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Abstract The fundamental step in video content analysis is the temporal segmentation of
video stream into shots, which is known as Shot Boundary Detection (SBD). The sudden
transition from one shot to another is known as Abrupt Transition (AT), whereas if the tran-
sition occurs over several frames, it is called Gradual Transition (GT). A unified framework
for the simultaneous detection of both AT and GT have been proposed in this article. The
proposed method uses the multiscale geometric analysis of Non-Subsampled Contourlet
Transform (NSCT) for feature extraction from the video frames. The dimension of the fea-
ture vectors generated using NSCT is reduced through principal component analysis to
simultaneously achieve computational efficiency and performance improvement. Finally,
cost efficient Least Squares Support Vector Machine (LS-SVM) classifier is used to classify
the frames of a given video sequence based on the feature vectors into No-Transition (NT),
AT and GT classes. A novel efficient method of training set generation is also proposed
which not only reduces the training time but also improves the performance. The perfor-
mance of the proposed technique is compared with several state-of-the-art SBD methods on
TRECVID 2007 and TRECVID 2001 test data. The empirical results show the effectiveness
of the proposed algorithm.
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1 Introduction

Recent advances in computer and multimedia technologies have made digital video, a com-
mon and important medium for various applications such as education, remote sensing,
broadcasting, video conference and surveillance etc [36, 37]. Due to the enormous increas-
ing rate of video production, development of effective tools for automatic analysis of video
content becomes an important research issue. Partitioning of video into shots, known as
Shot Boundary Detection (SBD) is the first and essential step towards analysis of video
content; it provides a basis for nearly all types of video abstraction. A shot is defined as
a sequence of consecutive frames taken from a single non-stop camera operation [14]. It
basically represents a unit semantic information with respect to the whole video. If there
is sudden transition from one shot to the other shot, i.e. if there is no intermediate frames
between two shots, it is called Abrupt Transition (AT). On the other hand, if the transition
occurs over several frames, it is called Gradual Transition (GT). The GT is further clas-
sified mainly into three sub-classes e.g. fade-in, fade-out, dissolve and wipe according to
their effects [27]. Among the different types of shot boundaries, GTs are difficult to detect
than ATs. This is due to the slow and low frame content changing nature of GTs over ATs.
An effective SBD technique (detecting both AT and GT) has various applications in auto-
matic video content analysis such that content based video retrieval, video summarization,
video-restoration, video-quality analysis, video aesthetic analysis etc.

It is necessary to develop algorithms for effective extraction of features and classification
with suitable dissimilarity measure to design an accurate tool for SBD. Literature on SBD
is quite rich. A large number of methods for SBD have been proposed in the past [4, 14,
18, 27, 28, 36, 37]. Recent approaches can be divided broadly into two categories, namely
pixel domain based approach and transform domain based approach. In the pixel domain
approach, the simplest methods are based on pixel intensity difference between consecutive
frames [14, 37]. These methods are easy to implement and computationally fast, but very
sensitive to camera motions as well as abrupt changes in object motion. Usually people
have divided each frame into a number of equal-sized non-overlapping blocks and compute
features from a subset of these blocks to remove the influence of object motion [18, 37].
Color histograms in different color spaces, like RGB, HSV, YCbCr, L*a*b*, etc. have also
been used as features to reduce the influence of object/camera motions [36]. Structural
properties of the video frames such as edge characteristics is used as feature to reduce
the influence of flashlight effects [16]. There are several other pixel domain approaches,
that use joint entropy, correlation coefficient, Mutual Information, Scale Invariant Feature
Transform (SIFT) and local key-point matching as features for SBD [19, 27].

On the other hand, various researchers have used unitary transforms like discrete cosine
transform [1], fast fourier transform [25], Walsh Hadamard Transform (WHT) [19], to
extract features for SBD. Although these methods are good in detecting AT but they fail to
detect GT effectively. This is because of the fact that the duration and characteristics of GT
(e.g. fade-in, fade-out, dissolve and wipe) varies widely from video to video. Moreover, in
most of the real-life scenarios these existing schemes often produce false results which even-
tually hampers the task of automatic analysis of the video content. It can only be possible
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to detect GT accurately, if variable or multi resolution approach is taken, as GT is detected
better at lower resolution [7]. Since wavelet is well known for its capability to represent a
signal in different scales, many authors have used DiscreteWavelet Transform (DWT) based
features for SBD, especially for GT detection [7, 28]. However, the main problem of DWT
based features is the inherent lack of support to directionality and anisotropy. Thus effi-
ciency of the DWT based approaches suffer in the presence of large object/camera motions.
A recent theory called Multi-scale Geometric Analysis (MGA) for high-dimensional signals
has been introduced to overcome these limitations and several MGA tools have been devel-
oped like Curvelet (CVT), Contourlet (CNT) with application to different problem domains
[6, 10].

Moreover, proper and automatic selection of no-transition (negative) frames for efficient
training set generation is another important requirement for developing an effective SBD
scheme. Improper selection of non-transition frames for training purpose often leads to
imbalanced training procedure. This imbalanced training set results in improper trained
model and also requires much higher training time [4, 14, 27, 36]. The conventionally used
training set generation procedures (random selection, single threshold based selection) can
not produce high quality training set and often fails to achieve the desired results [4, 27].
Therefore, we need a novel and effective way of proper training set generation procedure.

