific cohort selection (PSCS)

A phoneme is the smallest distinct unit of sound and has been used to discriminate between
two utterances. Speaker specific phoneme models, i.e. modeling the way individuals
produce different sounds can give important information about the identity of the claimed
speaker [11].
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Phoneme based cohort set selection uses speaker specific phoneme level information for
the selection of a cohort for every clustered speaker model. For speaker specific phoneme
i-vector modeling, most frequently occurring phonemes are selected by ranking them
according to their frequency in the training database. Acoustic features corresponding to
these phonemes are extracted. Baum-Welch statistics are then estimated from these acous-
tic features. These statistics along with the total variability subspace are used in extracting
the speaker specific phoneme i-vectors. Instead of test i-vectors of the clustered speaker, the
speaker specific phoneme i-vectors of the clustered speaker are used to generate the cohort
matrices by scoring it against the non-target speakers. This cohort matrix gives the prox-
imity between the phoneme of the test utterance and cohort models. The cohort matrix is
normalized using IPFP to get the cohort sets. The final cohort set for each i-vector model
cluster is selected using majority voting for frequently occurring phonemes. Phoneme level
transcription of HINDI and TIMIT database are available to extract the speaker specific
phoneme features. Experiments are also performed where time level phoneme alignment is
not provided. To explore the significance of PSCS in such a case, a speech recognizer is
used to get the time level phoneme alignment. YOHO database is used for this method. The
speech recognizer is trained using the training utterances of YOHO database. HTK toolkit
is used herein for obtaining the phoneme level time alignment for YOHO database [37].
Figure 7 shows the block diagram and Algorithm 3 for selecting the cohort set using speaker
specific i-vectors.

Algorithm 3 lists the steps involved in the implementation of the proposed method.
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3.4 Combining the speaker and phoneme specific method for cohort selection

In this method, combined information from both SSCS and PSCS methods is utilized to
get the final cohort set. First set of cohort is obtained using SSCS method as described
in the earlier section, which uses speaker level information. The second set of cohort is
obtained using PSCS method, which uses phoneme level information. A final set of cohort
is obtained by combining the cohort sets obtained using both these methods. Hence, the final
set of cohort is based on both speaker specific properties and phoneme specific properties .
Figure 8 illustrates the combined approach.

The final cohort set obtained will be used for score normalization in the speaker
verification method as discussed in the ensuing section.

3.5 Cohort normalization in the I-vector framework

For each speaker the test data set is divided into two sets of trials known as target trials and
non-target trials. The average impostor i-vector is estimated using the cohorts selected by
the SSCS and PSCS methods. Subsequently, normalized scores are obtained using (12). It
is noted here that, the cohort used in obtaining impostor utterances for Z-Norm scoring is
different than the cohort set selected for T-Norm scoring. We have used the training i-vectors
to score against the non-target i-vectors to generate the cohort matrix to estimate the wz imp.

In T-Norm scoring, the task is to select the cohort models, which are nearest to the given
claimant model (target model) and diverse from each other [31]. In the method proposed
here, wz imp is estimated offline (using training i-vectors) and wt imp is estimated online
(using the test i-vectors). Ct imp and Cz imp are diagonal matrices, that contain the square
root of the diagonal covariance matrix of the impostor i-vectors.

Further, to improve the performance of the speaker verification system the majority
voting method is used in this work [21]. Once normalized scores have been obtained
with the new scoring method, the only step remaining is the final decision in which the
claimant speaker is either accepted or rejected. This is accomplished by setting a threshold,

test utterances

Check against Impostor 
models Obtain cohort

 matrix

Normalization of cohort 
matrix,use distance metric

Check again Phoneme 
models,Obtain cohort

 matrix

Normalization of cohort 
matrix use distance metric

Use majority 
vote

Cohort set 1

Cohort set 2

Final cohort set

Front-End
Processing

Front-End
Processing

Fig. 8 Block diagram illustrating the combined approach for cohort selection
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all utterances producing scores above the set threshold are accepted as coming from the
claimant speaker, while all utterances producing scores below the set threshold are rejected
as coming from the impostor speakers. In this method, use of multiple thresholds is pro-
posed to improve speaker verification decisions. Two thresholds are set, a low threshold and
high threshold. Utterances producing scores above the high threshold are accepted, while
those producing scores below the lower threshold are rejected. For scores, lying between the
two thresholds further processing is done using phoneme specific i-vector models. Multiple
phoneme level accept and reject decisions are made and a final decision to accept or reject
is made by majority voting across all phonemes. Figure 9 shows the recognition phase of
the speaker verification system using the majority voting method. In the next section, IPFP
method is described which is used for normalizing the confusion matrix.

