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Abstract 3D sensors such as standoff Light Detection and Ranging (LIDAR) generate partial
3D point clouds that resemble patches of irregularly-shaped, coarse groups of points. 3D
modeling of this type of data for human action recognition has been rarely studied. Although
2D–based depth image analysis is an option, its effectiveness on this type of low-resolution
data hasn’t been well answered. This paper investigates a new multi-scale 3D shape descriptor,
based on the discrete orthogonal Tchebichef Moments, for the characterization of 3D action
pose shapes made of low-resolution point cloud patches. Our shape descriptor consists of low-
order 3D Tchebichef moments computed with respect to a new point cloud voxelization
scheme that normalizes translation, scale, and resolution. The action recognition is built on
the Naïve Bayes classifier using temporal statistics of a ‘bag of pose shapes’. For performance
evaluation, a synthetic LIDAR pose shape baseline was developed with 62 human subjects
performing three actions ― digging, jogging, and throwing. Our action classification exper-
iments demonstrated that the 3D Tchebichef moment representation of point clouds achieves
excellent action and viewing direction predictions with superb consistency across a large range
of scale and viewing angle variations.
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1 Introduction

Recently, 3D sensors such as Light Detection and Ranging (LIDAR) started appearing in
commercial applications for object detection and recognition. In contrast to 2D imagery, 3D
shape captures the true form of human action. It eliminates many of the hard-to-estimate
random factors in 2D imagery that are not related to actions, such as projection, lighting, color,
texture, etc.; hence, it confines the varying factors to pose, style, scale, and viewing angle. This
can lead to simplified probabilistic models for pose learning and action inference as well as
better recognition rate at low resolutions.

The objective of this study is to prove conceptually that 1) standoff LIDAR-like 3D sensing
data could be exploited for shape-based action recognition through direct modeling of 3D
point clouds and 2) the corresponding classifier’s performance and consistency are better than
those of common 2D depth image analysis methods, under varying viewing angles and small
scales. We envision that our 3D sensing and modeling methods could augment existing 2D
technologies, especially for the applications of air-to-ground target recognition where human
targets are typically much smaller in size than those seen in many ground-level public
benchmark datasets created using Microsoft Kinect, due to much longer standoff distance.

A main reason that we promote direct modeling of 3D point clouds over extracting 2D
features from depth images is that many existing 2D features are not available or effective in
our application, due to the shape degeneracy in standoff LIDAR data. The degeneracy is
manifested by irregular gaps and topology among patches of human body parts resulted from
self-occlusions and varying viewing angles, as well as point sparsity due to low resolution
settings. Consequently, there is a lack of pairwise point relationships and meaningful anatom-
ical reference markers, which makes the registration of points over different image frames
difficult and hinders the identification of key points for extracting local features along temporal
dimension.

In 3D domain, spatial patterns are typically abstracted into feature vectors called shape
descriptors. The degeneracy limits the applicability or efficacy of many existing 3D shape
descriptors that are designed to work with smooth, water-tight full body surface models [5].
This calls for degeneracy-tolerant shape representation, which is met by the Tchebichef
Moment Shape Descriptor (TMSD) proposed in our recent study [5]. TMSD consists of
low-order Tchebichef moments [6, 27] used to characterize 3D point density distribution with
respect to a new point cloud voxelization scheme that offers translation, scale, and resolution
normalization. Tchebichef moments are discrete orthogonal moments, so they provide orthog-
onality, completeness, and consistency that are well-suited for multi-scale representation and
recognition of discrete spatial patterns. Our previous study indicates that TMSD outperforms
other orthogonal transform based 3D descriptors, such as 3D discrete Fourier transform [5].

Unlike our previous focus on 3D shape descriptors only, the current work furthers the
investigation into a unique direction of 3D modeling versus 2D modeling because LIDAR
images can be easily converted into 2D depth images, and hence people may opt for using
popular 2D features. Part of our goal is to demonstrate that, for low resolution LIDAR data,
native 3D modeling may be a better alternative than 2D depth image analysis. Moreover,
unlike our previous focus on unsupervised single-frame shape search, the current work
explores ways to model, learn, and classify spatial-temporal patterns over a sequence of
degenerated point cloud patches.

In this study, the types of action we considered are three atomic ones — digging, jogging,
and throwing. The raw data of an action are a sequence of point cloud patches that record

8214 Multimed Tools Appl (2018) 77:8213–8236



temporal changes of partial 3D pose shapes over the length of the action. TMSDs are used to
represent individual frames of point cloud patches. To incorporate temporal information, we
looked into the popular bag-of-words (BoW) framework, and propose a new bag-of-pose-
shapes (BoPS) scheme to accommodate unstructured and uncontrolled use scenarios. Unlike
the common local feature based BoW [37], our BoPS constitutes a temporal statistics model of
3D global pose shapes, encoded using a learned vocabulary of pose shape words. The follow-
on action classification is performed using the Naïve Bayes classifier. Two posterior distribu-
tion models based on word frequency and word appearance, respectively, were investigated.

In order to provide statistically meaningful shape modeling, classifier training, and perfor-
mance testing, we created a simulated LIDAR pose shape baseline consisting of two subsets of
sensing at the ground and from a slant 45° elevation angle, respectively. Each subset has 62
volunteers performing the aforementioned three actions, resulting over 47,000 frames of point
clouds when viewed from 12 different azimuth angles spaced 30° apart from 0° to 360°. With
the benefit of varying viewing angles in the pose shape baseline, we were able to exploit action
label and view angle at the same time and produce some interesting findings. Compared to
other datasets, the large numbers of subjects and viewing angles introduce a good level of
shape and action style variations, even though the number of action types is only three.

Considering that TMSD is a global feature and LIDAR data can have a wide range of scale
and resolution variations, we also thoroughly evaluated our approach’s capability to achieve
scale and resolution normalization, especially for very low resolution cases that are common in
long distance surveillance and target recognition. Finally, we compared the performance of
action recognition using 3D TMSD of point clouds with that of using 2D Histogram of
Oriented Gradients (HOG) [8] of depth images. This comparison was to support our assertion
on the advantage of 3D shape analysis over 2D depth image analysis.

