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Abstract Videos of endoscopic surgery are used for education of medical experts, analy-
sis in medical research, and documentation for everyday clinical life. Hand-crafted image
descriptors lack the capabilities of a semantic classification of surgical actions and video
shots of anatomical structures. In this work, we investigate how well single-frame convolu-
tional neural networks (CNN) for semantic shot classification in gynecologic surgery work.
Together with medical experts, we manually annotate hours of raw endoscopic gynecologic
surgery videos showing endometriosis treatment and myoma resection of over 100 patients.
The cleaned ground truth dataset comprises 9 h of annotated video material (from 111 dif-
ferent recordings). We use the well-known CNN architectures AlexNet and GoogLeNet and
train these architectures for both, surgical actions and anatomy, from scratch. Furthermore,
we extract high-level features from AlexNet with weights from a pre-trained model from
the Caffe model zoo and feed them to an SVM classifier. Our evaluation shows that we
reach an average recall of .697 and .515 for classification of anatomical structures and surgi-
cal actions respectively using off-the-shelf CNN features. Using GoogLeNet, we achieve a
mean recall of .782 and .617 for classification of anatomical structures and surgical actions
respectively. With AlexNet the achieved recall is .615 for anatomical structures and .469 for
surgical action classification respectively. The main conclusion of our work is that advances
in general image classification methods transfer to the domain of endoscopic surgery videos
in gynecology. This is relevant as this domain is different from natural images, e.g. it is
distinguished by smoke, reflections, or a limited amount of colors.
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1 Introduction

In recent years, endoscopic surgery procedures as well as imaging technology have
advanced rapidly. These advances enable physicians to perform minimally invasive surg-
eries. As a side-effect, the recoded surgery videos benefit the surgeons’ work, as they
provide a great basis for documentation, training of young surgeons, and medical research.
Prior work supporting these aims has been conducted by our research group in the sec-
tor of endoscopic video analysis, such as a subjective quality assessment for the impact
of compression on the perceived semantic quality [13], instrument classification in laparo-
scopic videos [17], or extraction and linking of endoscopic key-frames to videos [3, 23].
In this work, we restrict ourselves to a very specific field in minimally invasive surgery
in the context of gynecology. In particular, we base our work on videos showing surgical
treatment of myoma resection and endometriosis. Our aim is to lay a baseline for (semi-)
automatic documentation for aforementioned surgical interventions. Therefore, we want to
achieve semantic classification of video shots displaying surgical tasks and various anatom-
ical structures relevant to gynecological surgery. Standard hand-crafted features lack the
expressive power for use cases of high-level classification in this domain [2]. On the con-
trary, CNNs have been successfully used for such problems in general image and video
domains [7, 25]. Multiple models have been proposed for semantic classification of video
shots, i.e. single frame, early fusion, late fusion, and slow fusion [6]. The importance of
deep learning in medical image analysis and content-based processing and analysis of endo-
scopic images and video also is apparent from the work of Litjens et al. [9] and Muenzer
et al. [12] respectively.

As stated above, we aim at creating a baseline for semi-automatic documentation and
therefore restrict ourselves to a single-frame model. Hence, the driving question behind our
research is:

How well do CNN-based single-frame models for semantic shot classification in the
field of gynecological surgery, a special domain of laparoscopic surgery, perform?

In order to answer the aforementioned question, we identify frequent surgical tasks and
anatomical classes in cooperation with medical experts from the regional hospital (LKH)
Villach in Austria. Based on this expert knowledge and over 100 video recordings of surgical
treatments, we generate a data set with scenes of surgical actions and anatomical structures
in gynecological surgery. The data set comprises 13 different semantic classes (five anatomy
and eight action classes) and consists of about 9 h of annotated video material. Furthermore,
we base our work on two well-known CNN architectures: AlexNet [7] and GoogLeNet
[25]. For both subsets, surgical action and anatomy, we adapt the classification layer of
the aforementioned networks, train the networks from scratch, and evaluate the predictive
performance of the resulting networks. The division of action and anatomical structures is
reasonable, as we employ a single label prediction model and surgical actions almost always
show anatomical structures. We also evaluate the usage of high-level CNN features (from
AlexNet classification as well as fully connected layers fc6 and fc7) for a multi-class SVM
classifier in the domain of endoscopic surgery videos in gynecology.