3.6 Iterative proportional fitting procedure (IPFP)

The IPFP method was proposed to estimate the cell probabilities in a contingency table
[12]. This method estimates cell probabilities in a confusion matrix by forcing each row and
column sum equal to one. Based on some marginal constraints these cell probabilities are
estimated. Let us consider nij , nij > 0 observations in a confusion matrix (r × c), where

r∑
i=1

c∑
j=1

nij = n (14)

initial values are taken as.
p0

ij = nij /n (15)

The following minimization criterion has been applied in estimating the cell probabilities.
r∑

i=1

c∑
j=1

(nij − npij )
2/nij (16)

The following fixed marginal constraints have been assumed.

pi+ =
c∑

j=1

pij (i = 1, 2, ..., r) (17)
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p+j =
r∑

i=1

pij (j = 1, 2, ..., c) (18)

where pi+ = 1 and p+j = 1, since the sum of cell probabilities in every individual row
and column in the resultant normalized confusion matrix should be equal to one. Using the
above theory, the following iterative steps have been used for matrix normalization.

(1) At every even step (m ≥ 1) and to estimate the probability values, following
expression is evaluated:

p2m−1
ij = p2m−2

ij .pi+/p2m−2
i+ (19)

(2) Similarly, at every odd step the probability values are estimated as:

p2m
ij = p2m−1

ij .p+j /p
2m−1
+j (20)

The iterations are continued until two successive sets of values for the cell probabilities
agree sufficiently well. As the no. of iterations become infinitely large, i.e., N → ∞

pN
ij → pij (21)

where the pij satisfies the marginal total condition.

4 Performance evaluation

In this section, the performances of the proposed methods are evaluated through speaker
verification experiments conducted on the TIMIT [14], HINDI [9] and YOHO [6] databases.
DET curves and EER are used to evaluate the performance of the proposed methods. They
are compared with the raw cosine scoring and ZT-Norm scoring methods. The significant
improvements obtained in terms of the DET curves and the EER using the proposed method.

4.1 Description of the data sets

Three data sets, TIMIT, HINDI and YOHO database are used in testing the proposed meth-
ods. A combination of subsets of theses databases has been used for UBM development.

• TIMIT Database: TIMIT database contains a total of 6300 sentences, 10 sentences
are spoken by each of 630 speakers from 8 major dialect regions of the United States.
The text material in the TIMIT prompts consists of 2 dialects “shibboleth” sentences
designed at SRI, 450 phonetically-compact sentences designed at MIT, and 1890
phonetically-diverse sentences selected at TI. The phonetically-compact sentences were
designed to provide a good coverage of pairs of phones. The phonetically-diverse sen-
tences (the SI sentences) were selected from existing text sources - the Brown Corpus
[23] and the Playwrights Dialog [17] - so as to add diversity in sentence types and
phonetic contexts. The selection criteria maximized the variety of allophonic contexts
found in the texts.

• HINDI Database: The HINDI database is taken from the Database of Indian Lan-
guages [9]. The database contains recordings of 20 news bulletins and features both
male and female speakers. Phoneme level transcription of HINDI database is available
to extract the phoneme level features.

• YOHO Database: YOHO Database: YOHO database is primarily used for perform-
ing speaker verification system performance. It consists of 108 male and 30 female
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speakers. The database was collected during testing of ITT’S speaker verification sys-
tem in an office environment. Speaker variation spanned a wide range over attributes
like age, job description and educational background. Most of the speakers are from
the New York city area with some non-native English speakers. Each Speaker has four
enrollment session in a well defined train and test scenarios. They are prompted to
read a series of twenty four combination loch phrases. Each phrase is a sequence of
three two-digit numbers. There are ten verification trials per speaker, consisting of four
phrases per trial. The data were collected using a high quality telephone handset (Shure
XTH-383), but did not pass through the telephone channel [6].

4.2 Experimental conditions

The features used for the experiments in the system are the MFCCs. The features are
extracted as follows. First, the speech signal is sampled at 8 kHz, followed by silence
removal using the parameter is given in Table 1.