The main contribution of this paper is the introduction of TMSD and BoPS for action
recognition from point cloud patches of human pose shapes, under various viewing angles and
scales. To our best knowledge, there was no significant study on exploring 3D discrete
orthogonal moments for action recognition. Another contribution is the demonstration of the
advantage of native 3D shape analysis over 2D depth image analysis in terms of classification
performance and consistency for low-resolution point cloud data.

The rest of this paper is organized as follows. Section 2 provides a brief overview of related
action recognition models. Section 3 presents the characterization of point cloud patches in the
form of TMSD. Section 4 describes a new bag-of-pose-shapes (BoPS) scheme for action
representation and inference. Our experimental results are given in section 5, and section 6
includes some conclusions.

2 Related work

On the general 3D shape representation and characterization of partial point clouds of LIDAR
data, we provided an extensive discussion of different methods in our previous study [5],
especially the discrete orthogonal moments. Therefore, in this section, we focus only on
feature representations in the context of action recognition from low resolution point clouds.

We categorize action recognition methods into two broad groups: spatial-temporal features/
templates and temporal dynamics models. The former could be further divided into global and
local features/templates, and the latter could be further divided into temporal state and
temporal statistics models. Our discussion here is primarily to provide some background to

Multimed Tools Appl (2018) 77:8213–8236 8215



our proposed TMSD plus BoPS approach for 3D shape-based action representation. For more
comprehensive and broad reviews of action recognition, readers are referred to [33, 49] for 2D
imagery and [1, 56] for depth images.

2.1 Spatial-temporal features and dynamic templates

In many action recognition studies, the global or local spatial-temporal features and dynamic
templates are often considered as 3D features ― 2D spatial plus 1D temporal components in
the form of (x, y, t), which is different from the 3D convention of (x, y, z) used in this study.

The global spatial-temporal features are typically computed from the derivatives or differ-
ences between consecutive frames. The global dynamic templates are made up by stacking up
frames over time. Some of the representative 2D imagery examples are spatial-time derivative
statistics of optical flow [10], dynamic silhouette templates in the forms of motion energy and
history images [4], and space-time shape [11]. Their 3D variations were introduced in [3, 28,
44]. Among them, 3D optical flow may be ill-suited for our application because it is difficult to
obtain point registration and stable derivatives from sparse, degenerated point clouds.
Occupancy-based dynamic silhouette templates are applicable if they are implemented over
a 3D grid. Their potential shortcoming is that they are grid-based 4D representations which
may result in large feature vectors involving high computational cost and high dimensionality.

Unlike global features and templates, local feature representations are based on the local
spatial information collected along the temporal axis at the points selected by gradient-based
maxima detectors. Some of the representative 2D imagery examples are space-time interest
points [18] and the spatial-temporal descriptor of Histogram of Gradients (HOG) [16]. Some
recent 3D features are: a bag of sampled 3D points [20], the random occupancy pattern using
sampled sub-volumes [47], and the depth motion map from depth image projection to multiple
orthogonal planes [54]. In general, local feature representations have the advantages of scale
invariance and robustness under occlusions.

For low-resolution and irregular LIDAR data, a potential problem of local feature repre-
sentation is the difficulty in identifying any meaningful spatial extremity, maxima of curvature,
and inflection point to use as a key point. In addition, some local features require stable and
smooth local surface approximations around key points which are difficult to obtain from
degenerated and sparse point cloud patches. Therefore, some local features, such as those
introduced in [16, 20, 54], are often generated using a sampling or a grid over depth images
and then aggregated globally. However, this approach results in semi-global representations
which face the similar high computational cost and dimensionality problems of global features,
because they rely on large number of local components to achieve a similar spatial granularity
as their global counterparts. Even though some data reduction techniques, such as the Principal
Component Analysis (PCA), have been used to reduce the dimensionality, the resulted
subspaces may not be consistent [13] because typical training datasets are limited in size
compared to the feature dimensionality. To avoid this problem, we did not attempt to develop a
4D descriptor composed of TMSD and time; instead, we incorporated the temporal informa-
tion through our BoPS scheme.

Recently, deep neural networks, particularly Convolutional Neural Networks (CNN), have
demonstrated great success in image classification by automatically learning multi-level of
complex features through layers of trainable filters and feature pooling operations over large-
volume datasets [17, 40]. The framework was extended to action recognition by applying 3D
CNN (spatial plus temporal) or multi-stream CNN over short video clips to learn spatial-
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temporal features for feature-aggregated classification [12, 14, 36]. For more challenging tasks
of video interpretation, recurrent neural networks, such as Long Short Term Memory (LSTM)
was introduced on top of CNN to further learn and decode long-term temporal clues [9, 45,
55]. However, the inputs to these CNNs were typically limited to 2D images. The application
of 3D CNN to 3D data has not been studied extensively, except for a few studies on 3D object
classification [24, 51].

2.2 Temporal dynamics models

Among the temporal dynamics models, the subgroup of temporal state models applies a
probabilistic graph to model joint (generative) or conditional (discriminative) probability
distribution for temporal state transitions. The temporal states are typically encoded using
the temporal labels of action context or the part-based body models in the form of joint
location and joint angle profiles. Some of the representative graph models are hidden Markov
model (HMM) [53], maximum entropy Markov model (MEMM) [25], and conditional
random field (CRF) [38]. Theoretically the graph-based temporal state models are capable
of modeling the details of a wide range of motions. However, they often encounter tractability
issues in learning and inference, thus have to make assumptions that greatly limit their
expressiveness. For our application, these models are overly complicated to estimate, so they
were not used.

The subgroup of temporal statistics models usually works with a collection of local features
using the BoW framework, which was originated from text categorization and extended to 2D
image segmentation and categorization [37] as well as 2D image-based action recognition [34].
In the BoW framework, the temporal information is implicitly encoded using a vocabulary of
feature words that are learned through an unsupervised quantization of the feature space. The
temporal statistics models using BoW ignore the temporal orders, so may not be as discrimi-
native as the temporal state models. However, in real-world scenarios, the exact temporal profile
of an action could be affected by many factors, such as sensing rate, detection and tracking
performance, action segmentation, and varying action style and speed, etc. Therefore, we may
not be able to acquire consistent temporal order information anyway; hence, the BoW frame-
work is a good alternative with more robustness, simplicity, and flexibility.