In this article a new SBD framework has been proposed which is capable of detect-
ing both AT and GT with equal degree of accuracy. Our main motivation is to develop an
effective SBD technique which is capable of correctly discriminating the changes caused
by both types of transitions from one shot to the other in the presence of different types
of disturbances like large movements of objects or camera and flashlight effects. The key
contributions of the proposed technique are as follows:

– Rather than the conventionally used unitary transforms like discrete cosine transform,
fast Fourier transform, Walsh Hadamard transform etc., to extract features for SBD, in
the proposed scheme, a novel robust frame-representation scheme is proposed based
on the multiscale, multi-directional, and shift-invariant properties of Non-Sub sampled
Contourlet Transform (NSCT), which reduces the problems of object/camera motion
and flashlight effects. Compared to the existing NSCT-based SBD scheme [30] capable
only of AT detection, our proposed scheme can detect both AT and GT present in a
video.

– A novel low-dimensional feature vector based on non-overlapping block subdivision of
NSCT’s high-frequency subbands is developed using the well-known Principal Com-
ponent Analysis (PCA) technique from the dissimilarity values using the contextual
information around neighboring frames to capture the distinct characteristics of both
abrupt and gradual transitions.

– A new technique for training set generation is also proposed to reduce the effect of
imbalanced training set problem, making the trained model unbiased to any particular
type of transition.

In the proposed method, we have used Multiscale Geometric Analysis (MGA) of NSCT
for generation of feature vectors. NSCT is an improvement of Contourlet Transform (CNT)
to mitigate the shift-sensitivity and the aliasing problems of CNT in both space and fre-
quency domains [9]. NSCT is a flexible multiscale, multi-directional, and shift-invariant
image transform capable of producing robust feature vector which reduces the problems
of object/camera motions and flashlight effects. The dimensionality of the feature vectors
is reduced through PCA to achieve high computational efficiency as well as to boost the
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performance. The Least Square version of Support Vector Machine (LS-SVM) is adopted to
classify the frames into different transition events like AT, GT (fade-in, fade-out, dissolve
etc.) and No-Transition (NT). Moreover, we have also proposed a novel method of training
set generation using two automatically selected different threshold values. The performance
of the proposed algorithm has been tested using several benchmarking videos containing
large number of ATs and various types of GTs and compared with several other state-of-the-
art SBD methods. The experimental results show the superiority of the proposed technique
for most of the benchmarking videos.

The rest of the paper is organized as follows. In Section 2, theoretical preliminaries of
NSCT is briefly described. Our proposed method is presented in Section 3. Section 4 con-
tains experimental results and discussion. Finally, conclusions and future Work are given in
Section 5.

2 Theoretical preliminaries

NSCT is a fully shift-invariant,multiscale, and multi-direction expansion with fast imple-
mentability [9]. NSCT achieves the shift-invariance property (not present in CNT) by using
the non-subsampled pyramid filter bank (NSPFB) and the non-subsampled directional filter
bank (NSDFB).

2.1 Non-subsampled pyramidal filter bank (NSPFB)

NSPFB ensures the multiscale property of the NSCT, and has no down-sampling or up-
sampling, hence shift-invariant. It is constructed by iterated two channel Non-Subsampled
Filter Bank (NSFB), and one low-frequency and one high-frequency image is generated at
each NSPFB decomposition level. The subsequent NSPFB decomposition stages are carried
out to decompose the low-frequency component available iteratively to capture the singular-
ities in the image. NSPFB results in k+1 sub-images, which consist of one Low-Frequency
Subband (LFS) and k High-Frequency Subbands (HFSs), all of whose sizes are the same as
the source image, where k denotes the number of decomposition levels.

2.2 Non-subsampled directional filter bank (NSDFB)

The NSDFB is constructed by eliminating the downsamplers and upsamplers of the DFB
[9]. This results in a tree composed of two-channel NSFBs. The NSDFB allows the direc-
tion decomposition with l stages in high-frequency images from NSPFB at each scale
and produces 2l directional sub-images with the same size as that of the source image.
Thus the NSDFB offers NSCT with the multi-direction property and provides more pre-
cise directional information. The outputs of the first and second level filters are combined
to get the directional frequency decompositions. The synthesis filter bank is obtained sim-
ilarly. The NSDFBs are iterated to obtain multidirectional decomposition and to get the
next level decomposition all filters are up sampled by a Quincunx Matrix (QM) given by
QM = [1 1; 1 − 1].

The NSCT is obtained by combining the NSPFB and the NSDFB as shown in Fig. 1a.
The NSCT’s resulting filtering structure approximates the ideal partitioning of the frequency
plane displayed in Fig. 1b. Detailed description of NSCT is presented in the article by Cunha
et al. [9].
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Fig. 1 Non-subsampled contourlet transform (a) NSFB structure that implements the NSCT. (b) Idealized
frequency partitioning obtained with the NSFB structure [9]

3 Proposed method

The proposed scheme consists of two main parts: feature representation and classification.
The overall method is described by the block-diagram shown in Fig. 2. The left dotted por-
tion indicates training phase and the right one indicates testing phase. In the training phase,
for a labeled training video, frames are extracted and converted into CIE L*a*b* color space
for better and uniform perceptual distribution [23]. After that features are extracted for each
frame using NSCT and the dimension of the feature vectors is reduced using PCA. The

Fig. 2 Block-diagram of the proposed method
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dissimilarity values D1
n and Dk

n are computed for each frame and the final feature vector
f n

d is formed for each frame using these dissimilarity values in the next phase. These fea-
ture vectors are used to train the LS-SVM classifier. The above procedures are repeated on
a given unknown video sequence in the testing phase for feature extraction and final feature
vector generation. Finally, the frames of the unknown video sequence are classified using
the trained classifier into three classes: AT, GT and NT. The proposed technique is described
in detail in the following subsections.