This work is novel, as there is no comparison of different CNN models and SVM
classifiers using CNN-extracted features for the use case of shot classification in gyneco-
logic surgery. We expect that advances in the general domain transfer to our specialized use
case, in particular we think that GoogLeNet achieves a better predictive performance than
AlexNet. Furthermore, we expect that the off-the-shelf CNN features do not work as good
for classification as the CNN models do. Another contribution of this work is a detailed
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discussion of important semantic content classes in the expert-domain of minimally invasive
gynecologic surgery. This is relevant to colleagues working in the field of medical video
analysis. The remainder of this paper is structured as follows. First, we discuss related work
in medical imaging on the topics of computer-aided diagnosis, transfer learning, and seman-
tic video classification. In Section 3, we describe the data annotation process as well as the
data used for training and testing the CNN models and SVM. Details for learning are pre-
sented in Section 4. We evaluate the results in Section 5 and draw conclusions and outline
possible future work in Section 6.

2 Related work

For the use case of classifying interstitial lung diseases, Li et al. [8] provide a simple
CNN model containing a single convolutional layer. They yield per—class precision and
recall between 0.8 and 0.9 for classification into five classes (normal, emphysema, ground
glass, fibrosis, and micro-nodules) outperforming the SIFT feature as well as Restricted
Boltzmann Machines. Anthimopoulos et al. [2] propose a deep CNN model containing
five convolutional layers for the classification of CT images into seven classes of intersti-
tial lung diseases (healthy, ground glass opacity, micronodules, consolidation, reticulation,
and honeycombing). Their results imply that, for this use case, their CNN approach out-
performs other CNNs as well as state-of-the-art methods using handcrafted features. In the
work of Yan et al. [29], a multi—stage deep learning framework is presented. Using the pro-
posed framework, the authors try to solve the problem of body-part recognition in MRI
images. In total, they achieve best performance regarding recall, precision and f—score com-
pared against logistic regression, SVMs, and CNNs. The importance of CNNs in medical
applications is also apparent from their use within other applications such as nucleus seg-
mentation [28], polyp detection in colonoscopy videos [15], microcalcification detection
in digital breast tomosynthesis [22], mitosis detection in breast cancer histology [1], and
short—term breast cancer risk prediction [19]. Our work is delimited to the aforementioned
research as in contrast to the classification of a state (e.g., healthy or consolidation, type of
tissue), we aim at classifying both, anatomical structures and surgical actions. Furthermore,
there haven’t been any efforts made regarding the classification of images extracted from
laparoscopic surgery videos. Fine tuning and transfer learning effects of CNNs are cov-
ered in recent literature by Shin et al. [24] as well as Tajbakhsh et al. [26]. These pieces of
work are based on the use cases of lymph node detection, interstitial lung disease classifi-
cation, polyp detection and image quality assessment in colonoscopy, pulmonary embolism
detection in computed tomography images, and intima-media boundary segmentation in
ultrasonographic images. Their results imply that CNNs are suitable for computer aided
diagnosis problems, and transfer learning from large-scale annotated natural image datasets
is beneficial for performance (which according to our preliminary studies does not apply
to the problem of scene classification). For colonic polyp classification, Riberio et al. [21]
proposed transfer learning using off-the-shelf CNN features. Based on high-level CNN
features (from CNNSs trained for object recognition), Ng et al. [4] use semantic fisher vec-
tors for semantic classification of natural video scenes. Their results reach state-of-the-art
performance on MIT Indoor and SUN datasets. For a large-scale YouTube video dataset,
Karpathy et al. [6] give an overview on scene classification models based on CNN, i.e.
single frame, late fusion, early fusion and slow fusion. Their results imply that the naive
single frame model (which is agnostic to temporal information)—despite it simplicity—
already provides a strong performance. Ng et al. [30] compare single frame models for scene
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classification with slow fusion and LSTM-based models. In the domain of cataract surgery
videos, Quellec et al. [20] propose a temporal segmentation and recognition of tasks. The
temporal segmentation is based on the detection of idle phases, which is achieved by nearest
neighbor search in a reference dataset. Primus et al. [11] provide a video segmentation for
endoscopic surgeries based on analysis of spatial and temporal motion changes. For the use
case of cholecystectomy, a special form of laparoscopic surgeries, Primus et al. [ 18] provide
a rule-based method to temporally segment a surgery into different phases. The recogni-
tion of number and kind of used instruments (which is topic of their previous work [17])
act as main indication for a surgery phase. Shot boundary detection in cholecystectomy
surgery videos using Gaussian Mixture Models and a Variational Bayesian Algorithm is
investigated by Loukas et al. [10]. The work of Twinanda et al. [27] also focuses on the use
case cholecystectomy. They successfully apply CNNs, SVMs and HHMMs for detection
of surgical phases. The envisioned classification is different from the use cases mentioned
above, as in cholecystectomy there are predefined surgical phases, whereas in other fields
of laparoscopic surgery (such as as gynaecology) there is no general consensus for such sur-
gical phases. Moreover, we do not aim at defining shot boundaries. We provide the work
most related to this by ourselves [16] in which we already have preformed an exploratory
investigation of shot classification in the laparoscopic surgery domain. However, we did
no distinction between surgical actions and anatomical structures which resulted in poor
performances in the anatomical structure classes.