The basic concept of BoW also works for global features, although this type of usage has
been much less than its usage with local features. In [46], global optical flows of human figures
are combined with BoW for 2D video-based action recognition. In this case, the BoW
representation is frame-based; i.e., each frame is a word. Our framework of TMSD plus BoPS
has a similar setup: we used the proposed TMSD for the representation of individual frames of
pose shapes and BoPS for the encoding of temporal statistics.

In the broader domain including 3D shape analysis, a few studies adopted BoW for shape
retrieval by quantizing scale-invariant feature transform (SIFT)-based local features extracted
from multi-view projected images [21, 31]. BoW was also used for non-rigid 3D shape
retrieval with local extremity point based features, such as the heat kernel signature (HKS)
[32] and local patch surface model [41]. In general, applications of BoW in 3D domain are still
mainly with local features from dense surface models. Our BoPS approach is the first to
explore the potential of BoW for action recognition from the perspective of sequences of
global 3D shapes.

The classification performance of the BoW framework could be enhanced by coupling
more sophisticated inference models such as topic models [29, 46]. The topic models allow
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modeling complicated, hierarchical joint distributions which fit well to the multi-level seman-
tics of human activities. Since the actions in our pose shape baseline are well segmented
atomic actions, more efficient and less complicated Naïve Bayes models were used for action
learning and inference.

2.3 Orthogonal moments for action recognition

Most of previous applications of orthogonal moments are for 2D image analysis. The primary
focus was on 2D radial kernel based (rotation-invariant), continuous orthogonal moments,
such as Zernike moment [42], pseudo-Zernike moment [43], and Fourier-Merlin moment [35].
Among them, the best-performing Zernike moment has been introduced as a feature for action
classification from 2D images. Using the BoW framework, Sun et al. [39] investigated the
classification performance of different combinations of SIFT-based local features and Zernike
moments of individual frames. Costantini et al. [7] used Zernike moments to form a multi-
scale kernel descriptor of the space-time shape of local patches [18], although the subsequent
classification was based on a nearest neighbor search that is more like a shape retrieval process.
Lassoued et al. [19] proposed a Zernike moment representation for the global space-time
volume of action silhouettes.

Compared to the discrete counterparts, the continuous orthogonal moments have a problem
of shape approximation error due to the difference between their continuous radial kernels and
the discrete nature of digital images. In the family of discrete orthogonal moments, Tchebichef
moment [27] demonstrates superior 2D image reconstruction performance, compared with
Zernike moment. It has been used for action recognition in 2D imagery [22] and for modeling
motion energy and history images [4]. In general, there has been little interest in exploring
orthogonal moments in 3D domain, except for a few studies on 3D shape retrievals using
Zernike moments [30] and Krawtchouk moments [23].

3 Scale-invariant Tchebichef moment shape descriptor (TMSD)

3.1 3D pose shape baseline for human action recognition

With the release of low-cost range cameras such as Kinect, new depth image datasets were
generated for the purpose of human action recognition. Some of publically available ones are
MSR action 3D [20], MSR daily activity [48], LIRIS human activity [50], and UT Kinect
action [52]. These depth images were acquired in much closer ranges (< 4 m) than the typical
operational range of low-grade commercial LIDARs (80 ~ 100 m). Their resolutions are also
higher than those offered by typical LIDARs. In addition, they have limited variation in
individual anthropometry, action style, and viewing angle.

In light of these limitations, we developed a simulated LIDAR baseline of human
action pose shapes using a hybrid experimental/modeling approach. Unlike many com-
mon avatar animations produced by artists, action simulation in our baseline is individ-
ualized with respect to each human test subject. We first created the digital human model
of a subject by rigging his/her full-body scan with the skeleton estimated from his/her
anatomical landmarks and motion capture markers. We then reproduced the full-body
action by driving the subject’s digital model with the joint angle time history derived
from his/her motion capture of individual actions. Finally, we applied the ray tracing
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using a 100-by-100 detector array to simulate the LIDAR illumination over the human
subjects, and captured the corresponding point cloud patches in every other frame at a
frame rate of 15 Hz. This process was repeated at 12 evenly-spaced horizontal azimuth
angles (every 30° from 0° to 330°) and two vertical elevation angles (where 0° represents
ground platforms, and 45° represents aerial platforms). Figure 1 shows some examples of
such point cloud patches, magnified in size and rendered using Blender.

The development of this shape baseline was initiated in our previous study for 9
subjects with ground truthing on pose shape class labels, which were conveniently used
in this study for BoPS vocabulary learning. In order to train and test the action classifier,
the size of the original baseline was increased from 9 to 62 subjects. Currently, the
baseline is organized into two subsets according to the two elevation angles. Each subset
has the same 62 subjects (25 females and 37 males) with 47,398 point cloud patches of
the three types of action. Moreover, to facilitate the research on scale and resolution
invariance, 12 subjects (6 males and 6 females) were randomly selected from the 62
subjects to produce simulated, scale-reduced LIDAR captures at 50%, 25%, and 6% of
the detector panel area, as shown in Fig. 1c.

The large number of subjects and viewing angles in the baseline provides some randomness
in pose shapes, resulted from varying anthropometry, viewing angle, scale, and action style.
For example, the initial throwing poses of two subjects shown in Fig. 1a and b are very
different because different people have different action styles.

ba

c
Fig. 1 Partial point cloud examples of some initial poses of two female subjects at 0° azimuth angle: (a) subject
1057 throwing, 0° elevation angle, (b) subject 1075 throwing, 0° elevation angle, and (c) subject 1057 digging,
45° elevation angle, varying scales. In (a) and (b), the left drawing is the view from the simulated sensor and the
right one is a 90° rotation of the left for better illustration purpose. In (c), the drawing is rotated upward to expose
the occlusions caused by the left arms
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3.2 Scale-invariant voxelization and normalization of point clouds

The shapes of raw point clouds are not translation and scale normalized. Even for the full-scale
captures in the baseline, there are variations resulted from the initial uncalibrated rough
positioning of the simulated detector array during the data capturing process as well as the
body size difference among human subjects. In addition, there is a resolution variation in the
form of varying global point density among different sets of point cloud captures, because of
different sensor resolutions in real-world 3D applications or different mesh refinements in the
case of simulated digital models. The scale and resolution variations are typically intertwined.