After this, the speech signal is divided into frames of length 20 ms with a frame overlap
of 10 ms. Then each frame of speech is multiplied by a Hamming window to reduce any
discontinuities at the edges of the frames. 22 mel filter banks are used to obtain the features.
The features used in the experiments are the thirteen dimensional MFCCs appended with
velocity and acceleration coefficient’s, resulting in thirty nine dimensional feature vectors.

A subset of the TIMIT, HINDI and YOHO databases are used for the background model-
ing. The background model thus contains speech from a large number of non-target speakers
speaking diverse languages. The background model is a GMM having 512 mixture compo-
nent is trained using the iterative EM algorithm. Generally five to ten iterations are sufficient
for parameter convergence. A total variability factor of 400 is used as defined by the total
variability matrix T for I-vector extraction using large amount of non target speakers from
these databases. The client i-vector models are derived by using the total variability sub-
space and MAP adapted GMM supervector. The ratio of true trials to false trails of 0.157
and 0.148 is used for evaluating the proposed method for TIMIT and HINDI database. Also
a true to the false ratio of 0.124 is used for evaluating the proposed method on the YOHO
database. Cohort i-vector models were randomly selected for TIMIT, HINDI and YOHO
databases.

4.3 Performance measure

In this section, performance measure methods are described for the experiments. A speaker
verification system makes the decision based on the following criteria.

D(x) =
{

accept if D(x) > �

reject otherwise

where � is the threshold and D(x) is the score obtained. Two types of error are possible in
decision making step, false acceptance (FA) and false rejection (FR). FA means accepting

Table 1 Parameters used for
pre-processing of the speech
signal

Min silence duration 1 ms

Max silence duration 170 ms

Silence compression 1:1

Threshold for silence −30 dB
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an impostor, and FR refers to rejecting a genuine speaker. False Acceptance Rate (FAR)
and False Rejection Rate (FRR) are the normalized version of false alarm (FA) and false
rejection (FR) and defined as

FAR = FA

NI
(22)

FRR = FR

NC
(23)

where FA and FR are the number of false errors and the number of false miss errors, NI

is the total number of impostor attempts and NC is the total number of legitimate attempts.
Equal Error Rate (ERR) is defined as the FAR that is equal to FRR. Thus, smaller ERR
signifies better system performance. Another performance measure such as DCF is defined
as

DCF = (CFRR × FRR × PT ) + (CFAR × FAR × (1 − PT )) (24)

where CFAR , CFRR are defined as the cost of false acceptance and cost of false rejection respec-
tively. PT defined as the prior probability of the likelihood of the test utterance belongs to
the claimed speaker. Min DCF is defined as the minimum value of the DCF that can be
achieved on the test data. It can be found by choosing the score threshold such that it minimizes
the (24) on the test data. These DCF parameters were set as CFRR=10, CFAR= 1, and PT =
0.01 to evaluate the proposed method. In addition to the single measurement of DCF and
EER value, more information can be shown as a graph. The graph plotting has all the operating
point corresponds to a likelihood threshold for separating the actual decision of true and false.

The DET curve was first introduced by Martin in 1998 [26]. It replaced the ROC
(Receiver Operating Characteristic) curve, which was used for visualizing the relationship
between the true positive rate and false positive rate. The ROC curves are not in general a
good representation for measuring the performance of the speaker verification system with
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Fig. 10 DET plots of speaker verification experiment for the TIMIT database
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Fig. 11 DET plots of speaker verification experiment for the HINDI database
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Fig. 12 DET plots of speaker verification experiment for the YOHO database
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Table 2 min DCF and EER
values for for TIMIT database Scoring method EER min DCF

Cosine Scoring 5.53 0.1488

ZT-Norm Scoring 5.32 0.1388

SSCS-Norm Scoring 4.92 0.1319

SSCS-PSCS-Norm Scoring 4.59 0.1272

Majority Voting 4.47 0.1204

regard of ease in reading and ability to draw conclusions from it. The DET curves are plot-
ted against two types of error, false acceptance versus false rejection unlike ROC curves
which is plotted false acceptance versus true acceptance.

In DET curves, the two errors are plotted on the x and y axes on a normal deviating
scale which makes the curve look linear. They are obtained by varying the threshold from
one extreme to the other and record the false alarm and miss rate for each case. The curves
obtained in this fashion have the complete information about the system performance at
all possible threshold value. In this way, the DET curves allow us to compare the system
depends on the algorithm used to choose the decision threshold.