3 Laparoscopic gynecology video database

For this work, we analyze 111 different gynecological surgery videos. These videos con-
tain scenes of laparoscopic endometriosis treatment and laparoscopic myoma resection
and have a duration in the range of 20 min to 6 h. Analysis and discussion with medical
experts for gynecology at the regional hospital (LKH) Villach (Austria) have resulted in the
identification of two main aspects for the individual scenes: action and anatomy.

Anatomy This type of video scene features little or almost no surgical actions apart from
moving tissue and organs. Purpose of diagnosis scenes is the assessment of pathologies on
specific organs, such as ovaries, uterus, or liver. Hence, diagnosis scenes are relevant for
documentation purposes of the disease as well as its treatment. These scenes are impor-
tant for medical research and teaching purposes. A second aspect of diagnosis scenes is to
document the treatment outcome, i.e. which actions are performed, or how the tissue after
treatment looks like. Additionally to disease treatment documentation, diagnosis scenes
can be valuable whenever postoperative complications occur. According to our use case of
myoma resection and endometriosis treatment, we identify the following (sub-) classes as
diagnosis scenes of interest: Uterus, Ovaries, Oviduct, Liver and Colon. Please note that this
list of classes is no comprehensive list of anatomical structures visible in the surgery videos,
but it covers the most important organs which are encountered during surgical treatment.
For an overview on anatomical structure classes, please refer to Fig. 1.

Action The class of surgical action video scenes feature significant interaction with the
patient’s tissue and organs using a variety of different surgical instruments. These scenes
represent the main physical work for the surgeon. Their automatic classification is relevant
for documentation and even more for teaching purposes of certain operation techniques.
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Fig. 1 An overview on anatomical structure classes uterus, ovary, oviduct, liver, and colon. The frames are
extracted from the annotated data set

The main aspect of these scenes is the use of medical instruments, e.g. suction & irri-
gation device, graspers, monopolar needles, needleholders, or scissors. We identify the
(sub-) classes Suction & Irrigation, Suture, Dissection (blunt), Cutting, Cutting (cold),
Sling, Coagulation, and Injection as the most common surgical actions during laparoscopic
endometriosis treatment and myoma resection in our dataset (see Fig. 2). Of course, there are
several other actions to be performed, such as tissue extraction, or stapling, but as mentioned
before, we are interested in the most common and most important actions.

3.1 Annotation process

We derive the best matching class for a single shot implicitly by camera position and the
current action, e.g., the action in the center of the image or the organ which is inspected

Fig.2 Anoverview on surgical actions coagulation, sling, injection, irrigation, suture, cutting (cold), cutting,
and blunt dissection. The frames are extracted from the annotated data set
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by a surgeon is the action or object of interest. With the surgical action classes, there is the
issue that a shot is likely to contain frames that could be classified as a diagnosis class as
well. For example, suturing the ovary may contain images with the ovary without a surgical
needle, or the suture is not clearly visible. On the one hand, this frame does not look like it
belongs to a suturing shot, but on the other hand it indeed does belong to the suturing shot
as the image has been recorded in its context. For the annotation of our dataset, we choose
to stick to the latter case and annotate such frames as the surgical task by defining begin and
end of the surgical action. Each frame from beginning until the end of a shot is labeled with
the corresponding shot label for the class it belongs to. Due to this circumstance, the dataset
also may contain blurry frames or frames in which instruments may cover huge parts of
the camera. We argue that these frames are nonetheless part of the corresponding shot and
thus correctly labeled. Prior to the annotation process, our annotators have been trained by
medical experts. The annotations are cross-validated by a single annotator and trimmed in
length or corrected when necessary. We do not filter blurry or irrelevant frames, as we are
interested in a baseline evaluation without any preprocessing (except for resizing and center
cropping) of the raw video frames. Thus, we leave the temporal dependencies within the
annotated scenes intact.