3.1 Feature representation

The accuracy of a SBD system mostly depends on how effectively the visual content of
video frames are extracted and represented in terms of feature vectors. The feature vector
should be such that, it not only captures visual characteristics within a frame but also is able
to integrate motion across video frames. One of the most important and desirable character-
istics of the features used in SBD is the discriminating power between intra (within) shot and
inter (between) shot frames. In view of the above facts, it is necessary to use a multiscale tool
for feature extraction. Among the various multi-scale tools, NSCT has been selected due to
some of its unique properties like multi-directional and shift invariancy. These properties
are very important for SBD system and are not present in other multi-scale transforms. The
detailed procedure of feature vector computation is shown by the block-diagram in Fig. 3.

Assuming a video sequence V consists of N number of frames and fn represents the
nth frame. At first, each frame is converted into CIE L*a*b* color space. This is followed
by applying NSCT on each color plane for feature extraction (with 3 level decomposition)
which results in L + 1 number of subband images denoted by Sn

l having the same size
as that of the original frame fn, where l = {1, 2, ...., L + 1}. Each subband Sn

l (except
the low frequency subband as it is crude low pass version of the original frame) is divided

Fig. 3 Block diagram of feature vector computation using NSCT and PCA
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into R number of non-overlapping blocks of size p × p. Let {bn
lr }; l = {1, 2..., L}; r =

{1, 2, ..., R}; n = {1, 2, ..., N} denotes the rth block of the lth subband. Each of these blocks
is represented by the standard deviation (σ ) computed from the NSCT coefficients values
within these blocks. Therefore, the feature vector for each color plane of frame fn is defined
as,

Vfn = [σn
11, σ

n
12, ..., σ

n
lr , ..., σ

n
LR]; (1)

where,

σn
lr =

√∑p

x=1

∑p

y=1(C
n
lr (x, y) − μn

lr )
2

p × p
, (2)

Cn
lr (x, y) represents the NSCT coefficient value at (x, y) of the rth block of the lth subband

and μn
lr represents the mean of these coefficient values. As a result, each color plane gener-

ates a feature vector of size L × R. Similar procedure is followed for other color planes of
the frame fn. Therefore each frame having three color planes generates a feature vector of
dimension (3× L × R). The reason behind considering non-overlapping block subdivision
of HFSs (unlike the usage of global subband’s statistics used in [30]) is to reduce the dis-
turbing impact of large object/camera motion as well as flash lighting effects. The reason
is that object motion/flash light effects usually affect a part of the frame and not the entire
frame. Therefore, it is expected that in these cases, local statistics of non-overlapping blocks
will provide more discriminating capability.

The dimension of the feature vectors (3 × L × R) is quite a large number. Moreover,
the features generated using NSCT is highly correlated and contain some noisy features.
In order to deal with these situations, proposed method uses PCA to reduce the dimension
of the feature vectors. PCA is a dimensionality reduction technique which transforms the
correlated features to uncorrelated ones and the features can be selected according to their
variances [11]. The features with smaller variance can be omitted as they are least significant
and consist of noises. The features corresponding to higher variations preserve the informa-
tion of the data. Moreover, the features selected by PCA are uncorrelated. Therefore, PCA
is a suitable option to deal with correlated and noisy features. Let the reduced feature matrix
be denoted as MV = [αn

g ]; g = {1, 2, ..., G}; n = {1, 2, ..., N} of size (N × G); where G

is the dimension of the reduced feature vector and α is a component of the reduced feature
vector.

The dissimilarity value D1
n between two consecutive frames fn and fn+1 is computed as

follows:

D1
n = D(n, n + 1) =

√√√√√ G∑
g=1

(αn
g − αn+1

g )2; ∀n = 1, 2..., N − 1 (3)

Similarly, the dissimilarity value Dk
n between frame fn and its following kth frame fn+k is

computed as follows:

Dk
n = D(n, n + k) =

√√√√√ G∑
g=1

(αn
g − αn+k

g )2; ∀n = 1, 2, ..., N − k (4)

where k > 1, is the frame step [2]. The value of k is chosen as k = (t + 1), where t is the
average duration of GT computed from a large number of training videos.
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A new feature vector f AT
dn

is computed for AT detection using dissimilarity values D1
n

obtained from Eq. 3, over a window of size (2w1 + 1) at around each frame position and
expressed as:

f AT
dn

=
[
D1

n−w1
, ......, D1

n, ......, D1
n+w1

]
(5)