To normalize these variations, we employed our recently-developed voxelization scheme,
called Proportional Grid Voxelization and Normalization (PGVN) [5], to approximate a point
cloud with a discrete volumetric point counting (shape) function f(x, y, z). It consists of the
voxelization with a one-side bounding box originated at the center of mass of a point cloud and
the normalization of the total point cloud mass to a fixed value. The size of this bounding box
is determined by the longest semi-axis from the center of mass to the boundary of a point
cloud, hence the body is only one-side bounded.

Figure 2 presents renderings of some PGVN examples of the initial throwing pose shapes of
two female subjects. The voxelization grid size isN = 64, which is a common voxelization setting
of 64 × 64 × 64. used in 3D shape analysis [15, 23] and reasonable for the coarse nature of
LIDAR data. Our previous experiments [5] also indicate that the grid size does not make any
observable changes in shape retrieval performance. The proportional bounding boxes are the red
boxes around the picture edges. The one-side bounding can be seen more clearly in the depth
images corresponding to the voxelization. Note that some of the voxelization density unevenness
shown in the figure is due to the difficulty in achieving andmaintaining a strictly uniformedmesh
during the capture of simulated data, which actually makes the simulated da closer to the real-

Fig. 2 Examples of PGVN 3D shapes of initial throwing poses: (a) subject 1057 and (b) subject 1075, viewed
from 0° azimuth and 0° (1st row) or 45° (2nd row) elevation angles. The corresponding depth images are
intended to show one-side bounding
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world LIDAR signal with random noise. The moments computed with respect to f(x, y, z) under
PGVN grid reference should be translation, scale, and resolution invariant.

3.3 Tchebichef moment shape descriptor (TMSD)

In [5], we proposed TMSD to approximate the global pattern of point cloud patches in an
embedded subspace using low-order Tchebichef moments. Moments in general can be defined
as an inner product projection of a real function f , such as the aforementioned shape function, to a
set of basis (kernel) functions. For Tchebichefmoments, its basis function set consists of the family
of discrete orthogonal Tchebichef polynomials [6] which support the completeness and orthogo-
nality. The completeness and orthonormality means a unique decomposition of f with respect to
the basis set and also a least-squared reconstruction of f from the corresponding set of moments.

The n-th order discrete Tchebichef polynomial, tn(x), can be expressed in the form of a
generalized hypergeometric function 3F2(⋅) [6] as:

tn xð Þ ¼ 1−Nð Þn 3F2 −n; −x; 1þ n; 1; 1−N ; 1ð Þ
¼ 1−Nð Þn ∑

n

k¼0

−nð Þk −xð Þk 1þ nð Þk
k!ð Þ2 1−Nð Þk

; ð1Þ

where n , x = 0 , 1 , … ,N − 1, and (a)k is the Pochhammer symbol. In our case, N is the size of
a 3D (N ×N ×N) voxelization grid, and x corresponds to one of therid coordinate variables.
Correspondingly, the orthogonality is defined as:

∑
N−1

x¼0
tn xð Þtm xð Þ ¼ ρ n;Nð Þδnm ; ð2Þ

where m , n = 0 , 1 , … ,N − 1; δmn is the kronecker symbol, and ρ(n,N) is a normalization
function given as follows [6]:

ρ n;Nð Þ ¼ 2nþ 1ð Þ−1N N2−1
� �

N2−22
� �

⋯ N 2−n2
� �

¼ 2nð Þ! N þ n
2nþ 1

� �
:

ð3Þ

The corresponding order-scale normalized Tchebichef polynomials is [27]:

~tn xð Þ ¼ tn xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ n;Nð Þp : ð4Þ

Taking ~tn xð Þf g as the basis function set, an individual 3D Tchebichef moment of order (n +
m + l) for the voxel mass distribution f(x, y, z), over an N ×N ×N grid, can be defined as the
inner product functional between ~tn xð Þf g and f:

Tnml ¼ ∑
N−1

x¼0
∑
N−1

y¼0
∑
N−1

z¼0

~tn xð Þ~tm yð Þ~tl zð Þ f x; y; zð Þ; ð5Þ

where 0 ≤ n ,m , l ≤N − 1. There are total N3 number of Tnmls with the maximum order of
3 × (N − 1). Among them, a small subset consisting of the first R-th order moments, R ≪N3, is
used to form the 3D Tchebichef moment shape descriptor (TMSD):

TMSD ¼ T001; T 010; T 100;…; Tnml;…; TR00½ �T ; ð6Þ
where 0 < n +m + l ≤ R.
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Excluding the constant zero-order term, if R <N, the dimension of TMSD is 1
6 Rþ 1ð Þ

Rþ 2ð Þ Rþ 3ð Þ −1. We can reconstruct shapes in varying details using TMSD up to different
orders [5]. Using the full set of Tchebichef moments (maximum order R = 128), we can
achieve an exact duplicate of the voxelization (PGVN) of a point cloud. Using the subset of
low-order moments, we can approximate the general pattern of a pose shape. In other words,
TMSD provides a multi-scale shape representation for the point cloud patches.

Our previous experiments found that the optimal TMSD order for pose shape representation
is R = 16 [5], which reduces the problem’s dimension from the original voxel model’s 262,144
voxels in a grid size of N = 64 to mere 968 moment components in TMSD. This compact
TMSD representation captures the intrinsic dimensions of a pose shape and is particularly
suited for aerial mobile platforms. Utilizing the sparsity in the low-resolution point cloud data
[5], together with the recurrence and symmetry relationships of Tchebichef polynomials [6,
27], TMSD could be computed efficiently and stably.

More importantly, this approximation decouples and aligns the spatially correlated point
distributions into low-order ‘modes’ determined solely by the basis function ~tn xð Þf g. That
means, unlike the aforementioned dimension reduction techniques such as the PCA, TMSD’s
spanning of the embedded subspace is consistent and not dependent on datasets. This is
particularly valuable for the task of shape clustering analysis in our BoPS approach. Moreover,
the orthonormality of TMSD guarantees no false dismissal of qualified nearest neighbors in its
subspace query returns [5], which is a necessary condition for clustering analysis and nearest
neighbor search on TMSDs. The former is used for learning BoPS vocabulary and the latter is
needed for assigning pose shape words.