3.2 Semantic content classes

Due to legal restrictions, we are not able to publish the used dataset. In order to allow for
partial repeatability, we give a detailed explanation of the individual classes in the following.

Suction & Irrigation. These scenes feature the use of the suction and irrigation tube. Irri-
gation has the purpose to clean tissue in order to provide a clean field of view for the
surgeon. Main visual feature is a ray of liquid. The suction action is quite the oppo-
site to irrigation. It is used to absorb liquids. Classification problems in this class arise,
whenever the suction and irrigation tube is used for positioning tissue or palpation.

Suture. The main characteristic of suturing scenes is the visible surgical needle and the
suture. In general, the surgical needle can be of round or straight physical shape. During
the process of suturing, the surgical needle often is only partially visible, if at all. The
suture can vary in type, thickness, and color. An additional characteristic of these scenes
is the use of the knot pusher, which is preceded by a scene where suture and low motion
is visible.

Cutting (cold).  Scenes of cold cutting, as annotated in this dataset, feature the separation
of tissue with a sharp instrument, such as a scalpel or a scissor. Characteristic to this type
of scenes is the use of multiple instruments: the instrument used for dissection itself (e.g.
scissors) and grasper for fixation of tissue. This characterization applies to cutting and
blunt dissection as well.

Cutting.  Cutting scenes show surgical separation of tissue by using electro-surgery tech-
nology such as mono-polar needles. Occasionally, a bright dot can be seen at the top
of the instrument. A low to medium emission of smoke emerges from coagulated and
separated tissue.

Dissection (blunt). Blunt dissection scenes feature the use of blunt instruments for the
dissection of tissue. In our dataset, no specific tools can be bound to this action — the
surgeon uses two or more blunt tools.

Sling.  This class contains scenes of separation of the uterus for extraction. The electrical
sling itself has an insulation which may look just like a special kind of suture. The coarse
procedure of this surgical action is (i) introduction of the sling, (ii) positioning around
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the cervix, and eventually, (iii) thermal dissection. The thermal dissection features a sig-
nificant amount of smoke. After this dissection, coagulation and suturing are required in
general.

Coagulation.  These type of scenes show coagulation by electro-surgical surgery methods.
These scenes feature medium to high emission of smoke. The used instruments for this
action do vary. For example, surgeons can use graspers or scissors which implies an
additional difficulty for the classification of such scenes.

Injection. These scenes feature the injection of liquid into the patient’s tissue in order to
minimize traumata. The injection needle is visible as thin straight piece of shiny rounded
metal. The tissue around the tip of the needle typically inflates after the injection.

Uterus. The uterus is the main organ of interest during myoma resection. In endometriosis
treatment, the uterus can also be of interest in the adenomyosis disease pattern. The
videos sequences of the class uterus feature an inspection of the uterus.

Ovary and Oviduct These classes are again of diagnostic nature. They feature image
frames of clearly visible ovary. They are especially important for endometriosis disease
and diagnosis of adhesions.

Liver and Colon. These two organs also are inspected during endometriosis diagnosis and
treatment.

Out of 111 raw gynecological surgery videos, we manually annotated 1,105 shots con-
sisting of 822,918 different video frames resulting in about 9 h of annotated video scenes.
As already mentioned, the annotators have been trained by medical experts and the anno-
tated scenes have been checked partly by the experts. Tables 1 and 2 give an overview on
the annotated medical video database including class ID, class name, and short semantic
description for each action and anatomy class. Moreover, they contain information about
the distribution of annotations on a per-class basis, i.e. number of annotated shots, number
of annotated frames, average scene duration, and standard deviation. Most frequent actions
observed in this dataset are Suction and Irrigation, Coagulation, and Cutting (Cold). Suture
is the leading class in terms of annotated video duration. On average, suturing scenes have
longest duration, scenes of Cutting (Cold) are the shortest. The variance within the individ-
ual classes arises from surgery circumstances, such as intervention complications, or patient
anatomy. Due to the high variance of video sequence length (class—wise compared to aver-
age duration), no statistically significant conclusions can be drawn from the individual scene
length.

4 Frame-based shot classification

For this work, focus on the feasibility of endoscopic shot classification of laparoscopic
surgery videos in gynecology with CNNs. Moreover, we investigate how end-to-end trained
CNN with a problem-specific classification output layer perform against off-the-shelf CNN
features.