Similarly, a new feature vector f GT
dn

is computed for GT detection using Dk
n obtained from

Eq. 4, over a window of size (2w2 + 1) at around each frame position and expressed as:

f GT
dn

=
[
Dk

n−w2
, ......, Dk

n, ......, Dk
n+w2

]
(6)

where, w1 and w2 are the window parameters.
The basic reason for considering a number of dissimilarity values over a group of frames

for computation of f AT
dn

is to make the detection process reliable and robust [36]. For any
true AT, the dissimilarity values around the transition follows a particular pattern as shown
in Fig. 4a. If only one D1

n value between frame fn and fn+1 is considered for the detection

Fig. 4 Plot of dissimilarity values (D1
n and Dk

n) vs Frame no. (n): (a) D1
n curve for True AT. (b) D1

n curve
due to flashlight effects. (c) Dk

n curve for True GT. (d) Dk
n curve due to camera motion
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of AT, it may lead to false detection when some spurious events like flashlights, sudden
drop in intensity values are present because the magnitudes of D1

n values are often same to
that generated by true AT. However, if a group of D1

n values is considered, then the pattern
generated by these spurious events is not follow the pattern as shown in Fig.4a rather follows
a pattern like Fig.4b. From Fig. 4a and b, it is seen that the peaks in D1

n values for genuine
ATs are separated by a large number of frames, whereas for flashlight effects multiple peaks
are found within a very short interval in the D1

n values. Similarly for GT, to capture the
conventional pattern of Dk

n values due to true GT effects as shown in Fig.4c, a collection
of dissimilarity values of several frames (preceding and succeeding) are considered. This is
done in order to remove false GT e.g. effects due to large camera movements and abrupt
changes of object motion. Typical characteristics pattern due to camera movement is shown
in Fig. 4d. Hence, from Fig. 4c and d one can easily discriminate true and pseudo GT. The
window parameters w1 for AT and w2 for GT should be selected such that these can able to
capture the above mentioned characteristics patterns for AT as well as GT and at the same
time it does not merge two consecutive AT or GT.

A combined feature vector f n
d is computed for simultaneous detection of AT and GT as

described by Chasanis et al. [4] and expressed as:

f n
d =

[
f AT

dn
, f GT

dn

]
(7)

This f n
d is used as input feature vector to the LS-SVM classifier for training as well as

testing.

3.2 Proper training set generation and classification

Even if we use an effective feature representation scheme to represent the video frames, it
is not possible to achieve desired performance without a proper training feature set and an
efficient classifier [4, 27]. A typical video contains very few transition (AT and GT known
as positive samples) frames and a very large number of no-transition (known as negative
samples) frames. Using all these frames of the video as a training set not only increases the
training time but also makes the trained model biased towards the negative transitions. This
is known as imbalanced training procedure and the training set is called imbalanced training
set [4, 36]. Therefore, the goal is to use fewer selective no-transition frames as the negative
samples. This is due to the fact that the selected negative samples have great impact on the
performance of the trained model produced by the classifier. The important negative sam-
ples are actually those which belong nearest to the class separating hyperplane i.e. those
frames which lie nearest to the decision boundary regions. The conventionally used random
selection of negative samples often leads to improper trained model and results in poor per-
formance. Because, if we randomly select negative samples for training - then there is no
certainty that the chosen negative samples lie nearest to the decision boundary. To overcome
from this problem, many researchers have used a thresholding technique to select the nega-
tive sample frames. However, selecting a proper threshold is challenging. A high threshold
might select some of the positive samples (specifically the gradual transition’s frames) as
the no-transition frames, whereas a low threshold increases the number of negative samples
which lie far apart from the decision boundary regions. In the proposed SBD framework,
apart from selecting the positive samples (obtained from the available ground truth data)
we have also selected those negative samples whose characteristics patterns are similar to
that of the actual transitions. To do this automatically, we have used two different threshold
values T1 and T2. Considering the two different window parameters w1 and w2 mentioned
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in the Eqs. 5 and 7 for two different kinds of frame transitions AT and GT, T1 is used for
finding the highest peak of the difference pattern and T2 is used for finding the second high-
est peak. The magnitude of these two peaks for actual transitions are quite different and
in the proposed method we have set T1 = 0.5 and T2 = magnitudeHighestP eak

magnitude2ndHighestP eak
= 1.67.

These values are set empirically after extensive experiments. This makes the highest peak
(T1) as the middle value (approximately) of the actual transition (AT or GT) characteris-
tics pattern and T2 belonging to nearby no-transitions frame’s pattern. We have exploited
these two characteristics to select the negative samples. Thus the volume of the training
set is largely reduced which solves the imbalance problem as well as reduces training
time.

The other critical aspect of SBD is the evaluation of computed dissimilarity values since
the final output of the SBD algorithms largely depends on this evaluation method. Earlier
works for SBD mainly depend upon hard thresholds which are selected experimentally. The
first effort to make it automatic was done by Zhang et al. in [37], where they proposed
two different thresholds for the detection of AT and GT, respectively. These thresholds have
a major drawback that these cannot incorporate contextual information (the dissimilarity
values around the current frame under consideration) and therefore lead to many false detec-
tions as well as missed detections. The reason is that the transition is a local phenomenon
and there exists a clear relationship among the frames corresponding to a transition event
and the frames closely surrounded to it [2], which are shown in Fig. 4a and c, respectively. A
better alternative is to use adaptive thresholding that considers the local information. How-
ever, it still suffers from some parameters chosen experimentally which basically controls
the false detection rate and these parameters usually vary from video to video [14]. Recently
the development of Machine Learning (ML) algorithms have shown vast improvement in
the SBD system. The reason for the success of ML algorithms is that they make decisions
via the recognition of the patterns that different types of shot boundary generates, instead
of the evaluation of the magnitudes of content variations [36]. They can perform reliably
on any unknown video sequence once the parameters are set by proper training mecha-
nism. Various types of ML tools are successfully employed by various researchers such as
K-Nearest Neighbor, Multilayer Perceptron, Support Vector Machine etc. for SBD [27, 31,
36]. SVM is considered as one of the most successful ML algorithm for classification of
different unknown data patterns. It has solid theoretical foundations as well as different suc-
cessful applications [36]. The recent study of Smeaton et al. has shown that most of the top
performing SBD methods have used SVM as the ML tool, indicating it is well suited for
SBD [31].