4.4 Experimental results

Experiments on the TIMIT, HINDI and YOHO database are conducted using five methods.

• The cosine scoring method: In this method, normalization is not carried out. Scores
are computed from the channel compensated I-vectors. This is the baseline system
considered under the i-vector framework.

• ZT-Norm scoring method : This method uses the standard ZT-Norm scoring approach
[29]. The wt imp and wz imp are estimated offline and online respectively from a large
number of speakers.

• The speaker specific cohort set selection followed by ZT-Norm scoring method (SSCS-
Norm-Scoring): In this method, the client-wise cohort set selection method followed
by ZT-Norm scoring is used. Note that a common cohort set is not used for score nor-
malization as in the ZT-Norm scoring schemes. The wt imp and wz imp are estimated
offline and online respectively from speakers that are close to the target speakers.

• The phoneme based cohort set selection followed by ZT-Norm scoring method
(SSCS-PSCS-Norm-Scoring): In this method, the phoneme-based cohort set selection
approach is used and final cohorts are selected by combining with the cohort selected
by the SSCS approach. In this method, a common cohort set is not used unlike the
ZT-Norm scoring approach.

Table 3 min DCF and EER
values for HINDI database Scoring method EER min DCF

Cosine Scoring 10.58 0.3348

ZT-Norm Scoring 9.85 0.3070

SSCS-Norm Scoring 9.46 0.2954

SSCS-PSCS-Norm Scoring 9.04 0.2816

Majority Voting 8.41 0.2604
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Table 4 min DCF and EER
values for YOHO database Scoring method EER min DCF

Cosine Scoring 1.22 0.0324

ZT-Norm Scoring 1.18 0.0366

SSCS-Norm Scoring 1.14 0.0354

SSCS-PSCS-Norm Scoring 0.99 0.0305

Majority Voting 0.95 0.0255

• Phoneme based majority voting method: In this method phoneme level accept and reject
decisions are made. A final decision is taken by the majority voting method for medium
score.

The experimental results obtained are presented in the form of DET curves [26], EER and
min DCF values. The DET plots for the TIMIT, HINDI and YOHO databases are shown
in Figs. 10, 11 and 12. The Tables 2, 3 and 4 shows the min DCF and EER values for
TIMIT, HINDI and YOHO databases respectively. From Figs. 10–12, and Tables 2–4, it is
observed that the proposed SSCS-PSCS-Norm and Majority Voting scoring methods show
considerable improvement over the standard cosine scoring and ZT-Norm scoring methods.

5 Conclusion

The proposed phoneme based methods are utilizing speaker specific and claimant-specific
phoneme models for improving the speaker verification performance. The PSCS-Norm
approach uses a client-wise cohort set selection approach using phonemic level compar-
ison of the test signal with speaker specific phoneme models. The cohort set selection
selects the closest set of impostor speakers via normalized confusion matrices and takes into
account hitherto unused classification errors. Hence, this technique differs from the standard
ZT-Norm scoring technique in which the same set of cohort models is used for all test utter-
ances. This approach involves meaningful selection of the cohorts using the test utterances.
Further, phoneme information is used with multiple thresholds for medium scores. This
leads to further improvement in speaker system verification system performance. Experi-
ments are conducted on two types of database. In one type (TIMIT and HINDI) of database
phoneme level transcription is available to extract the phoneme features, in other database
(YOHO) we have used the speech recognizer to extract the phoneme features. In both the
cases we have got significant improvement in speaker verification system performance.

The usage of phoneme models and cohort sets, if thoroughly formalized has the potential
to be of significance in the field of text-dependent speaker verification. Applying bet-
ter similarity measures for cohort selection and better methods for score computation can
significantly improve the speaker verification system performance.

References

1. Apsingekar V, DeLeon P (2009) Speaker model clustering for efficient speaker identification in large
population applications. IEEE Trans Acoust Speech Signal Process 17(4):848–853

2. Apsingekar V, DeLeon P (2011) Speaker verification score normalization using speaker model clusters.
Speech Comm 53:110–118



8292 Multimed Tools Appl (2018) 77:8273–8294

3. Auckenthaler R, Carey M, Lloyd-Thomas H (2000) Score normalization for text-independent speaker
verification systems. Digital Signal Process 10(1–3):42–54

4. Bimbot F, Bonastre J-F, Fredouille C, Gravier G, Magrin-Chagnolleau I, Meignier S, Merlin T,
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