Therefore, we use a single-frame scene classification model allowing us to investigate the
influence of different network architectures and the quality of extracted high-level CNN fea-
tures for the application of SVMs. We base our shot classification on two different network
architectures: AlexNet [7] and GoogLeNet [25], which are designed for general purpose
image classification and trained for the 1,000 classes of the ILSVRC dataset. AlexNet fea-
tures input image patch sizes of 227x227 pixel. It consists of five convolutional layers,
MAX pooling, local response normalization, dropout and three fully connected layers. The
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Table 1 An overview on the annotated dataset with surgical actions: class id, class name, number of
shots, number of frames, average duration in seconds, standard deviation of duration in seconds, and class
description

ID Class Shots  Frames favg [S]  tsa [s] ~ Description

1 Dissection (blunt) 58 35,517 24.49 32.30 Blunt dissection of tissue
(e.g by tearing it apart)

2 Coagulation 212 84,786 16.00 16.09  Application of coagulation
in order to close a wound

3 Cutting (cold) 271 26,388 3.89 432 Dissect tissue with a sharp
instrument (e.g. scissors)

4 Cutting 106 92,653 34.96 49.96  Thermally dissect tissue

(e.g. with monopular electrodes)
5 Hysterectomy (Sling) 25 68,466 109.55 71.27  Dissection of large parts of
tissue with an electrical sling
Injection 52 52,355 40.27 26.66 Injection with a needle
7 Suction & Irrigation 173 73,977 17.10 24.63  Application of the suction
and irrigation tube
8 Suture 92 321,851 139.94 77.51 Process of suturing

last fully connected layer is task-specific. Thus, for our experiments, the number of output
neurons is altered to 5 and 8 output neurons for anatomy and action models respectively.
Apart from this, the remaining network structure remained unaltered. The GoogLeNet archi-
tecture features inception modules with dimensionality reduction. In total, there are 22
parametrized layers and five pooling layers. Below the stacked inception modules (each
reducing the image resolution) there is a convolutional low-level feature extraction expect-
ing input patches of 224 x224 pixels. The end of the network features a fully connected
network. Analogous to the procedure with AlexNet, the network architecture remains
unchanged except for the adaptation of the classification layer.

We prepare the video database for training and evaluation, which simply means that we
extracted a square center crop of each video frame and then resized it to 256 x256 pixel.
Thus, we save computational resources for resizing and cropping at training time. We fur-
thermore split the endoscopic video dataset into a test and a training set for each, anatomy
and action images. For the split, we considered the test set to contain approximately 10% of
the annotations. To ensure a diverse test set, we set a minimum number of images per class.

Table 2 An overview on the annotated dataset with anatomical structures: class id, class name, number of
shots, number of frames, average duration in seconds, standard deviation of duration in seconds, and class
description

1D Class Shots Frames tavg [s] tsa [s] Description

1 Colon 6 7,285 48.57 56.60 Clearly visible colon
2 Liver 10 3,378 13.51 12.39 Clearly visible liver

3 Ovary 52 28,460 21.89 25.15 Clearly visible ovary
4 Oviduct 8 4,797 23.99 29.78 Clearly visible oviduct
5 Uterus 40 23,005 23.01 41.80 Clearly visible uterus
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For the anatomy subset this means that we included at least 500 unique frames per class in
the test set and for action, we included at least 5,000 unique frames. The anatomy test set
thus comprises 6,874 unique frames, the action test set comprises 57,205 unique frames.
The remaining video frames are used to generate the test set. Please note that (as apparent
from Tables 1 and 2) for both, action and anatomy subsets, the distribution of number of
scenes and frames is highly imbalanced. For example, the action Suture is a frequent action
and features long scene durations. We thus feature a high number of suturing frames in the
database. On the other hand, there are actions such as Blunt Dissection featuring a very small
number of unique frames. For the test set, this imbalanced distribution perfectly models our
use case, as the frequently occurring classes are tested more thoroughly. For the training set,
we eradicate this imbalance by a combination of undersampling (dropping frames randomly
from the training set) and naive oversampling (duplicating frames randomly). To create the
training set, we choose the number of training examples per class to 100,000 images for the
action subset and 10,000 images for the anatomy subset. We define that classes containing
more unique images than the training set size per class are overrepresented classes. Oth-
erwise a class is underrepresented. For overrepresented classes, we (uniformly) randomly
choose the corresponding number of images from the remaining images without returning
the chosen images to the set we chose from. The data loss is negligible as we are drop-
ping many near-duplicate images. For the underrepresented classes, we choose images with
returning them to the set we chose from (uniformly) at random. We ensure that each anno-
tated image is included in this process by pre-filling the training set with one image of each
underrepresented class. This process resulted in 50,000 training images (generated from
33,732 unique images) for the anatomy model and 800,000 training images for the action
model (generated from 486,771 unique images).