However, the major drawback of SVM is its high computational complexity for data
sets of large dimension. To reduce the computational cost, a modified version called Least
Square SVM (LS-SVM) is adopted as a classifier in this paper. The LS-SVM does not
require solving quadratic programming problems and simplifies the training procedure by
solving a set of linear equations [32].

LS-SVM is originally developed for binary classification problems. A number of meth-
ods have been proposed by various researchers for extension of binary classification
problem to multi-class classification problem. It’s essentially separate M mutually exclu-
sive classes by solving many two-class problems and combining their predictions in various
ways. One such technique which is commonly used is Pair-Wise Coupling (PWC) or One-
vs.-One is to construct binary SVMs between all possible pairs of classes. PWC uses
M ∗ (M − 1)/2 binary classifiers for M number of classes, each of these classifiers provide
a partial decision for classifying a data point. During the testing of a feature, each of the
M ∗ (M − 1)/2 classifiers vote for one class. The winning class is the one with the largest
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number of accumulated votes. Hsu et al. [15], has shown that the PWC method is more
suitable for practical use than the other methods discussed.

4 Experimental results and discussion

The effectiveness of the proposed algorithm is evaluated over several benchmarking videos
on the standard performance measures and compared against several state-of-the-art tech-
niques. The details of the dataset, experimental setup and results are described in the
following subsections.

4.1 Description of datasets and evaluation criteria

Separate training and test set videos are used to test the effectiveness of our proposed SBD
system. Some of the videos (totaling 47,186 frames) from http://www.open-video.org/ are
taken as the initial training data which do not belong to the TRECVID-2001 test set. After
applying the proposed active learning strategy approximately 12.32% of those initial frames
are selected as the final training set. The description of the training data is given in the
Table 1. We have tested the performance of our proposed method on TRECVID 2007 and
TRECVID 2001 benchmark video datasets obtained from http://www.open-video.org/ [31,
33]. Both the dataset include large number of ATs and GTs along with different types of
disturbances (events) like abrupt movement of objects, sudden appearance of objects in
front of camera, large camera motions as well as flashlight effects. The descriptions of the
videos in these dataset are given in Table 2 and in 3. These videos are chosen for comparison
because it has been widely used by various researchers due to the presence of different
types of true and pseudo transitions (disturbances) in it. Each frame of the videos ‘anni005’,
‘anni009’ is of size 240 × 320 and that for rest of the videos is 240 × 352 for TRECVID
2001 dataset, whereas the resolution of frames of all the videos in TRECVID 2007 dataset
is of 288 × 352. For uniformity of testing, all the video frames are resized into 128 × 128
in the proposed method. We have implemented the proposed technique in MATLAB, and
experiments have been carried out on a PC with 3.40 GHz CPU and 8 GB RAM.

The performance of the proposed method is compared with the state-of-the-art tech-
niques using the following standard quantitative measures:

Precision (P ) = Nc

Nc + Nf

(8)

Recall (R) = Nc

Nc + Nm

(9)

whereNc denotes the number of correct detections,Nm denotes the number of missed detec-
tions and Nf denotes the number of false detections [6]. F-Measure can be defined in the
following way:

F − Measure (F1) = 2 × P × R

P + R
(10)

Table 1 Details of the training
dataset Description # NT (no-transitions) # AT # GT

Total 45,300 352 115

Used for training 4,072 308 97

http://www.open-video.org/
http://www.open-video.org/
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Table 2 Details of the
TRECVID 2001 SBD dataset File Duration # Frames # AT # GT

(mm:ss)

anni005 6:19 11,363 38 27

anni009 6:50 12,306 38 65

nad31 29:08 52,395 187 55

nad33 27:39 49,734 189 26

nad53 14:31 26,115 83 75

nad57 6:57 12,510 45 31

bor03 26:56 48,450 231 11

bor08 28:07 50,568 380 151

Total 144:67 2,63,441 1191 441

The value of recall reflects the rate of miss-classification i.e., higher the value of recall, lower
the rate of misclassification. On the other hand, precision reflects the rate of false positives;
lower the rate of false positives, higher the precision. F-measure is the harmonic mean of
recall and precision. The value of F-measure is high only when both the recall and precision
are high i.e. only when the miss-classification rates as well as rate of false positives both are low.

4.2 Parameters selection

In the proposed technique, 3 level [0, 1, 2] decomposition of NSCT is used, whereas
‘pyrexc’ and ‘pkva’ are selected as the pyramidal filter and directional filter respectively.