4 Action representation and inference using a bag of pose shapes (BoPS)

Our action recognition consists of four steps in the order of PGVN, TMSD, BoPS, and Naïve
Bayes, corresponding to shape normalization, feature representation, temporal modeling, and
action classification, respectively, as illustrated in Fig. 3. The block arrows in the figure
indicate the solution path for action recognition from raw point clouds, whereas the line
arrows are associated with the intermediate supporting functions. Starting from the left side of
Fig. 3, the PGVN process shown in the first column normalizes each frame of raw point cloud
patches in the action sequence into a grid-based voxelization. This is followed by the
computation of Tchebichef moments to form the corresponding TMSD, shown in the second
column as a bar plot. This procedure is repeated for each frame and results in a collection of
TMSDs representing the pose shapes forming the action. These TMSDs are then mapped to
pose shape words {wj} through nearest neighbor search against the pose shape vocabulary,
shown in the third column. Finally in the right-most column, a histogram counting the pose
shape words is used to classify the action type. The steps in the last two columns are further
explained in sections 4.1 and 4.2.

4.1 Action as a bag of pose shapes

For a general bag-of-words (BoW) representation, the quantization of feature space into a fixed
vocabulary of words is performed typically through an unsupervised clustering analysis. Using
the vocabulary, individual features of an input spatial-temporal sample are replaced by their
closest words according to some distance measure. A histogram of word counts is formed to
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provide a compact representation of the spatial-temporal pattern in the input sample. The
histogram can then be used for pattern inference or classification. A clear benefit of the BoW
scheme is the mapping of a large and varying number of high-dimensional feature vectors into
a fixed low-dimensional context space. Thus, it offers natural flexibility and scalability in
handling widely different and unknown inputs.

We extended the general BoW concept to our BoPS representation of action by mapping
the sequences of pose shape point clouds to a pose shape vocabulary. More specifically,
suppose that a clip of point cloud patches of an atomic action, called an action clip, can be
characterized by a sequence of pose shapes S = {s1, s2, … , sf,…} where sf is either our
Tchebichef moment shape descriptor (TMSD) for a point cloud or the comparative HOG-
based shape descriptor (HSD, see section 4.3 for details) for a depth image at frame f, then the
BoPS representation of the action clip can be defined in the context of pose shape quantization
as follows. If the pose shape descriptor space is quantized into a vocabulary of
V ¼ w1;w2;…;wNVf g, where wj, the virtual pose shape word, is the index to the j-th cluster
of the NV. clusters produced by the quantization, the pose shape sf can . be mapped to its
corresponding pe shape word wj as:

s f↦wj ¼ argmin
w∈V

d s f ; sw
� � ð7Þ

where d(sf, sw). is a proximity function measuring the Manhaan distance between sf and the
mean descriptor sw. of cluster w. Subsequently, an action clip x can be represented in the form
of BoPS by collecting its visual pose shape words into a histogram:

S↦x ¼ mj ¼ wj
�� ��; j ¼ 1; 2;…;NV

� 	 ð8Þ

Fig. 3 Action recognition pipeline of PGVN + TMSD + BoPS + Naïve Bayes. ⨂ stands for nearest neighbor
search
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where |wj| denotes the cardinality of wordwj. Themapping in Eq. (7) is achieved through a nearest
neighbor search on TMSD or HSD of pose shape against the learned pose shape vocabulary.

For our application, each elevation angle has its own vocabulary. Using the k-means
clustering algorithm, a vocabulary was learned from 9 subjects (5 males and 4 females)
randomly selected from the 62 subjects in the pose shape baseline. These 9 subjects were not
used in the later classifier learning, cross-validation, and testing. The size of the vocabulary may
affect the classification performance. Too few words may decrease the discriminative power of
the BoPS representation, whereas too many words may cause over-fitting. For the k-means
clustering, we tested the k values of 100 and 400. The overall classification accuracy difference
between the two is less than 2% improvement with 400-word vocabulary, which is not a
significant benefit, considering the much higher computational cost for word matching and
potential generalization issue. Thus, the 100-word vocabulary is used for later experiments.

4.2 Naïve Bayes classifier for action recognition

An action classifier takes an input vector x that encodes an action clip and outputs a scalar y
representing the action category (label). It is a hypothesis function ℋ whose parameters are
learned through a set of training observation pairs {(xi, yi) | i = 1, … ,NT}, by minimizing an

empirical error ∑
i¼1

Nt

errðℋ xið Þ; yi)/NT.

In this study, the hypothesis function is the generative Naïve Bayes model. The main
consideration for this choice was: 1) the semantics and assumption of BoPS correspond to a
Naïve Bayes model where the action label is the hidden node and the pose shape words are the
observable nodes, and 2) Naïve Bayes is very efficient to implement for our BoPS-based
multiclass classification problem, in which the dimensionality is still relative high even after
the quantization of the original feature space, and the size of the vocabulary would grow if
more actions are added later. Even though the class independence assumption for pose shape
words may not be true in the context of an individual’s specific action, it holds better across the
population pool, considering the style variation among people.

Specifically for our application, the input feature vectors are action clips in the form of
Eq. (8). Assuming that there are C = {ck ∣ k = 1 , 2 , … ,NA} action class labels and the
lengths of action clips are independent of action labels, the Naïve Bayes assumption could lead
to several models of factorizing P(x| ck) into the products of P(wj| ck) [26]. Among them, the
multinomial distribution model demonstrates better performance because it models the word
frequency as:

P xjckð Þ ¼ P Sj jð Þ Sj j! ∏
j¼1

NV P wjjck
� �m j

mj!
: ð9Þ

Consequently, the classification can be accomplished through the maximum a posteriori rule:

y ¼ argmax
ck

P ckð Þ ∏
j¼1

NV

P wjjck
� �m j : ð10Þ

In this study, we assumed uniform prior probabilities; hence the end result is a maximum
likelihood solution. We also limited the pose shapes in an action clip to have the same azimuth
and elevation viewing angle.
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Using a training set {(xi, yi) | i = 1, … ,NT} where i indexes individual training action clips,
P(wj| ck) can be estimated with Laplace smoothing as:

P wjjck
� � ¼ 1þ Nkj

NV þ Nk
; ð11Þ

where Nkj= ∑
i¼1

NT

mij yi ¼ ck½ � is the number of wj in the action clips belonging to action class ck,

and Nk ¼ ∑
s¼1

NV

∑
i¼1

NT

mis yi ¼ ck½ � is the total number of words in action class ck. [•] is the Iverson

bracket.
For our experiments, we set aside the data of 41 subjects in the pose shape baseline as the

training set for three classes of actions— digging, jogging, and throwing. In addition, we also
looked into the scenario of inferring both action and azimuth viewing angle at the same time
by changing the class label to a tuple of <action, azimuth angle>, in which azimuth angle
indexes one of the 30° azimuth intervals in the pose shape baseline. This results in 3
actions × 12 azimuth angles = 36 classes for each elevation angle. Note that this is a simplified
model, compared to a more formal representation of two separate hidden nodes of action and
viewing angle, respectively. However, since each action clip has the same viewing angle and
our baseline is well-balanced in both action and viewing angle distributions, this model is
semantically and statistically sound. Probably it is also valid for real-world scenarios because
these atomic actions are typically executed within a second or so, during which the sensor
platform may look stationary at a distance.