For implementation of the machine learning approaches (CNN and SVM), we use Caffe
[5] and OpenCV [14]. At training time, we feed the network image patches of its expected
size (224 pixel squares for GooglLeNet, 227 pixel squares for AlexNet). These image
patches are crops chosen at random from the training images featuring a size of 256x256
pixels. As additional data augmentation, we also use Caffe’s mirror feature at training
time. For optimization, we use the Adam optimization method with initial learning rate of
0.001 and momentum parameters 0.9 and .999 Other hyperparameters like weight decay
are not altered from their respective values as shipped with the AlexNet and GoogLeNet
models. The training is performed on a machine featuring an Intel(R) Core(TM) i7-5960X
CPU 3.00GHz processor, 64GB of DDR-4 RAM, a Samsung SSD 850 pro and a NVIDIA
GeForce GTX TITAN X graphics card. For AlexNet, we use a batch size of 100 images per
batch. For GoogLeNet the batch size is set to 50 images per batch. For both, AlexNet and
GoogLeNet, we train action and anatomy models from scratch. This system takes approx-
imately ten days for training of all models and SVMs. The training loss and validation
performance of the CNNs is depicted in Fig. 3 for the anatomy models and in Fig. 4
for the action models. The x-axis shows the training epoch. The y-axis shows loss and
accuracy respectively. At each epoch, we measure average loss of the epoch and valida-
tion performance. For the anatomy models, the loss and accuracy curves bottom out after
approximately 10 epochs. In the surgical action models, the training loss for the GoogLeNet
network rises after 2 epochs. Longer training of AlexNet has the same effect. Also the
accuracy of the model drops with higher numbers of epoch. We think this behavior origins
in overfitting. For anatomical structures, this is less a problem as the individual classes are
less diverse. We select the models for evaluation with respect to least train loss and highest
training accuracy.
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Fig. 3 Loss and accuracy for anatomy models based on AlexNet and GoogLeNet CNN architectures for 50
epochs

For the SVM learning process, we classifiy the training set with the AlexNet model
with our weights and with off-the shelf weights which have been pre-trained for ImageNet
classification. We extract feature vectors from three different locations of the network: the
vector of class probabilites, the layer fc7, and the layer fc6 as input for SVM training and
testing. For simplicity we refer to these vectors as class, fc7, and fc6 respectively. We use
OpenCV’s C_SVC, which enables n-class classification with penalty multiplier for outliers.
We do not set specific weights per class, thus we are treating misclassification of each class
equally. This approach is reasonable, as we use a balanced training set. We use a linear
SVM kernel, as this kernel worked best within preliminary studies. As termination criterion,
we set the maximum number of iterations to 1,000 and the tolerance to 107°.
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Fig. 4 Loss and accuracy for action models based on AlexNet and GoogLeNet CNN architectures for the
first 15 epochs

5 Evaluation

For evaluation, we use the trained models of AlexNet and GoogLeNet architectures for
action and anatomy classification as well as SVM classifiers trained on high-level CNN
feature vectors fc6, fc7, and class from the AlexNet architecture. As weights, we use off-the-
shelf weights that @re trained for ImageNet classification. In order to compare the predictive
performance of the networks and the SVM approach, we use class-based precision and recall
as well as average precision and average recall values over all classes. Evaluating precision
and recall in a class-based manner has the advantage that the imbalance of the classes in
the test set is taken into account. For the calculation of precision, recall, and f-value of class
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i, we determine T P; (true positive classification of class i), F P; (number of false positive
predictions for class i), and FN; (number of false negative predictions of class i). We also
calculate the probability that the true class is among the top three predictions. We refer
to this probability as Recall@3, which we can not evaluate for the SVM approach as the
OpenCV interface does not allow for that.

For the evaluation, we create an own validation set consisting of approximately 70,000
frames by choosing five representational scenes per class. Please note that these scenes are
neither in the training nor in the test set. Thus, this additional set validates the generalization
capabilities of the approaches. The validation set size for action and anatomy is 50,988 and
21,568 images respectively. For a class distribution within the validation set, please refer to
Table 3.