Table 3 Details of the
TRECVID 2007 SBD dataset Video Name Duration # Frames # AT # GT

(mm:ss)

BG2408 23:55 35,892 101 20

BG9401 33:22 50,049 89 3

BG11362 10:56 16,416 104 4

BG14213 55:24 83,115 106 61

BG34901 22:55 34,389 224 16

BG35050 24:39 36,999 98 4

BG35187 19:20 29,025 135 23

BG36028 29:59 44,991 87 –

BG36182 19:44 29,610 96 13

BG36506 10:08 15,210 77 6

BG36537 33:20 50,004 259 30

BG36628 37:42 56,564 192 10

BG37359 19:16 28,908 164 6

BG37417 15:20 23,004 76 12

BG37822 14:38 21,960 119 10

BG37879 19:20 29,019 95 4

BG38150 35:05 52,650 215 4

Total 421:43 6,37,805 2,237 226
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This NSCT decomposition leads to one LFS and seven HFSs, for each color plane of a
frame. Each such HFS is decomposed into blocks of size 16 × 16, which results in 64
( 128×128

16×16 ) number of blocks. The choice of block size is not a well defined problem. Larger
block size will lead to poor representation and smaller block size increases computational
complexity. Generally a trade-off is made and block-size of 16 × 16 is selected in the pro-
posed method as a reasonable choice. The standard deviation (σ ) is computed from the
coefficient values within each block, which is used as a component of the feature vector.
Therefore, each frame generates a feature vector of dimension 1344 (64 × 7 × 3). Even a
feature vector of size 1344 is quite large. The computation of distance between two frames
based on the feature vectors of this size is quite expensive. Moreover, all components of
feature vectors may not carry significant information about the contents of the frame. There-
fore, to achieve better efficiency of the system, reduction of the dimension of the feature
vectors is desired which is achieved using PCA. We did several experiments to evaluate the
effectiveness of the usage of PCA over non-usage of PCA in our proposed scheme consider-
ing the videos of TRECVID 2001 dataset. The visual results for AT as well as GT correctly
detected by the proposed technique on TRECVID 2001 data set is shown in Fig. 5. Conven-
tionally, the importance of the used features is ranked according to the number of principal
components (NPC). In these experiments, considering only abrupt transitions, we used dif-
ferent NPC which were selected by using variance information on accuracy (F-measure)
and the result is shown in the Fig. 6. It can be clearly seen from the graph of the Fig. 6 that

Fig. 5 Results of correctly detected transition frames by our algorithm: (All the transition frames are marked
by red boxes.)(a) Row I-IV are the results for cut detection Row-I: The detection of AT in presence of large
object motion. Row-II: the detection of AT in presence of camera motion (camera pan) Row-III: First row:
in the presence of large object motion (ii) second row: in the presence of large camera pan (iii) Third and
fourth row: in the presence of flashlight and other effects. (b) Fifth row: a fade in and fade out detection (d)
and the last row show a dissolve detection. The detected frames are marked by red boxes. The visual results
given are on TRECVID 2001 datasets
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Fig. 6 Performance comparison PCA vs. non-PCA based feature representation

considering a reduced feature vector (using PCA) over the full-dimensional feature vector
(non-PCA), the proposed system is providing better result in terms of F-measure. More-
over, a lower-dimensional feature vector (approximately 96% dimension reduction over the
full-dimension 1344) also helps to achieve computational efficiency. A total of first 50 com-
ponents from the ranked principal components are selected which preserve 90% of the total
variance information of NSCT decomposed features. The other tunable parameters are the
frame step k, average durations of GT t , and window parameters w1 for AT and w2 for GT.
The frame step k is selected as k = t + 1, where t is the average duration of GT. From a
large collection of training videos taken from various sources, including many videos from
TRECVID 2001 dataset which are not used as a test video, it is found that the duration of
GT varies from 15 to 30 frames. Hence the value of k is selected as 24 in the proposed tech-
nique. The window parameters w1 for AT is set as 10 and w2 for GT is set as 30. The very
lower values ofw1 andw2 cannot capture the characteristic patterns for AT and GT as shown
in Fig. 4a and c, whereas large values of w1 and w2 will merge two successive ATs and GTs
respectively.

To make the LS-SVM classifier more reliable and generalized, 5 × 5 fold stratified
Cross Validations (CV) are employed. We have used the Radial Basis Function (RBF):
K(xi, xj ) = exp(−γ ||xi − xj ||2), γ > 0, as the kernel. There are two tunable parameters
while using the RBF kernel: C and γ . The kernel parameter γ controls the shape of the
kernel and regularization parameter C controls the trade-off between margin maximization
and error minimization. It is not known beforehand which values of C and γ are the best
for the classification problem at hand. Hence various pairs of (C, γ ) were tried with, over
the course of CV procedure, and the one with the lowest CV error rate was picked. After
obtaining best values of the parameters C and γ , these values were used to train the LS-
SVM model, and the test set was used to measure the error rate of the classification. The
LS-SVM toolbox ‘LS-SVMlab v1.8’ is used for implementation of the classifier in the pro-
posed method [3]. The training set is manually constructed using videos of different genres
such as documentary, sports, news and movies etc. The transitions are manually annotated
as positive examples while negative examples are selected as the frames corresponding to
disturbing effects such as large object movements, camera motions as well as flashlight
effects. The same model is used to test both the datasets, i.e. TRECVID 2001 dataset as
well as TRECVID 2007 dataset.
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4.3 Comparison with related works

We have performed several experiments to validate the effectiveness of the proposed tech-
nique. Tables 4 and 5 contain the results of the performance comparison with several
other techniques on TRECVID 2001 data set. Evaluation of the proposed technique on
TRECVID 2007 data set is given in Table 6. Table 7 contains the comparison results with
other existing techniques on TRECVID 2007 data set. To support our choice of NSCT over
other existing MGA tools like CVT and CNT, we have conducted several other experiments.
The findings of the experiments are tabulated in the Table 8. Even though, the Table 8 con-
tains results of only 4 videos (2 from TRECVID 2001 and the other 2 from TRECVID 2007
dataset), we have got similar results for the other videos of the datasets. To make the com-
parison fair, the setups of the experiments (frame’s size, filters, decomposition levels etc.)
are remained similar for all the above-mentioned transform based features. The comparison
results are given only on F-measure value. It is evident from the Table 8 that NSCT based
feature representation performs significantly better than that of CVT and CNT based feature
representations considering both normal and complex video scenes.