Other study [26] found that multinomial distribution with Boolean values for wj, which is
equivalent to modeling word appearance only, outperforms the word frequency counterpart in
many text categorization cases. This is due to the fact that P(wj| ck) has a Poisson distribution under
multinomial model, which may not fit well to the burstiness of the same word in many situations,
including action recognition. Thus, we evaluated bothword appearance andword frequency based
multinomial models. Note that multinomial Boolean value model is different from another
common binary model of word appearance — multivariate Bernoulli model, which tends to
perform worse because of the counts of negative events, i.e., the absent pose shape words.

4.3 2D histogram of oriented gradients (HOG) based representation of depth images

To test our hypothesis that TMSD performs better than typical 2D depth image analysis in
action recognition, we converted each pose shape point cloud into a depth image. These depth
images were then subject to a similar four-step action recognition pipeline aforementioned, but
with different 2D–based normalization and features. Note that this conversion is done before
the voxelization of point clouds, thus these depth images are not limited by the grid size of
N = 64. They can have up to 100 pixels along each dimension.

We chose the Histogram of Oriented Gradients (HOG) [8] as the features for these depth
images and named the representation as 2D HOG-based shape descriptor (2D HSD). For a full-
scale depth image captured by our 100-by-100 simulated LIDAR detector, its 2D HSD has a size
of 5184. Readers are referred to [8] for configuration details of HOG. Like the scale normalization
for computing TMSD, we also need to normalize the scale of depth images to the full scale of
100-by-100 pixels before computing HSDs, especially for those with reduced scales. To that end,
a depth image is first padded symmetrically to a square image and then isometrically enlarged to
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100-by-100 pixels. This normalization provides scale invariance that allows us to train the
classifier once through the full-scale baseline and then use it in varying scales.

5 Experimental results

5.1 Experiment setup and performance measures

Our experiments presented here were designed to test various comparative hypotheses regard-
ing the performance on action recognition and azimuth viewing angle identification. They
were conducted separately for two elevation angles of EL = 0° and EL = 45°. We divided the
pose shape baseline of 62 subjects into the following three groups for each elevation angle:

(1) 9 subjects (5 males and 4 females) consisting of 5890 point clouds were used for learning
the vocabulary of pose shape words.

(2) 41 subjects (26 males and 14 females) consisting of 32,088 point clouds in 1476 action
clips were used for classifier training and cross validation.

(3) 12 subjects (6 males and 6 females) consisting of 9420 point clouds in 432 action clips
were used for independent testing on scale invariance.

Three groups of experiments were conducted to evaluate/compare the followings: 1) word
frequency model vs. word appearance model, 2) 3D TMSD classifier vs. 2D HSD classifier,
and 3) scale invariance of 3D TMSD classifier vs. that of 2D HSD classifier. The Manhattan
distance (L1 norm) is used in both pose shape quantization and action clip (histogram)
formation because it behaves better than the Euclidean distance under high dimensionality
[2], which was confirmed by our previous experiments on shape retrieval [5].

The classification performance is quantified through cross validation using the confusion
matrix (aka contingency table) as well as the classification accuracy rates (i.e., percentages of
correctly classified), denoted by ACRa and ACRav for action only and for action plus azimuth
viewing angle, respectively. For azimuth viewing angle identification, since the 30-degree
interval is rather arbitrary, we also looked into an expanded interval of 90-degree azimuth
angle that consists of a 30-degree interval and its two adjacent intervals bordering each side of

the 30-degree interval. This leads to the quadrant azimuth angle accuracy, denoted by ACR90
av,

which treats the confusion matrix’s elements in the band of the diagonal and two off-diagonals
as the correct assignments. In real-world applications, this quadrant azimuth angle may
represent general viewing direction.

The cross validation employs a random 10-fold split over the 41-subject training set. We
observed that the performance differences between different 10-fold splits were less than 1%.
So, we did not do any averaging over multiple 10-fold cross validation runs.

5.2 Word frequency vs. word appearance for the action and viewing angle
recognition

Table 1 presents the cross validation results of the word frequency and word appearance
models with the 100-word vocabulary. The word appearance model performs slightly better in
action recognition, but the word frequency model performs slightly better for the azimuth
angle recognition. For action recognition, this trend could be further seen in the confusion
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matrices shown in Table 2, in which each action has total 492 training clips. The majority of
the misclassifications are throwing assigned falsely to jogging or, to a lesser degree, to digging.
This may be caused by the facts that 1) some throwing pose shapes may resemble a few
jogging or digging pose shapes at certain viewing angles, and 2) throwing tends to have fewer
pose shape words. Consequently, when a frame of throwing point cloud is mapped to a wrong
word, there is a greater chance that adjacent frames and, hence, a larger portion of the action
clip may also be mapped to the same wrong word. The second fact may partially reveal the
problem of the burstiness of the same word in the frequency model.

Even though the performance enhancement is within the variation of cross validations, we
found that it is consistent for action recognition across different vocabularies and multiple
cross validation runs. Since our primary concern is action recognition, we selected the word
appearance model as our default classification model in later experiments.

Table 1 also indicates that the quadrant azimuth angle accuracy for azimuth angle recog-

nition, ACR90
av , is significantly higher than the corresponding accuracy of 30-degree interval

recognition. This makes us believe that our 30-degree interval may be too refined for inter-
class separation of pose shapes, and a larger 90-degree interval is a better choice.