For a detailed and class-based performance overview, please consult Table 4 for the
surgical action classification and Table 5 for anatomical structure classification.

On average, GoogLeNet achieves the best results for surgical action classification in
terms of Recall, Precision, f-value and Precision @3. However, there are classes where other
approaches work better. For example, AlexNet is better at the classification of Coagulation.
We think that origins in the fact that tissue after coagulation and cutting with a monopolar
needle device looks very similar and is distinguished by the used instruments only (which
are not visible on each frame in the scenes and also appear frequently in other scenes).
GoogLeNet interprets these instruments more likely to be contained in other scenes than
AlexNet. The SVM approach using layer fc6 is better at classes Injection as well as Suction
& Irrigation. These two classes are special, as they feature most reflections. We think that
features from AlexNet trained on the ILSVRC dataset better map reflections as the models
trained on a database where reflections occur constantly.

For anatomical structure classification, GooglLeNet also dominates the average
performance in terms of Recall, Precision, f-value, and Precision @3. Interstingly, if we look
at Recall@3, AlexNet slightly surpasses GoogLeNet at Colon, Ovaries, and Uterus classes.
The other two classes, Oviduct and Liver are dominated by GooglLeNet. Considering
the small number of anatomical structure classes, Recall@3 is not that expressive for
the anatomy subset when the distances are that small as we observe them in the cases
GoogLeNet performs worse than AlexNet. In terms of f-value, the combination of precision
and recall, GoogleNet dominates in all but the Liver class, where the SVM approach using
fc7 features dominates with a value of .909 compared to .879. The same approach yields

Table 3 Overview on the validation data set

Class ID Action class #imgs Anatomy Class #imgs
1 Blunt Dissection 1,620 Colon 1,396
2 Coagulation 2,037 Liver 1,846
3 Cutting Cold 655 Ovaries 3,174
4 Cutting 2,634 Oviduct 3,032
5 Hysterectomy (Sling) 5,119 Uterus 1,336
6 Injection 4,446
7 Suction & Irrigation 1,475
8 Suture 7,508

Each class consists out of five scenes
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Table 4 Detailed evaluation results for the action subset

1 2 3 4 5 6 7 8 Avg.
Recall
AlexNet 577 431 176 .858 .621 177 323 .590 469
GoogLeNet 792 322 354 962 923 406 484 690 617
SVM Class .002 .000 116 .073 .399 .000 532 .003 141
SVM fc7 .631 .308 180 .687 .626 .549 236 299 440
SVM fc6 .632 302 272 612 143 .682 406 470 515
Precision
AlexNet 447 295 229 .607 768 741 135 593 477
GoogLeNet .566 .260 246 .838 860 881 254 812 590
SVM Class S71 .000 .018 492 405 .500 .075 458 315
SVM fc7 470 207 .110 .568 463 .681 215 574 411
SVM fc6 517 290 .150 552 .681 .651 292 707 480
f-value
AlexNet 504 350 .199 11 .687 285 .190 591 440
GoogLeNet .660 .288 290 .896 .891 .555 333 746 852
SVM Class .005 .000 .031 128 402 .000 131 .006 .088
SVM fc7 .539 .248 136 .622 532 .608 225 393 413
SVM fc6 .569 296 .193 581 11 666 340 .565 490
Recall@3
AlexNet .820 732 214 966 .882 392 818 .895 715

GoogLeNet 956 857 .647 1.00 972 762 988 920 .888

For class IDs of the action classes, please refer to Table 1. Bold numbers indicate the top performance within
aclass

good performance regarding recall for the class Uterus. With a value of .874, the features
of fc6 layer also provide a good precision for Oviduct classification.

Our results further imply that introduction of an additional SVM classifier does not
improve prediction results on average when introducing more sophisticated neural networks.
This off-the-shelf feature approach looses performance in terms of recall per class and mean
precision compared to GoogLeNet CNN. Interestingly, for actions, the more basic layer fc6
works better than the more abstract features fc7 and class achieving very poor performances.
For anatomical structures, the layer fc7 works best out of the three evaluated features which
are used as SVM input. We observe that the GoogLeNet architecture is superior to the
AlexNet architecture and SVM Classifiers.