The proposed method is also compared with some state-of-the-art SBD techniques to
determine its effectiveness and the results are reported in Tables 4, 5 and 7. Tables 4 and 5
compare the results on T RECV ID2001 dataset whereas Table 7 represents the comparison
on T RECV ID2007 dataset with the top performer of the 2007 SBD task as well as with
one state-of-the art technique Lakshmipriya et al. [19]. Table 4 shows the results for AT
and Table 5 demonstrates the performance for GT. The best results for each category are
marked as bold-faces. From Table 4, it is seen that the proposed method performs much
superior on an average for AT detection than the other methods in terms of both recall
and precision, resulted in overall average F-measure value of 0.969 where the next best
average F-measure value is 0.928. These high performances for AT detection follows our
expectation where the system able to discriminate correctly the pattern for AT as shown
in Fig. 4a and that of non-AT as shown in Fig. 4b. Similarly for GT, the system able to
correctly discriminate the patterns for GT as shown in Fig. 4c and non-GT as shown in
Fig. 4d. From Table 5, it is observed that the F-measure value of the proposed method for
most of the videos are higher than that of the other methods for GT detection, although
the proposed technique does not result best performances in terms of precession and recall.
The only case where the proposed method performs superior in respect to all the three
measures is for the video sequence ‘bor08’. The other methods perform superior than the
proposed technique only in terms of either precision or recall but not for both. In fact, it
is seen from Table 4 that those methods whose performance in terms of recall is superior,
their performance in terms of precision is poor and vice versa. In other words, the existing
techniques either give good accuracy to the cost of much higher false detection rate or very
low false detection rate to the cost of very low accuracy. Only, the method proposed by
Choudhury et al. [5] performs well in terms of both recall and precision. The recall of this
method is superior for the video sequences ‘anni005’, ‘nad31’, ‘nad53’, ‘nad57’, ‘bor03’
and the average respectively. However they do not perform superior in terms of precision
or F-measure for any one of the video sequences. Whereas the proposed method performs
equally well in terms of both recall and precision which results in higher F-measure for most
of the video sequences. Only case where the proposed technique lags in F-measure is for the
video sequence ‘nad33’. Visual results shown in Fig. 5 shows that the proposed technique is
really robust because in presence of various kinds of disturbances the system could correctly
identify the positions of transitions i.e., the transition frame for AT and a collection of
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Table 6 Performance evaluation of the proposed method on TRECVID 2007 SBD task dataset

Dataset Abrupt Transition Gradual Transition Overall Transition

R P F1 R P F1 R P F1

BG2408 1.000 0.971 0.985 0.712 1.000 0.832 0.950 0.975 0.962

BG9401 0.988 0.978 0.983 1.000 1.000 1.000 0.989 0.978 0.984

BG11362 0.939 0.970 0.954 0.800 0.800 0.800 0.935 0.962 0.948

BG14213 0.991 0.850 0.915 0.879 0.908 0.893 0.952 0.869 0.909

BG34901 0.991 0.982 0.987 0.823 0.877 0.849 0.979 0.975 0.977

BG35050 1.000 0.942 0.971 0.700 1.000 0.824 0.990 0.944 0.967

BG35187 0.940 0.928 0.934 0.750 0.885 0.812 0.911 0.923 0.917

BG36028 0.989 0.956 0.972 – – – 0.989 0.956 0.972

BG36182 0.926 0.978 0.951 0.867 0.933 0.899 0.917 0.971 0.943

BG36506 0.987 0.987 0.987 0.600 0.800 0.700 0.964 0.976 0.970

BG36537 0.951 0.975 0.963 0.850 0.920 0.884 0.941 0.971 0.956

BG36628 0.984 0.970 0.977 0.850 0.810 0.830 0.980 0.961 0.971

BG37359 0.976 1.000 0.988 0.600 0.800 0.700 0.965 0.994 0.979

BG37417 0.987 0.935 0.960 0.750 0.830 0.788 0.955 0.923 0.939

BG37822 0.983 0.936 0.959 0.800 0.900 0.850 0.969 0.933 0.951

BG37879 1.000 1.000 1.000 0.770 0.900 0.830 0.990 1.000 0.995

BG38150 0.976 0.981 0.979 0.600 0.700 0.650 0.968 0.977 0.973

Average 0.982 0.984 0.983 0.772 0.870 0.818 0.970 0.980 0.975

transition frames for GT. In Table 6, the performances of the the proposed technique for
AT, GT and overall transitions are presented. From this table, it is seen that the average F1
value for AT is 0.983 and for GT is 0.818. The low F value for GT is due to the fact of very

Table 7 Performance comparison of the proposed method with the top results of TRECVID 2007 SBD task