Overall, our experimental results demonstrate very consistent prediction capability with
respect to the varying elevation angles up to 45°, which is an important merit for aerial
applications. Regarding the varying azimuth angle, we can achieve good performance with the
quadrant azimuth angle, which is useful in real-world applications where we do not know the
actual orientation of a target with respect to the sensor platform. Considering the simplicity of
the Naïve Bayes classifier and degeneracy of the point clouds, these superb performance and
consistency prove the power of 3D TMSD and BoPS approach in characterizing dynamic
patterns of human actions.

Table 1 ACR results of 3D TMSD classifiers from cross validations between word frequency and word
appearance models with 100-word vocabulary

Models EL ACRa ACRav ACRav
90

Word Frequency 0° 96.6% 73.3% 95.3%
45° 97.0% 74.3% 95.5%

Word Appearance 0° 97.2% 72.0% 94.5%
45° 97.5% 72.4% 94.0%

Table 2 Confusion matrices of TMSD classifiers from cross validations (percentages) of word frequency and
word appearance models using 100-word vocabulary

EL Word Frequency Word Appearance

0° Actual Actual
Dig Jog Throw Dig Jog Throw

Predicted Dig 100 0 1.6 Predicted Dig 99.4 0 2.0
Jog 0 100 10.2 Jog 0 99.6 5.5
Throw 0 0 88.2 Throw 0.6 0.4 92.5

45° Actual Actual
Dig Jog Throw Dig Jog Throw

Predicted Dig 99.8 0 1.6 Predicted Dig 99.6 0 1.0
Jog 0 100 7.5 Jog 0 98.8 4.9
Throw 0.2 0 90.9 Throw 0.4 1.2 94.1
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5.3 Performance comparison between 3D TMSD and 2D HOG-based shape
descriptor (2D HSD)

This experiment was designed to provide a comparison in classification performance between
our 3D based method and the traditional 2D feature based depth image analysis. Table 3
presents the cross-validation on the classification accuracies of 3D TMSD classifier against 2D
HSD classifier for action and viewing angle recognitions using the word appearance model.
On the accuracy of action only recognition— ACRa, 2D HSD underperforms 3D TMSD by 1–
2%. Although the difference is small, the trend is consistent across many cross validation runs.
The similar conclusion can also be drawn from the confusion matrices presented in Table 4.
There are more misclassifications between digging and throwing as well as between jogging
and throwing for 2D HSD. Some of the cause is revealed in the following discussion where
viewing angle results are included. The only exception is the case of telling throwing from
jogging at the zero elevation in which 3D TMSD is less accurate than 2D HSD. We suspect
that this may be caused by the similarity between a few persons’ jogging poses and their
beginning and ending poses of throwing.

On the classification of action plus azimuth viewing angle — ACRav for 30° interval and
ACR90

av for quadrant azimuth angle— 2D HSD performs significantly worse than 3D TMSD,

indicated by the much lower values of ACRav and ACR90
av for 2D HSD against those for 3D

TMSD in Table 3. This is mainly because 2D HSD has difficulty in maintaining performance
consistency for jogging over the viewing angle variation, evidenced by the larger spread of
misclassification on jogging in the <action, azimuth angle> confusion matrix of 2D HSD
presented in the middle panel of the 9-panel confusion matrix shown in Fig. 4b.

Table 3 ACRs of 3D TMSD and 2D HSD classifiers from cross validations using word appearance model with
100-word vocabulary

Features EL ACRa ACRav ACRav
90

3D TMSD 0° 97.2% 72.0% 94.5%
45° 97.5% 72.4% 94.0%

2D HSD 0° 96.7% 53.0% 80.0%
45° 94.4% 69.7% 91.7%

Table 4 Confusion matrices of 2D HSD and 3D TMSD classifiers from cross validations (percentages) using
word appearance model with 100-word vocabulary

EL 2D HSD 3D TMSD

0° Actual Actual
Dig Jog Throw Dig Jog Throw

Predicted Dig 98.2 0 3.1 Predicted Dig 99.4 0 2.0
Jog 0 95.9 0.8 Jog 0 99.6 5.5
Throw 1.8 4.1 96.1 Throw 0.6 0.4 92.5

45° Actual Actual
Dig Jog Throw Dig Jog Throw

Predicted Dig 92.9 0 4.5 Predicted Dig 99.6 0 1.0
Jog 0 97.6 2.6 Jog 0 98.8 4.9
Throw 7.1 2.4 92.9 Throw 0.4 1.2 94.1
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Compared to other types of actions such as digging and throwing, jogging actually tends to
vary much less on pose shapes across different people. Therefore, when aligned and modeled

Fig. 4 Confusion matrices of cross validations of actions plus viewing angles at 0° elevation angle using word
appearance model with 100-word vocabulary. Each small cell represents a 30° azimuth interval, ordered from 0°–
30° to 330°–360° along the diagonal for each action: (a) 3D TMSD classification on point clouds, (b) 2D HSD
classification on depth images
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properly by capturing the true 3D spatial relationship, it should have better directional
classification results than others. This is confirmed by the best and most consistent classifica-
tion rate on jogging with respect to different viewing angles when modeled by 3D TMSD —
close to 100% correctness even at a smaller 30-degree interval of azimuth angle, represented
by the middle panel of Fig. 4a. This highlights the benefit and power of our 3D representation
using TMSD.

On the other hand, the misclassification pattern in the corresponding middle panel of 2D
HSD confusion matrix in Fig. 4b clearly reveals the problem of motion ambiguity encountered
by 2D shape based features such as HSD; i.e., the classifier has difficulty to tell a person is
jogging towards or away from the sensor. In other words, 2D HSD is good at capturing the
prominent shape silhouette in a 2D depth image, but not the subtle variation of depth inside the
silhouette. Even though shape silhouette is an important feature for action recognition,
discerning of viewing angles may require capturing more subtle depth changes. In 3D TMSD,
the depth dimension receives the equal treatment as the height and width dimensions, which
alleviates this problem.