Hence, this gives a strong indication that improvements of CNN methods in the
general domain of image classification lead to improvements in the specialized domain of
laparoscopic surgery image classification. Also, off-the-shelf features from AlexNet and
linear SVMs slightly outperform AlexNet training from scratch when the right layer is cho-
sen. We think this originates in the training set. This set is correctly annotated, but not fully
noise-free considering individual images. Comparing surgical action to anatomical structure
classification performance, it is obvious that anatomical structures perform much better in
overall performance. We think this originates in the very complex nature of surgical action
scenes compared to more static scenes featuring anatomical structures and the agnostic of
the temporal dimension.

@ Springer



8074

Multimed Tools Appl (2018) 77:8061-8079

Table 5 Detailed evaluation results for the anatomy subset

1 2 3 4 5 Avg.
Recall
AlexNet .652 .596 858 442 528 .615
GoogLeNet 795 .862 .888 .623 743 782
SVM Class 554 .601 484 562 581 .556
SVM fc7 .663 891 155 374 .801 .697
SVM fc6 572 .854 712 412 .697 .649
Precision
AlexNet .595 765 .546 .800 .613 .664
GoogLeNet 805 .896 747 .839 619 781
SVM Class 461 .659 591 .860 273 .569
SVM fc7 792 927 .561 .862 475 124
SVM fc6 751 .882 535 874 408 .690
f-value
AlexNet .622 .670 .667 .569 .568 619
GoogLeNet 800 .879 811 715 676 776
SVM Class .503 .629 532 .680 372 543
SVM fc7 722 909 .644 522 .596 .679
SVM fc6 .649 .868 611 .560 514 .641
Recall@3
AlexNet 979 .694 986 773 989 .884
GoogLeNet 971 928 965 .868 981 944

For class IDs of the action classes, please refer to Table 2. Bold numbers indicate top performance within a

class
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We visualize the performance for our surgical action and anatomical structure classes of
the individual approaches using confusion matrices depicted in Fig. 5 for the CNN action
models, and Fig. 6 for CNN anatomy models. SVM confusion matrices are given in Fig. 7
for action classification, and Fig. 8 for anatomy classification. Columns denote the predicted
class while rows indicate the true class. Cell shades illustrate prediction percentage relative
to the number of examples for a class.

CNN and SVM action models perform poorest in the classes Coagulation, Cutting Cold,
and Suction & Irrigation. We think this originates in the fact that the single-frame CNN
models have limited means to model the way the instruments are used. For CNN and
SVM anatomy models, there is a bias to confuse the classes Ovaries, Uterus and Oviduct.
We think this originates in the fact that these organs are spatially very near and when
these organs are on the images, it is likely that parts of those other classes are visible
as well.

6 Conclusion

In this paper, we investigate CNN.based single-frame classification models for video shots
in gynecological surgery. Together with medical experts, we provide a first taxonomy
for important anatomical structures and surgical actions of interest for the domain of
laparoscopy videos in gynecology. For this domain, we build a dataset of 9 h of video data
manually extracted from 111 different medical interventions. In particular, we train two dif-
ferent CNN architectures AlexNet and GooglLeNet from scratch for both, surgical action
and anatomical structure classification. Furthermore, we investigate an SVM approach using
off-the-shelf neural network features from AlexNet: class, fc7, and fc6. The best results
from the SVM approach using features extracted from AlexNet using off-the-shelf weights
outperform the full AlexNet CNN trained from scratch in both, anatomical structure as well
as action classification which might originate in the choice to label the database scene-wise
and not on a per-frame basis. Moreover, GoogLeNet, the best-performing approach on gen-
eral images, also is the best performing approach in this domain. These results imply that
advances in general image classification domains can lead to advances in difficult expert
domains, such as our use case of gynecological surgery video classification.

Despite the fact that this domain is pretty narrow, there is plenty of future work to do. We
think a per-pixel classification approach for anatomical structures could yield more accu-
rate results for structures which are spatially near each other. More examples for future
work include the evaluation of more sophisticated approaches for video classification, such
as frame fusion models or LSTM-based models. Also, the question of whether we can sur-
pass human performance by adding more network depth remains open. However, we think
that classification of surgical actions provides the most benefit for surgeons and therefore
focus on the following point. We assume that the capabilities of the used single-frame CNN
models AlexNet and GoogLeNet are not fully utilized. Hence, we aim at an improvement of
surgical action classification by using early fusion of raw image data with multiple (domain-
specific) modalities of which at least one represents a temporal dimension, such as motion
vectors.
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