Dataset Abrupt Transition Gradual Transition Overall Transition

R P F1 R P F1 R P F1

Proposed 0.982 0.984 0.983 0.772 0.870 0.818 0.970 0.980 0.975

Lakshmipriya et. al.[19] 0.972 0.976 0.974 0.869 0.719 0.780 0.965 0.957 0.961

AT T run5[22] 0.979 0.966 0.972 0.709 0.802 0.753 0.956 0.954 0.955

AT T run3[22] 0.977 0.968 0.972 0.704 0.780 0.740 0.955 0.953 0.954

THU11[35] 0.968 0.982 0.975 0.718 0.733 0.725 0.947 0.962 0.954

THU05[35] 0.968 0.982 0.975 0.743 0.695 0.718 0.949 0.956 0.952

BRAD[29] 0.973 0.982 0.977 0.587 0.425 0.493 0.941 0.919 0.929

NHK2[17] 0.933 0.965 0.965 0.607 0.691 0.646 0.905 0.944 0.924

NHK3[17] 0.916 0.975 0.945 0.578 0.768 0.660 0.923 0.960 0.916

Marburg1[26] 0.945 0.942 0.944 0.766 0.595 0.670 0.931 0.907 0.919

Marburg2[26] 0.957 0.930 0.943 0.777 0.570 0.658 0.942 0.893 0.917
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Table 8 Performance comparison of various MGA tools

Dataset File AT (F-measure) GT (F-measure)

CVT CNT NSCT CVT CNT NSCT

TRECVID 2001 anni005 0.923 0.885 0.987 0.863 0.842 0.899

anni009 0.945 0.861 0.974 0.837 0.781 0.927

TRECVID 2007 BG11362 0.912 0.892 0.954 0.763 0.652 0.800

BG36506 0.937 0.924 0.987 0.615 0.623 0.700

few number of GTs presents in these videos and their duration is of varying nature which
results in inconsistent patterns in the f GT

dn
values as well as f n

d values. However, the F
value for overall transition is 0.975 which shows the excellent performance of the proposed
technique.

We have also compared the performance of the proposed technique with the best tech-
niques reported on TRECVID 2007 dataset and the results are reported in Table 7. From
Table 7, it is seen that the proposed technique performs superior for AT detection in terms
of all three measures R, P and F values than the other methods. The best R value for GT
detection is of Lakshmipriya et al.’s method [19] which is 0.869 whereas the R value of pro-
posed technique is 0.772. However, the P value of the proposed method is 0.870 which is
much superior than the other methods. The other best P value is 0.802 of AT T run5. There-
fore our F value for GT is also much higher than the other methods. Thus, the proposed
technique performs superior for overall transitions.

We have also compared the computational efficiency of the proposed technique with
some of the other state-of-the-art methods. It is to be noted that the time requirement of a
SBD scheme mainly depends on the complexity of the frame-content representation (fea-
ture extraction) step. Therefore, only the time requirement of the feature extraction step is
considered for this performance comparison. To make a fair comparison we have run all the
compared SBD schemes on the same machine configuration. The detail of the comparison
is tabulated in the Table 9.

It is clear from the results given in the Table 9 that the proposed scheme is computation-
ally more expensive than the state-of-the-art SBD scheme described in [19]. But, from the
results given in the Table 7, it is evident that the proposed scheme is more accurate than the
method of [19]. At the same time the proposed method is not only computationally much
more efficient than the NSCT-based SBD technique proposed in [30], but also performs sig-
nificantly superiorly. It is also to be noted that after the submission of a video frame to the

Table 9 Comparison of computation time on TRECVID 2007 dataset

Scheme Computation Time (sec) AT GT

P R F P R F

Proposed 0.1240 0.984 0.982 0.983 0.870 0.772 0.818

Lakshmi Priya et al. [19] 0.0781 0.976 0.972 0.974 0.719 0.869 0.780

Sasithradevi et al. [30] 34.5469 0.865 0.785 0.823 – – –
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proposed SBD system, it provides response in approximately 0.2 sec. (feature extraction +
classification), which is acceptable for offline automatic video-processing and analysis.

5 Conclusions and future work

In this paper a new SBD technique is presented for the detection of both AT and GT fol-
lowing the general SBD framework. The method is able to detect accurately both types of
transitions AT as well as GT, even in the presence of different disturbing effects like flash-
lights, abrupt movement of objects and camera motions. The features from the video frames
are extracted using NSCT which has unique properties like multi-scale, multi-directional,
and shift invariancy. Thus the extracted features are invariant to the disturbing effects like
flashlights, abrupt movement of objects and motion of camera. Furthermore, the dimension-
ality of the feature vectors is reduced through PCA to achieve computational efficiency as
well as to reduce the noisy features. The contextual information of the video frames, i.e.,
the dissimilarity values around the current frame is taken under consideration to improve
the accuracy as well as to reduce the rate of false detection. Finally, cost efficient LS-SVM
classifier is adopted to classify the frames of a given video sequence into AT, GT and NT
classes. A novel efficient method of training set generation is also proposed which not
only reduces the training time but also improves the performance. Experimental results on
TRECVID 2001 and 2007 dataset and comparison with state-of-the-art SBD methods show
the effectiveness of the proposed technique.

In future, we will use the NSCT based feature vectors for the detection of different types
of camera motions such as panning, zooming, tilting etc. and the flashlight effects. The
detection of these effects is important for the further improvement of SBD techniques as
these are the most disturbing effects for SBD as well as for further analysis of a video
sequence as these effects bear important information about a video.
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