Table 5 Independent test of scale invariance using word appearance model with 100-word vocabulary

Descriptor Scale EL ACRa ACRav ACRav
90

3D TMSD 100% 0° 95.8% 69.2% 88.7%
45° 94.7% 71.3% 88.0%

50% 0° 95.4% 69.4% 89.1%
45° 94.2% 71.3% 88.7%

25% 0° 96.8% 69.2% 88.9%
45° 94.9% 70.1% 88.4%

6% 0° 94.9% 68.3% 88.2%
45° 93.5% 65.7% 87.3%

2D HSD 100% 0° 96.0% 54.4% 76.8%
45° 94.0% 63.7% 85.9%

50% 0° 92.6% 52.1% 75.5%
45° 91.9% 63.4% 84.0%

25% 0° 90.3% 48.4% 74.1%
45° 86.1% 59.3% 83.3%

6% 0° 73.4% 34.7% 58.3%
45° 63.4% 36.6% 58.3%

Table 6 Confusion matrices (percentages) of independent test at 6% scale using word appearance model with
100-word vocabulary

EL 3D TMSD 2D HSD

0° Actual Actual
Dig Jog Throw Dig Jog Throw

Predicted Dig 96.5 0 4.1 Predicted Dig 93.7 9.0 11.8
Jog 0.7 97.2 4.9 Jog 0 39.6 1.4
Throw 2.8 2.8 91.0 Throw 6.3 51.4 86.8

45° Actual Actual
Dig Jog Throw Dig Jog Throw

Predicted Dig 96.5 0 3.5 Predicted Dig 91.7 21.5 43.8
Jog 2.8 96.5 9.0 Jog 1.4 54.2 11.8
Throw 0.7 3.5 87.5 Throw 6.9 24.3 44.4
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Another advantage of 3D TMSD over 2D HSD is its compact size. At the order of R = 16,
3D TMSD has 968 components, regardless how the volume is voxelized. On the other hand,
HSD size varies with the image size and implementation. In our cases, HSD has 5184
components, based on the typical HOG configuration for 100-by-100 pixel depth images.

Fig. 5 Confusion matrices of actions plus viewing angle intervals for the 12-subject independent test at 6% scale
and 0° elevation angle using word appearance model with 100-word vocabulary: (a) 3D TMSD classification on
point clouds, (b) 2D HSD classification on depth images
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Almost five times smaller in size could reduce the computation cost considerably for TMSD
during the BoPS mapping of Eq. (7) and Eq. (8). This would be a great value for real-time
mobile applications. Finally, the two confusion matrices in Fig. 4 further support the conclu-
sion that quadrant azimuth angles could be better discerned than the small 30-degree intervals.

In summary, 3D TMSD classifier has better performance, consistency, and efficiency than
2DHSD classifier. This supports our assertion that native 3D characterization of point clouds is
superior to 2D characterization of depth images for analyzing low-resolution LIDAR-type data.

5.4 Scale invariance comparison of 3D TMSD and 2D HOG-based shape descriptor
(HSD)

This experiment compares the classification performance between 3D TMSD and 2D HSD
classifiers, using the independent 12-subject test subsets of 4 different scales of 100%, 50%,
25%, and 6% (see Fig. 1c). There are total 144 action clips for each type of action in a test
subset. The classifiers were trained using only the group of 41-subject training dataset in the
baseline which is near full scale (see section 3.1). Thus, the classifiers do not have any clue on
the varying scales of the independent test datasets. This arrangement allows us to compare our
pipeline of PGVN + TMSD + BoPS + Naïve Bayes with the pipeline of depth image
normalization + HSD + BoPS + Naïve Bayes, in terms of scale invariance.

Table 5 presents their classification accuracies at various scales. 3D TMSD demonstrates
solid performance consistency, down to the scale of 6%. At this extremely small scale, a pose
shape is hard for human eyes to discern, because the point cloud has no more than 90 points
and the corresponding depth image is roughly equivalent to a body height of less than 20
pixels. In contrast, 2D HSD starts showing performance deterioration at 50% scale. At 6%
scale, it has great difficulty in predicting jogging and throwing actions correctly, as shown in
the confusion matrices in Table 6.

Figure 5 shows the confusion matrices for action prediction per viewing angle at 6% scale.
It is safe to say that 3D TMSD classifier can still roughly detect viewing angles at this small
scale, whereas 2D HSD classifier performs poorly. This result may not be quite conclusive due
to the small number of action clips at each viewing angle interval (12 for each action type).

Fig. 6 Examples of depth image
normalization for 2D HSD from
various scales (elevation
angle = 0°)
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The significant performance difference between TMSD and HSD in terms of scale
invariance also shows the advantage of native 3D spatial modeling of point clouds,
compared to converting them into 2D depth images. Using our PGVN scheme, a
reduced-scale point cloud is able to retain its local density and pairwise spatial relation-
ships well in all three dimensions. By combining PGVN with the capability of
Tchebichef moment in characterizing discrete density distribution, we can achieve
consistent 3D representations for low-quality point clouds. In contrast, during the depth
image normalization (see section 4.3), the pixel-based enlargement of a reduce-scale
depth image may introduce artifacts that alter the edge pattern and intensity distribution.
We can see this in Fig. 6 by comparing the normalizations from different scales. The
local gradient and 2D nature of HOG aggravate this problem.

6 Conclusions

This study investigated new feature representation methods for recognizing low-resolution,
degenerated, and sparse point cloud patches of human body shapes, often seen in the outputs
of standoff 3D sensors such as LIDARs. We have leveraged our recently proposed Tchebichef
Moment Shape Descriptor (TMSD) to achieve effective and compact shape characterization by
approximating patterns of point clouds through low-order discrete orthogonal Tchebichef
moments. Our action recognition uses a new bag-of-pose-shapes (BoPS) scheme to model
temporal statistics and the Naïve Bayes model to infer the action label and viewing direction.
We found that a small word vocabulary is sufficient to encode each action’s pose shape
sequences using our solution pipeline composed of Proportional Grid Voxelization and
Normalization (PGVN), TMSD, and BoPS.

The cross validations and independent tests indicate that our 3D TMSD-based action
classifier can achieve and maintain accurate predictions across a large range of scales and
viewing angles. Moreover, our experiments demonstrated that native 3D characterization of
point clouds by TMSD outperforms some representative 2D–based methods such as the depth
image analysis based on the Histogram of Oriented Gradients (HOG) in terms of classification
performance and consistency, especially at small sensing sizes. These advantages are signif-
icant benefits for mobile and aerial sensor platforms.

We plan to add other types of actions and more extreme elevation angles into the simulated
pose shape baseline and develop more sophisticated inference models. Our datasets will be
made public once cleared by the US Air Force.
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